JPH05186804A - Tungsten multiple powder, tungsten composite sheet and their production - Google Patents
Tungsten multiple powder, tungsten composite sheet and their productionInfo
- Publication number
- JPH05186804A JPH05186804A JP4020725A JP2072592A JPH05186804A JP H05186804 A JPH05186804 A JP H05186804A JP 4020725 A JP4020725 A JP 4020725A JP 2072592 A JP2072592 A JP 2072592A JP H05186804 A JPH05186804 A JP H05186804A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- tungsten
- sintered body
- copper
- tungsten composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 60
- 239000002131 composite material Substances 0.000 title claims abstract description 48
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 36
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 31
- 239000010937 tungsten Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000010949 copper Substances 0.000 claims abstract description 58
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 22
- 150000001879 copper Chemical class 0.000 claims abstract description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 claims abstract description 3
- 238000005245 sintering Methods 0.000 claims description 25
- 239000011812 mixed powder Substances 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 238000003756 stirring Methods 0.000 claims description 4
- 238000007772 electroless plating Methods 0.000 claims description 3
- 238000009713 electroplating Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims 1
- 239000011159 matrix material Substances 0.000 abstract 1
- 238000005470 impregnation Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 102220253765 rs141230910 Human genes 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Chemically Coating (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はタングステン複合板材及
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tungsten composite plate material and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来、タングステン(W)及び銅(C
u)が複合された板材が知られており(以下単にW−C
u板材という)、このようなW−Cu板材は、例えば、
半導体用ヒートシンク材、電気接点、及び放電用電極に
用いられている。2. Description of the Related Art Conventionally, tungsten (W) and copper (C
A plate material in which u) is compounded is known (hereinafter simply referred to as WC
u plate material), such W-Cu plate material is, for example,
It is used for heat sink materials for semiconductors, electrical contacts, and discharge electrodes.
【0003】上記のW−Cu板材を製造する際には、一
般に、まず、W焼結体を製造した後、W焼結体中にCu
を溶融含浸して、W−Cu焼結体を得て、このW−Cu
焼結体を板材に加工している(以下含浸法という)。一
方、予めW粉とCu粉とを準備して、これらW粉とCu
粉とを所定の割合で混合して混合粉を得て、この混合粉
をプレス成型及び焼結によってW−Cu焼結体とし、W
−Cu焼結体を板材に加工することも行われている(以
下混合法という)。When manufacturing the above W-Cu plate material, generally, a W sintered body is first manufactured, and then Cu is contained in the W sintered body.
Is melt-impregnated to obtain a W-Cu sintered body.
The sintered body is processed into a plate (hereinafter referred to as the impregnation method). On the other hand, W powder and Cu powder are prepared in advance, and these W powder and Cu powder are prepared.
The powder is mixed with a predetermined ratio to obtain a mixed powder, and the mixed powder is pressed and sintered to form a W-Cu sintered body.
-Processing of a Cu sintered body into a plate material is also performed (hereinafter referred to as a mixing method).
【0004】[0004]
【発明が解決しようとする課題】ところで、上記の含浸
方法では、W焼結体中にCuを含浸する際の含浸調整が
極めて難しく、このため、Cu含浸量のばらつきが発生
してしまう。つまり、W焼結体における気孔率の調整が
困難であるから、予め設定した量のCuをW焼結体に溶
融含浸させることが難しいという問題点があり、板材と
した際の歩留まりが低下してしまう。また、溶融含浸の
際、含浸炉周辺部材がCu等で汚染されてしまうという
問題点がある。By the way, in the above impregnation method, it is extremely difficult to adjust the impregnation when the W sintered body is impregnated with Cu, so that the Cu impregnation amount varies. That is, since it is difficult to adjust the porosity of the W sintered body, it is difficult to melt-impregnate a preset amount of Cu into the W sintered body, which lowers the yield of the plate material. Will end up. Further, there is a problem that the peripheral members of the impregnation furnace are contaminated with Cu or the like during the melt impregnation.
