JPH05172791A - Fatigue crack detection method for corner joint - Google Patents

Fatigue crack detection method for corner joint

Info

Publication number
JPH05172791A
JPH05172791A JP3340808A JP34080891A JPH05172791A JP H05172791 A JPH05172791 A JP H05172791A JP 3340808 A JP3340808 A JP 3340808A JP 34080891 A JP34080891 A JP 34080891A JP H05172791 A JPH05172791 A JP H05172791A
Authority
JP
Japan
Prior art keywords
fatigue crack
joint
web
probe
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3340808A
Other languages
Japanese (ja)
Inventor
Minoru Yashima
実 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3340808A priority Critical patent/JPH05172791A/en
Publication of JPH05172791A publication Critical patent/JPH05172791A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent occurrence of a significant accident by surely distinguish a root blow hole from a fatigue crack generated later. CONSTITUTION:To a partial weld penetration corner joint where a flange 11 and a web 12 are welded, a vertical probe 16 is provided on the web 12 side putting in between a contact medium 15, and a horizontal wave slanting angle sensors 17, 18 having a refraction angle of 45 degree are also provided, The vertical probe 16 is for measuring the weld penetration depth and the slanting angle sensors 17, 17 are for detecting a round fatigue crack 19 having generated from the root blow hole 14. The weld penetration front position of the joint is detected using the detection signal from the vertical probe 16 and simultaneously, a deeper position than the weld penetration front position is detected using the detection signal from the slanting angle sensors 17, 18. Thus by detecting the string corner reflection wave accompanying the penetration of the fatigue crack, the existence of fatigue crack generation is judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、橋梁の部分溶込み角継
手における疲労亀裂の発生を検出する角継手の疲労亀裂
検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting fatigue cracks in a corner joint for detecting the occurrence of fatigue cracks in a partial penetration corner joint of a bridge.

【0002】[0002]

【従来の技術】従来、橋梁には、図8に示すようにフラ
ンジ1とウエブ2とを溶接した部分溶込み角継手が多用
されているが、この角継手においては供用開始後に継手
部3にルートブローホール4を起点として円形の疲労亀
裂5が発生することが指摘されている。このため従来で
は、図9に示す超音波探傷法により疲労亀裂5を検出し
ている。即ち、探傷するウエブ2の表面に接触媒質6を
塗布し、この接触媒質6に斜角探触子7を押し当て、そ
れを溶接線と直角方向に走査させることにより疲労亀裂
4を検出している。
2. Description of the Related Art Conventionally, a partial penetration angle joint in which a flange 1 and a web 2 are welded is often used in a bridge as shown in FIG. It has been pointed out that a circular fatigue crack 5 is generated starting from the root blowhole 4. Therefore, conventionally, the fatigue crack 5 is detected by the ultrasonic flaw detection method shown in FIG. That is, the contact medium 6 is applied to the surface of the web 2 to be flaw-detected, the oblique-angle probe 7 is pressed against the contact medium 6, and the fatigue crack 4 is detected by scanning it in the direction perpendicular to the welding line. There is.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の疲
労亀裂検出方法では、製作時よりあるルートブローホー
ル4と疲労亀裂5の識別が難しく、製作時に超音波探傷
を行なった個所についてのみ、製作時の検査結果と保守
時の検査結果との対比から疲労亀裂の発生が認識できる
に過ぎなかった。このため保守検査により疲労亀裂4を
確実に検出できる技術が要請されている。
However, in the above-described conventional fatigue crack detection method, it is difficult to distinguish the root blowhole 4 and the fatigue crack 5 from the time of manufacture, and only the place where ultrasonic flaw detection is performed at the time of manufacture is manufactured. The occurrence of fatigue cracks could only be recognized from the comparison between the inspection results during maintenance and the inspection results during maintenance. Therefore, there is a demand for a technique capable of surely detecting the fatigue crack 4 by the maintenance inspection.

【0004】本発明は上記実情に鑑みてなされたもの
で、製作時の超音波探傷データが無くても、製作時より
あるルートブローホールと、その後に発生した疲労亀裂
を確実に識別でき、重大事故の発生を未然に防止し得る
角継手の疲労亀裂検出方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and even if there is no ultrasonic flaw detection data at the time of manufacturing, it is possible to reliably identify a root blow hole from the time of manufacturing and a fatigue crack generated thereafter, and it is important. An object of the present invention is to provide a method for detecting fatigue cracks in a corner joint that can prevent an accident from occurring.

【0005】[0005]

【課題を解決するための手段】本発明に係る角継手の疲
労亀裂検出方法は、垂直探触子からの超音波を継手のウ
エブ表面から垂直に入射させてウエブ底面からの反射波
を検出して継手の溶込み先端位置を検出すると同時に、
屈折角が略45°の斜角探触子からの超音波を継手のウ
エブ表面から入射させて上記継手の溶込み先端位置より
深い領域を探傷し、予め設定した基準値より強い反射波
を検出した際に疲労亀裂が発生しているものと判定する
ことを特徴とするものである。
A method for detecting fatigue cracks in a corner joint according to the present invention detects ultrasonic waves from a vertical probe vertically from the web surface of the joint to detect reflected waves from the bottom surface of the web. At the same time as detecting the penetration tip position of the joint
Ultrasonic waves from a bevel probe with a refraction angle of approximately 45 ° are made to enter from the web surface of the joint to detect a region deeper than the penetration tip position of the joint, and a reflected wave stronger than a preset reference value is detected. It is characterized in that it is determined that a fatigue crack has occurred at the time of performing.

【0006】[0006]

【作用】斜角探触子から超音波を継手のウエブ表面から
45°の角度で入射させると、内部に疲労亀裂を生じて
いた場合、ウエブ底面で反射した超音波が疲労亀裂の破
面で再び反射して斜角探触子に受信される。この場合、
屈折角が約34°〜56°の範囲では入射波が100%
反射するため、非常に強い反射波となる。
[Operation] When ultrasonic waves are incident from the bevel probe at an angle of 45 ° from the web surface of the joint, if fatigue cracks are generated inside, the ultrasonic waves reflected from the bottom surface of the web will cause fracture surface of the fatigue cracks. It is reflected again and received by the bevel probe. in this case,
100% of incident wave in the range of refraction angle of about 34 ° -56 °
Since it is reflected, it becomes a very strong reflected wave.

【0007】上記反射波を実験的に調べてみると、同じ
ビーム路程の位置に設けた人口欠陥(横孔)からの反射
波のレベルより10〜18dB程度高い。一方、ルート
ブローホールからの反射波のレベルを調べてみると、人
口欠陥(横孔)からの反射波のレベルより10〜18d
B程度低いものが多い。従って、継手の溶込み先端位置
より深い領域において、強いレベルのエコーが検出され
た場合には、疲労亀裂が発生しているものと判断でき
る。
When the reflected wave is experimentally examined, it is higher by about 10 to 18 dB than the level of the reflected wave from the artificial defect (lateral hole) provided at the same beam path position. On the other hand, when the level of the reflected wave from the route blowhole was examined, it was 10 to 18d from the level of the reflected wave from the artificial defect (lateral hole).
Many are about B low. Therefore, if a strong level echo is detected in a region deeper than the penetration tip position of the joint, it can be determined that a fatigue crack has occurred.

【0008】[0008]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例を示す構成図であ
る。図1は、フランジ11及びウエブ12を溶接した部
分溶込み角継手を示している。13は溶接部で、14は
溶接部13内に形成されたルートブローホールである。
そして、ウエブ12側に接触媒質15を塗布し、この接
触媒質15の上に点集束垂直探触子16を設けると共
に、屈折角45°(±10°)の点集束(横波)斜角探
触子17,18を設けている。上記垂直探触子16は溶
込み深さを測定するための探触子であり、また、斜角探
触子17,18はルートブローホール14を起点として
発生する円形の疲労亀裂19を検出するための探触子
で、一定の間隔を保って配置される。
FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 1 shows a partial penetration angle joint in which a flange 11 and a web 12 are welded. Reference numeral 13 is a welded portion, and 14 is a root blow hole formed in the welded portion 13.
Then, the contact medium 15 is applied to the web 12 side, a point-focusing vertical probe 16 is provided on the contact medium 15, and a point-focusing (transverse wave) oblique-angle probe with a refraction angle of 45 ° (± 10 °) is provided. Children 17, 18 are provided. The vertical probe 16 is a probe for measuring the penetration depth, and the beveled probes 17, 18 detect circular fatigue cracks 19 originating from the root blow hole 14. It is a probe for, and is arranged at a constant interval.