【0005】さらに、含浸方法の場合には、W−Wの結
合が存在し、このW−W結合力によって加工性が悪くな
ってしまう。つまり、W−W結合力が加工を阻むことに
なってしまう。加えて、含浸方法では内部の空孔をなく
すため、余剰の銅素材を接し、含浸させる必要があり、
このため、表層の余剰銅部が存在することのなる。この
ことは実質的に切削加工の量(全加工量に対する)を増
大させ、しいては本質的に特性を左右する銅量のバラツ
キも生じさせることになる。Furthermore, in the case of the impregnation method, there is a WW bond, and this WW bond strength deteriorates the workability. That is, the WW coupling force hinders processing. In addition, in the impregnation method, excess copper material must be contacted and impregnated in order to eliminate internal voids,
Therefore, the surplus copper portion of the surface layer may exist. This substantially increases the amount of cutting work (relative to the total amount of work), which in turn causes variations in the amount of copper that essentially affect the properties.
【0006】一方、混合法では、焼結体の密度を上げる
ためには、焼結温度を高く設定する必要があるが、焼結
温度を高く設定すると、Cuが溶出してしまうという問
題点がある。Cuの溶出を防止するため、焼結温度を低
くしすぎると、上述のように焼結体の密度が低くなって
しまい、強度、熱伝導度、及び熱膨脹率等の特性が著し
く低下してしまう。さらに、焼結体を塑性加工する際、
端部に割れが生じるばかりでなく中央部にクラックガ生
じてしまうことが多く、歩留まりが低下してしまうとい
う問題点もある。さらに、混合法では、緻密化の完全性
を求めるために高温処理しなければならず、この結果、
表層へのCu浸み出しによって余剰銅部が存在すること
になる。このことは実質的に切削加工の量(全加工量に
対する)を増大させ、しいては本質的に特性を左右する
銅量のバラツキも生じさせることになる。On the other hand, in the mixing method, in order to increase the density of the sintered body, it is necessary to set the sintering temperature high. However, if the sintering temperature is set high, Cu will elute. is there. If the sintering temperature is too low in order to prevent the elution of Cu, the density of the sintered body becomes low as described above, and the properties such as strength, thermal conductivity, and coefficient of thermal expansion are remarkably reduced. .. Furthermore, when plastically processing the sintered body,
There is also a problem in that not only cracks occur at the end portions but also cracks often occur at the central portion, which lowers the yield. In addition, the mixing method requires high temperature treatment to determine the completeness of the densification, which results in
Excessive copper portion exists due to Cu leaching to the surface layer. This substantially increases the amount of cutting work (relative to the total amount of work), which in turn causes variations in the amount of copper that essentially affect the properties.
【0007】本発明の目的は強度、熱伝導度、及び熱膨
脹率等の特性が良好なタングステン複合板材を提供する
ことにある。An object of the present invention is to provide a tungsten composite plate material having excellent properties such as strength, thermal conductivity and coefficient of thermal expansion.
【0008】本発明の他の目的は歩留まりの極めて良い
タングステン複合板材の製造方法を提供することにあ
る。Another object of the present invention is to provide a method for manufacturing a tungsten composite plate material having an extremely high yield.
【0009】[0009]
【課題を解決するための手段】本発明によれば、タング
ステン基表面上に銅層が形成され、該銅の含有量が5乃
至50重量%であることを特徴とするタングステン複合
粉が得られる。なお、プレス加工に当たって、タングス
テン複合粉に所定量の銅粉を混合して混合粉とした後、
この混合粉をプレス加工するようにしてもよい。そし
て、上述のようにして製造された焼結体は相対密度が9
0%以上であり、タングステン複合板材は5乃至50重
量%の銅を含有する。According to the present invention, there is obtained a tungsten composite powder characterized in that a copper layer is formed on a tungsten-based surface and the content of the copper is 5 to 50% by weight. .. In pressing, after mixing a predetermined amount of copper powder into the tungsten composite powder to form a mixed powder,
You may make it press-process this mixed powder. The sintered body manufactured as described above has a relative density of 9
0% or more, and the tungsten composite plate material contains 5 to 50% by weight of copper.
【0010】また、タングステン複合粉の製造に当たっ
ては、タングステン粉又はタングステン酸化物粉を銅塩
類溶液中に入れて、攪拌乾燥して乾燥物を得、この乾燥
物を還元してタングステン基表面上に5乃至50重量%
の銅層を形成する。なお、電解メッキ法又は無電解メッ
キ法を用いてタングステン粉表面上に5乃至50重量%
の銅層を形成するようにしてもよい。Further, in the production of the tungsten composite powder, the tungsten powder or the tungsten oxide powder is put into a copper salt solution and dried by stirring to obtain a dried product, and the dried product is reduced and deposited on the surface of the tungsten base. 5 to 50% by weight
Forming a copper layer. In addition, 5 to 50% by weight on the surface of the tungsten powder by using the electrolytic plating method or the electroless plating method.
You may make it form the copper layer of.
【0011】[0011]
【実施例】以下本発明について実施例によって説明す
る。EXAMPLES The present invention will be described below with reference to examples.
【0012】(1).まず、200gの銅(Cu)を含
有するCuCl2水溶液を準備して、このCuCl2水
溶液中に粒径3μmのタングステン(W)粉を800g
を入れ、攪拌しつつ乾燥させた(以下乾燥物という、工
程1)。次に、この乾燥物を温度750℃の水素炉中で
還元してCuを含有するW粉末を生成した(以下Cu−
W複合粉という、工程2)。(1). First, a CuCl 2 aqueous solution containing 200 g of copper (Cu) was prepared, and 800 g of tungsten (W) powder having a particle size of 3 μm was added to the CuCl 2 aqueous solution.
And was dried with stirring (hereinafter referred to as a dried product, step 1). Next, the dried product was reduced in a hydrogen furnace at a temperature of 750 ° C. to produce W powder containing Cu (hereinafter Cu—
Step 2) called W composite powder.
【0013】さらに、電解銅200gと粒径3μmのW
粉800gとをボールミルで混合して、Cu−W混合粉
を生成した。Further, 200 g of electrolytic copper and W having a particle size of 3 μm
800 g of powder was mixed with a ball mill to produce a Cu-W mixed powder.
【0014】これらCu−W複合粉及びCu−W混合粉
をそれぞれ294MPaの圧力でプレス成型して複合粉
プレス成型体及び混合粉プレス成型体を得た。そして、
これら複合粉プレス成型体及び混合粉プレス成型体を焼
結温度を変化させてそれぞれ2時間焼結して複合粉焼結
体及び混合粉焼結体を得た。これら複合粉焼結体及び混
合粉焼結体の密度を測定したところ、図1に示す結果が
得られた。The Cu-W composite powder and the Cu-W mixed powder were press-molded at a pressure of 294 MPa to obtain a composite powder press-molded body and a mixed powder press-molded body. And
The composite powder press-molded body and the mixed powder press-molded body were sintered at different sintering temperatures for 2 hours to obtain a composite powder sintered body and a mixed powder sintered body. When the densities of the composite powder sintered body and the mixed powder sintered body were measured, the results shown in FIG. 1 were obtained.
【0015】図1に示すように、焼結温度を高くするに
つれて複合粉焼結体及び混合粉焼結体ともにその密度が
上昇して行くが、混合粉焼結体の方が密度の上昇率が大
きいことがわかる。つまり、複合粉焼結体では焼結温度
の違いによってその密度があまり変化せず、焼結温度が
低くても高い密度が得られることが容易に理解できる。As shown in FIG. 1, the densities of both the composite powder sintered body and the mixed powder sintered body increased as the sintering temperature was increased, but the mixed powder sintered body had a higher density increase rate. It turns out that is large. That is, it can be easily understood that the density of the composite powder sintered body does not change much depending on the difference of the sintering temperature, and a high density can be obtained even if the sintering temperature is low.