【0010】上記垂直探触子16の検出信号は、図示し
ない処理回路へ送られ、公知の技術(例えば本件出願人
が先に出願した特願昭59−37602号(特開昭60
−181605号、溶込み深さ測定方法))により溶接
部13の溶込み深さが測定される。すなわち、探触子1
6から超音波を、継手のウエブ12表面から垂直に入射
させてウエブ底面からの反射波を検出し、その底面エコ
ー高さが溶接部13から離れた位置での底面エコー高さ
の1/2になる位置を求めて溶込み深さを自動的に測定
する方法において、前記自動測定に先立ち、前記探触子
16を溶接線と直角方向に走査し、この時の底面エコー
高さの変動パターンをもとに自動測定時の底面エコー高
さ測定範囲を規定し、かつ該測定範囲で求めた溶込み先
端位置を基準として次の走査線における底面エコー高さ
測定範囲を順次更新することにより溶接部の溶込み深さ
を測定する。
The detection signal of the vertical probe 16 is sent to a processing circuit (not shown) and known technology (for example, Japanese Patent Application No. 59-37602 filed by the applicant of the present application (Japanese Patent Laid-Open No. Sho 60-60602).
No. 181605, penetration depth measuring method)), the penetration depth of the weld 13 is measured. That is, the probe 1
6, the ultrasonic wave is vertically incident from the surface of the web 12 of the joint to detect the reflected wave from the bottom surface of the web, and the height of the bottom surface echo is 1/2 of the height of the bottom surface echo at the position away from the welded portion 13. In the method of automatically measuring the penetration depth by obtaining the position where ∘, the probe 16 is scanned in the direction perpendicular to the welding line prior to the automatic measurement, and the fluctuation pattern of the bottom echo height at this time Welding by specifying the bottom echo height measurement range during automatic measurement based on the above, and sequentially updating the bottom echo height measurement range at the next scanning line based on the penetration tip position found in the measurement range. Measure the penetration depth of the part.

【0011】本発明は、上記のように垂直探触子16か
らの検出信号を用いて部分溶込み角継手の溶込み先端位
置を検出し、同時に斜角探触子17,18の検出信号を
用いて上記溶込み先端位置より深い位置を探傷し、疲労
亀裂19の発生に伴う強いコーナー反射波を検出して、
疲労亀裂発生の有無を判定するものである。
The present invention detects the penetration tip position of the partial penetration angle joint by using the detection signal from the vertical probe 16 as described above, and at the same time, detects the detection signals of the oblique-angle probes 17 and 18. Using a position deeper than the penetration tip position to detect a strong corner reflected wave accompanying the occurrence of fatigue crack 19,
The presence or absence of fatigue cracks is determined.

【0012】しかして、上記疲労亀裂19の検出に先立
ち、部分溶込み角継手試験体を製作し、模擬的に設けた
人口欠陥により予め試験データを収集して基準データを
設定する。この部分溶込み角継手試験体は、例えばフラ
ンジ11に対応する試験片の板圧を32mm、ウエブ1
2に対応する試験片の板圧を26mmとし、両試験片を
サブマージアーク溶接法で溶接したもので、図2に示す
ようにウエブ試験片12aに人口欠陥として直径15m
mの横孔(貫通孔)20を形成する。ウエブ試験片12
aの奥行は例えば50mmとし、横孔20を設ける位置
Hは、ウエブ12の肉厚とほぼ同一に設定する。
Prior to the detection of the fatigue crack 19, however, a partial penetration corner joint test body is manufactured, and test data is collected in advance by a simulated artificial defect to set reference data. This partial penetration angle joint test piece has a plate pressure of 32 mm for the test piece corresponding to the flange 11 and the web 1
The plate pressure of the test piece corresponding to 2 was set to 26 mm, and both test pieces were welded by the submerged arc welding method. As shown in FIG. 2, the web test piece 12a had a diameter of 15 m as an artificial defect.
A horizontal hole (through hole) 20 of m is formed. Web test piece 12
The depth of a is, for example, 50 mm, and the position H where the lateral hole 20 is provided is set to be substantially the same as the thickness of the web 12.