【0016】さらに、これら焼結温度1250℃で焼結
された複合粉焼結体及び混合粉焼結体の組成を光学顕微
鏡で観察したところ、図2に示すように、複合粉焼結体
では混合粉焼結体に比べて空孔が極めて少ないことがわ
かる。Further, when the compositions of the composite powder sintered body and the mixed powder sintered body sintered at these sintering temperatures of 1250 ° C. were observed with an optical microscope, as shown in FIG. It can be seen that the number of pores is extremely smaller than that of the mixed powder sintered body.
【0017】(2).次に、上記(1)で用いたCu−
W複合粉800gに電解銅粉114.3gを入れ、Vミ
キサーで混合して、30%のCuとなるCu−W複合粉
を生成した(以下30%Cu−W複合粉という)。そし
て、この30%Cu−W複合粉を圧力294MPaでプ
レス成型して、プレス成型体とし、水素雰囲気中で種々
の焼結温度に変化させて2時間焼結した。そして、焼結
温度の相違による密度の変化を比較した。その結果を図
3に示す。図3に示すように焼結体の密度は焼結温度が
高くなるに従って高くなるが、焼結温度が約1150℃
でも相対密度は約92%であり、十分な密度に焼結でき
ることがわかる。(2). Next, Cu-used in (1) above
114.3 g of electrolytic copper powder was added to 800 g of W composite powder and mixed with a V mixer to produce a Cu—W composite powder having 30% Cu (hereinafter referred to as 30% Cu—W composite powder). Then, this 30% Cu-W composite powder was press-molded at a pressure of 294 MPa to obtain a press-molded body, which was sintered for 2 hours while being changed to various sintering temperatures in a hydrogen atmosphere. Then, changes in density due to differences in sintering temperature were compared. The result is shown in FIG. As shown in FIG. 3, the density of the sintered body increases as the sintering temperature increases, but the sintering temperature is about 1150 ° C.
However, the relative density is about 92%, which means that the sintering can be performed to a sufficient density.
【0018】(3).上記の(1)で得られた複合粉焼
結体及び混合粉焼結体を圧延加工してそれぞれ複合粉板
材及び混合粉板材を作成したところ、複合粉板材ではク
ラック及び割れ等がほとんど発生しなかったのに対して
混合粉板材ではクラック及び割れが多量に発生し使い物
にならなかった。(3). When the composite powder plate and the mixed powder plate obtained by the above (1) were rolled to form a composite powder plate and a mixed powder plate, respectively, almost all cracks and cracks were generated in the composite powder plate. On the other hand, in the mixed powder plate material, a large amount of cracks and cracks were generated and it was not usable.
【0019】(4)上記の(1)と同様の方法で5%乃
至50%のCuを含有するCu−W複合粉を生成して、
これら複合粉を所定の焼結温度で焼結して焼結体を得、
これら焼結体を圧延して複数の圧延体(板材)を得た。
そして、これら圧延体の熱伝導度及び熱膨脹係数を測定
した。さらに、参考のため、純タングステン粉を用いた
圧延体及び純銅を用いた圧延体を作成し、これら圧延体
の熱伝導度及び熱膨脹係数を測定した。この測定結果を
図4に示す。図4に示すように、銅の含有量が増加する
に従って熱伝導度及び熱膨脹係数が増加することがわか
る。(4) A Cu-W composite powder containing 5% to 50% Cu is produced in the same manner as in the above (1),
Sintering these composite powders at a predetermined sintering temperature to obtain a sintered body,
These sintered bodies were rolled to obtain a plurality of rolled bodies (plate materials).