【0013】上記斜角探触子17は、横孔20からの反
射波のレベルより10dB以上高いエコーしか検出でき
ないように受信信号増幅度を小さく設定し、斜角探触子
18は、横孔20からの反射波のレベルより20〜30
dB低いエコーまで検出できるように受信信号増幅度を
大きく設定する。上記斜角探触子17,18は、図3に
示す信号処理回路に接続される。
The bevel probe 17 is set to have a small received signal amplification so that it can detect only echoes higher than the level of the reflected wave from the lateral hole 20 by 10 dB or more, and the bevel probe 18 is provided with the lateral probe 20. 20 to 30 depending on the level of the reflected wave from 20
The received signal amplification degree is set to be large so that an echo with a low dB can be detected. The bevel probes 17 and 18 are connected to the signal processing circuit shown in FIG.

【0014】図3において、21は送信器で、この送信
器21から出力される信号は、チャンネルセレクタ22
を介して斜角探触子17,18へ駆動信号として送られ
る。斜角探触子17により検出された信号は、増幅器2
3により増幅されてゲート回路24へ送られる。このゲ
ート回路24は、特定位置から反射した超音波のみを取
出す回路で、その取り出した信号をピークディテクタ2
5へ出力する。一方、斜角探触子18により検出された
信号は、増幅器26により増幅されてゲート回路27へ
送られる。このゲート回路27は、特定位置から反射し
た超音波のみを取出してピークディテクタ28へ出力す
る。ピークディテクタ25,28は、受信信号のピーク
電圧を保持し、A/D変換器29によりデジタル信号に
変換してCPU(マイクロコンピュータ)30へ出力す
る。このCPU30は、受信電圧の大小で疲労亀裂発生
の有無を検出する。この疲労亀裂発生の有無は、次のよ
うにして判断することができる。
In FIG. 3, reference numeral 21 is a transmitter, and the signal output from this transmitter 21 is a channel selector 22.
Is sent as a drive signal to the bevel probes 17 and 18. The signal detected by the bevel probe 17 is supplied to the amplifier 2
It is amplified by 3 and sent to the gate circuit 24. The gate circuit 24 is a circuit for extracting only the ultrasonic waves reflected from a specific position, and the extracted signal is used for the peak detector 2
Output to 5. On the other hand, the signal detected by the bevel probe 18 is amplified by the amplifier 26 and sent to the gate circuit 27. The gate circuit 27 takes out only the ultrasonic wave reflected from the specific position and outputs it to the peak detector 28. The peak detectors 25 and 28 hold the peak voltage of the received signal, convert it into a digital signal by the A / D converter 29, and output it to the CPU (microcomputer) 30. The CPU 30 detects whether or not a fatigue crack has occurred depending on the magnitude of the received voltage. Whether or not this fatigue crack has occurred can be determined as follows.

【0015】図4は、角継手に発生した疲労亀裂19に
45°の角度で横波を入射させた時の反射波の強度分布
を模式的に示したもので、31は疲労亀裂19とウエブ
底面が作る角部からの強い反射波を生じる領域、32は
ルートブローホール14からの反射波発生領域、33,
34は疲労亀裂19の上下端部からの反射波発生領域、
35は疲労亀裂19の破面からの弱い反射波を生じる領
域である。
FIG. 4 schematically shows the intensity distribution of reflected waves when a transverse wave is incident on the fatigue crack 19 generated in the corner joint at an angle of 45 °, and 31 is the fatigue crack 19 and the bottom surface of the web. A region where a strong reflected wave is generated from a corner portion formed by, 32 is a reflected wave generation region from the root blowhole 14, 33,
Reference numeral 34 is a reflected wave generation region from the upper and lower ends of the fatigue crack 19,
Reference numeral 35 is a region where a weak reflected wave from the fracture surface of the fatigue crack 19 is generated.