Then, the thermal conductivity and the coefficient of thermal expansion of these rolled bodies were measured. Further, for reference, a rolled body using pure tungsten powder and a rolled body using pure copper were prepared, and the thermal conductivity and the thermal expansion coefficient of these rolled bodies were measured. The measurement result is shown in FIG. As shown in FIG. 4, it can be seen that the thermal conductivity and the coefficient of thermal expansion increase as the copper content increases.
【0020】上述のように、本実施例では、W粉表面上
にCu層を形成する際、Cu塩類水溶液中にW粉を入れ
て攪拌しつつ乾燥させてW粉表面上にCu塩類を付着さ
せている。そして、この乾燥粉を還元雰囲気中で還元し
てW粉表面上にCu層を形成している。このように、W
粉をCu塩類水溶液でドープしているから、W粉表面上
の凹部にまでCu塩類水溶液がゆきわたる。つまり、W
粉表面上の凹部にも銅塩類が形成されることになり、還
元後にはW粉表面上にまんべんなくCu層が形成される
ことになる。従って、このようなCu−W複合粉をプレ
ス成型後焼結すると、CuとWとの濡れ性がよく、実質
的に銅単体の焼結体と類似するものが得られる。このた
め、焼結温度は低くて高密度の焼結体が得られることに
なる。さらに、焼結温度が低くて済むから、焼結時にお
いてCuの浸み出しがなく、またCuの揮散もほとんど
ない。このように、本実施例では、Cuの浸み出しがな
いから、切削加工の量(全加工量に対する)が低下し、
しいては本質的に特性を左右する銅量のバラツキも生じ
させることがない。また、上記のCu−W複合粉にCu
粉を混合した後、プレス成型を行い、焼結した焼結体に
おいても同様に低い焼結温度で高密度とすることができ
る。As described above, in the present embodiment, when the Cu layer is formed on the surface of the W powder, the W powder is put in an aqueous solution of Cu salt and dried with stirring to deposit the Cu salt on the surface of the W powder. I am letting you. Then, this dry powder is reduced in a reducing atmosphere to form a Cu layer on the surface of the W powder. Thus, W
Since the powder is doped with the Cu salt aqueous solution, the Cu salt aqueous solution reaches the recesses on the surface of the W powder. That is, W
Copper salts are also formed in the recesses on the powder surface, and after the reduction, a Cu layer is evenly formed on the W powder surface. Therefore, when such a Cu-W composite powder is press-molded and then sintered, a wettability between Cu and W is good, and a sintered body substantially similar to a copper simple substance is obtained. Therefore, the sintering temperature is low and a high-density sintered body can be obtained. Further, since the sintering temperature is low, Cu does not seep out during the sintering and Cu is hardly vaporized. As described above, in this embodiment, since there is no Cu leaching, the amount of cutting work (relative to the total amount of work) is reduced,
However, there is essentially no variation in the amount of copper that affects the characteristics. In addition, Cu is added to the above Cu-W composite powder.
Even after the powder is mixed, press molding is performed, and a sintered body obtained by sintering can also have a high density at a low sintering temperature.
【0021】さらに、本実施例では、W粒子の周囲(表
面)にCuが配置されているから、Cu−Wのスベリ及
びCuの易加工性がそのまま材質の特長となる。Further, in this embodiment, since Cu is arranged around the W particles (on the surface), the smoothness of Cu-W and the workability of Cu are the characteristics of the material as they are.
【0022】なお、Cu−W複合粉の製造に当たって
は、電解メッキ法又は無電解メッキ法を用いても同様に
Cu−W複合粉を製造することができる。また、Cuの
含有量は5重量%乃至50重量%であれば、焼結後の熱
膨張率は満足できるものであり、焼結温度は1100℃
乃至1300℃であればよい。In producing the Cu-W composite powder, the Cu-W composite powder can be produced in the same manner by using an electrolytic plating method or an electroless plating method. Further, if the Cu content is 5% by weight to 50% by weight, the coefficient of thermal expansion after sintering is satisfactory, and the sintering temperature is 1100 ° C.
The temperature may be from 1300 ° C to 1300 ° C.
【0023】[0023]
【発明の効果】以上説明したように、本発明によるCu
−W複合粉を用いれば、高密度の焼結体を簡単に得るこ
とができ、しかも板材に加工した際、割れ及びクラック
が発生することがほとんどなく、強度、熱伝導度、及び
熱伝導率等の特性が良好で歩留まりが極めて高くなると
いう効果がある。As described above, the Cu according to the present invention
By using -W composite powder, a high-density sintered body can be easily obtained, and when processed into a plate material, cracks and cracks hardly occur, and strength, thermal conductivity, and thermal conductivity can be obtained. The characteristics such as the above are good and the yield is extremely high.
【図1】複合粉焼結体及び混合粉焼結体の焼結温度と密
度との関係を示す図である。FIG. 1 is a diagram showing a relationship between a sintering temperature and a density of a composite powder sintered body and a mixed powder sintered body.
【図2】複合粉焼結体及び混合粉焼結体の組織を光学顕
微鏡写真で示す図である。FIG. 2 is a view showing the structures of a composite powder sintered body and a mixed powder sintered body in an optical microscope photograph.
【図3】複合粉焼結体の焼結温度と密度との関係を示す
図である。FIG. 3 is a diagram showing a relationship between a sintering temperature and a density of a composite powder sintered body.
【図4】本発明による圧延体の熱伝導率及び熱膨脹率を
説明するための図である。FIG. 4 is a diagram for explaining the thermal conductivity and the coefficient of thermal expansion of the rolled body according to the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22F 1/18 C 9157−4K C23C 18/40 C25D 3/38 (72)発明者 有川 正 富山県富山市岩瀬古志町2番地 東京タン グステン株式会社富山製作所内 (72)発明者 市田 晃 富山県富山市岩瀬古志町2番地 東京タン グステン株式会社富山製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C22F 1/18 C 9157-4K C23C 18/40 C25D 3/38 (72) Inventor Tadashi Arikawa Toyama Prefecture Toyama, Iwase Koshi-cho, Toyama City, Tokyo Togusten Co., Ltd., Toyama Works (72) Akira Ichida, Iwase, Koshi-machi, Toyama City, Toyama, Toyama Prefecture Tokyo Tangusten, Toyama Co., Ltd.
Claims (7)
れ、該銅の含有量が5乃至50重量%であることを特徴
とするタングステン複合粉。1. A tungsten composite powder, wherein a copper layer is formed on a tungsten-based surface, and the content of the copper is 5 to 50% by weight.
粉を所定の圧力でプレス成型したプレス成型体を得る第
1の工程と、該プレス成型体を温度1100℃乃至13
00℃で焼結して焼結体を得る第2の工程と、該焼結体
を圧延加工してタングステン複合板材を得る第3の工程
とを有することを特徴とするタングステン複合板材の製
造方法。2. A first step of obtaining a press-molded body obtained by press-molding the tungsten composite powder according to claim 1 at a predetermined pressure, and the press-molded body at a temperature of 1100 ° C. to 13 ° C.
A method for manufacturing a tungsten composite plate material, comprising: a second step of sintering at 00 ° C. to obtain a sintered body; and a third step of rolling the sintered body to obtain a tungsten composite plate material. ..
板材の製造方法において、前記第1の工程では前記タン
グステン複合粉に所定量の銅粉が混合され、該混合粉が
プレスされることを特徴とするタングステン複合板材の
製造方法。3. The method for manufacturing a tungsten composite plate material according to claim 2, wherein a predetermined amount of copper powder is mixed with the tungsten composite powder and the mixed powder is pressed in the first step. And a method for manufacturing a tungsten composite plate material.
粉を所定の圧力でプレス成型したプレス成型体が温度1
100℃乃至1300℃で焼結され、5乃至50重量%
の銅を含有し、相対密度が90%以上であるタングステ
ン複合焼結体。4. The press-molded body obtained by press-molding the tungsten composite powder according to claim 1 at a predetermined pressure has a temperature of 1.
Sintered at 100 ℃ ~ 1300 ℃, 5 ~ 50wt%
And a relative density of 90% or more of the tungsten composite sintered body.
され、5乃至50重量%の銅を含有することを特徴とす
るタングステン複合板材。5. A tungsten composite plate material, characterized in that the sintered body according to claim 4 is rolled and contains 5 to 50% by weight of copper.
粉を銅塩類溶液中に入れて、攪拌乾燥して乾燥物を得る
第1の工程と、該乾燥物を還元してタングステン基表面
上に5乃至50重量%の銅層を形成する第2の工程とを
有することを特徴とするタングステン複合粉の製造方
法。6. A first step in which tungsten powder or tungsten oxide powder is placed in a copper salt solution and dried by stirring to obtain a dried product, and the dried product is reduced to 5 to 50 on the surface of the tungsten base. And a second step of forming a copper layer of wt%.
てタングステン粉表面上に5乃至50重量%の銅層を形
成してタングステン複合粉を得ることを特徴とするタン
グステン複合粉の製造方法。7. A method for producing a tungsten composite powder, comprising forming a 5 to 50 wt% copper layer on the surface of the tungsten powder by an electrolytic plating method or an electroless plating method to obtain a tungsten composite powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4020725A JPH05186804A (en) | 1992-01-10 | 1992-01-10 | Tungsten multiple powder, tungsten composite sheet and their production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4020725A JPH05186804A (en) | 1992-01-10 | 1992-01-10 | Tungsten multiple powder, tungsten composite sheet and their production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05186804A true JPH05186804A (en) | 1993-07-27 |
Family
ID=12035159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4020725A Pending JPH05186804A (en) | 1992-01-10 | 1992-01-10 | Tungsten multiple powder, tungsten composite sheet and their production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05186804A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493153A (en) * | 1992-11-26 | 1996-02-20 | Tokyo Tungsten Co., Ltd. | Plastic-packaged semiconductor device having a heat sink matched with a plastic package |
KR100217032B1 (en) * | 1997-06-14 | 1999-09-01 | 박호군 | Fabrication method of w-skelton structure for the infiltration of cu melt and composites thereof |
KR100386431B1 (en) * | 2000-12-29 | 2003-06-02 | 전자부품연구원 | Method for net-shaping tungsten-copper composite using tungsten powders coated with copper |
CN107671279A (en) * | 2017-09-13 | 2018-02-09 | 武汉理工大学 | The preparation method of tungsten copper silver carbon system composite |
CN109454229A (en) * | 2019-01-07 | 2019-03-12 | 广东省材料与加工研究所 | A kind of pomegranate type tungsten alloy powder and the preparation method and application thereof |
CN112708794A (en) * | 2021-03-29 | 2021-04-27 | 陕西斯瑞新材料股份有限公司 | Method for preparing copper-tungsten alloy by adopting superfine tungsten powder |
CN116652179A (en) * | 2023-07-28 | 2023-08-29 | 安徽诺星航空科技有限公司 | Tungsten-copper alloy composite material and preparation process thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4825851A (en) * | 1971-08-12 | 1973-04-04 | ||
JPS63286537A (en) * | 1987-05-19 | 1988-11-24 | Nisshin Steel Co Ltd | Manufacture of grain dispersion-type composite material |
-
1992
- 1992-01-10 JP JP4020725A patent/JPH05186804A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4825851A (en) * | 1971-08-12 | 1973-04-04 | ||
JPS63286537A (en) * | 1987-05-19 | 1988-11-24 | Nisshin Steel Co Ltd | Manufacture of grain dispersion-type composite material |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5493153A (en) * | 1992-11-26 | 1996-02-20 | Tokyo Tungsten Co., Ltd. | Plastic-packaged semiconductor device having a heat sink matched with a plastic package |
KR100217032B1 (en) * | 1997-06-14 | 1999-09-01 | 박호군 | Fabrication method of w-skelton structure for the infiltration of cu melt and composites thereof |
KR100386431B1 (en) * | 2000-12-29 | 2003-06-02 | 전자부품연구원 | Method for net-shaping tungsten-copper composite using tungsten powders coated with copper |
CN107671279A (en) * | 2017-09-13 | 2018-02-09 | 武汉理工大学 | The preparation method of tungsten copper silver carbon system composite |
CN107671279B (en) * | 2017-09-13 | 2019-08-23 | 武汉理工大学 | Tungsten copper silver carbon system composite material and preparation method |
CN109454229A (en) * | 2019-01-07 | 2019-03-12 | 广东省材料与加工研究所 | A kind of pomegranate type tungsten alloy powder and the preparation method and application thereof |
CN112708794A (en) * | 2021-03-29 | 2021-04-27 | 陕西斯瑞新材料股份有限公司 | Method for preparing copper-tungsten alloy by adopting superfine tungsten powder |
CN116652179A (en) * | 2023-07-28 | 2023-08-29 | 安徽诺星航空科技有限公司 | Tungsten-copper alloy composite material and preparation process thereof |
CN116652179B (en) * | 2023-07-28 | 2023-10-13 | 安徽诺星航空科技有限公司 | Tungsten-copper alloy composite material and preparation process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3766486B2 (en) | Tungsten-copper composite powder | |
KR20020090226A (en) | Co-forming metal foam articles | |
EP0806489A2 (en) | Process for making improved copper/tungsten composites | |
JP3763006B2 (en) | Copper tungsten alloy and method for producing the same | |
US20030217828A1 (en) | Metal matrix composite having improved microstructure and the process for making the same | |
JPH05186804A (en) | Tungsten multiple powder, tungsten composite sheet and their production | |
JPS6337072B2 (en) | ||
JPH05186802A (en) | Molybdenum multiple powder, molybdenum composite sheet and their production | |
JP2717895B2 (en) | Method for producing Cu-Mo composite rolled sheet | |
JP2000141022A (en) | Silicon carbide composite body and its manufacture | |
JP3270798B2 (en) | Method for producing silicon carbide sintered body | |
EP0593591A1 (en) | Boron carbide-copper cermets and method for making same. | |
JP2559085B2 (en) | Composite sintered material and manufacturing method thereof | |
JPS62127448A (en) | Electrode material for electric discharge machining and its production | |
EP1043409B1 (en) | Composite material prepared by powder metallurgy | |
US6589310B1 (en) | High conductivity copper/refractory metal composites and method for making same | |
JPH04180534A (en) | Metallic member having high thermal conductivity and low coefficient of thermal expansion and its production | |
JPS6043894B2 (en) | Process for manufacturing composite metals consisting of tungsten, silver and copper | |
JP2004174705A (en) | Electrode material for electrical discharge processing | |
KR102356988B1 (en) | Dispersion Hardened Silver-based Composite for Measuring Device Element of Electronic Parts and Manufacturing Process of the Dispersion Hardened Silver-based Composite by Powder Metallurgy | |
JP3883985B2 (en) | Method for producing copper-based low thermal expansion high thermal conductive member | |
CN110526685B (en) | Pressure transmission element for synthesizing superhard composite sheet and preparation method thereof | |
KR910001583B1 (en) | Making process for cu-w alloy sintered | |
WO1997001187A1 (en) | Method of manufacture of material for semiconductor substrate, material for semiconductor substrate, and package for semiconductor | |
JPH08176694A (en) | Production of thin sintered sheet for heat sink of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19960220 |