【0016】図5は上記図4の反射波発生領域31にお
いて、ウエブ底面で反射した超音波が疲労亀裂19の破
面で再び反射して斜角探触子17に受信される状態を示
している。この場合、図6に示すように屈折角が約34
°〜56°の範囲では入射波が100%反射するため、
反射波発生領域31からの反射波は非常に強いものとな
る。この領域31からの強い反射波31aを斜角探触子
17により検出する。
FIG. 5 shows a state in which the ultrasonic wave reflected on the bottom surface of the web is reflected again on the fracture surface of the fatigue crack 19 and received by the bevel probe 17 in the reflected wave generating region 31 of FIG. There is. In this case, the refraction angle is about 34 as shown in FIG.
In the range of ° to 56 °, the incident wave reflects 100%,
The reflected wave from the reflected wave generation area 31 becomes extremely strong. The strongly reflected wave 31 a from this area 31 is detected by the bevel probe 17.

【0017】上記反射波を実験的に調べてみると、同じ
ビーム路程の位置に設けた横孔20からの反射波のレベ
ルより10〜18dB程度高い。一方、ルートブローホ
ール14からの反射波のレベルを調べてみると、横孔2
0からの反射波のレベルより10〜18dB程度低いも
のが多い。従って、ウエブ12の表面から見て溶込み先
端位置より深い領域において、このように強いレベルの
エコーが検出された場合には、疲労亀裂が発生している
ものと判断できる。即ち、垂直探触子16により部分溶
込み角継手の溶込み先端位置を検出しつつ、同時に屈折
角45°の横波斜角探触子17により溶込み先端位置よ
り深い領域を探傷し、その領域において予め実験的に求
めた基準値、つまり、横孔20からの反射波レベルと比
較し、基準値より10dB以上強い反射波を検出したと
きに疲労亀裂が発生しているものと判断できる。
When the reflected wave is experimentally examined, it is higher by about 10 to 18 dB than the level of the reflected wave from the lateral hole 20 provided at the same beam path position. On the other hand, when examining the level of the reflected wave from the root blowhole 14, the horizontal hole 2
In many cases, the level of the reflected wave from 0 is lower by about 10 to 18 dB. Therefore, when such a strong echo is detected in a region deeper than the penetration tip position as viewed from the surface of the web 12, it can be determined that a fatigue crack has occurred. That is, the vertical probe 16 detects the penetration tip position of the partial penetration angle joint, and at the same time, the transverse wave bevel probe 17 having a refraction angle of 45 ° is used to detect a region deeper than the penetration tip position, In comparison with the reference value obtained experimentally in advance, that is, the reflected wave level from the lateral hole 20, it can be determined that a fatigue crack has occurred when a reflected wave that is 10 dB or more stronger than the reference value is detected.

【0018】図7は疲労亀裂19の上下端部(図4にお
ける領域33,34)からの反射波33a,34a及び
疲労亀裂19の破面(領域35)からの反射波35aの
状態を示したものである。これらのエコーのレベルは、
前記領域31からの反射波に比較して著しく弱く、例え
ば横孔20の反射波のレベルより20〜30dB程度低
いので、これらの反射波を斜角探触子18で検出し、疲
労亀裂19の寸法判定の資料とする。なお、図4におけ
る疲労亀裂19の領域35の上下端位置は、上記破面
(領域35)からの反射波35aが消失する位置を検出
して決定する。
FIG. 7 shows the states of the reflected waves 33a and 34a from the upper and lower ends of the fatigue crack 19 (regions 33 and 34 in FIG. 4) and the reflected wave 35a from the fracture surface (region 35) of the fatigue crack 19. It is a thing. The level of these echoes is
It is significantly weaker than the reflected wave from the area 31, for example, about 20 to 30 dB lower than the level of the reflected wave of the lateral hole 20, so these reflected waves are detected by the bevel probe 18, and the fatigue crack 19 is detected. Use as data for dimensional judgment. The upper and lower end positions of the region 35 of the fatigue crack 19 in FIG. 4 are determined by detecting the position where the reflected wave 35a from the fracture surface (region 35) disappears.

【0019】次に試験体を用いて実際に超音波探傷を行
なった場合について説明する。この場合、試験体として
上記図2に示したものを使用し、繰り返し荷重負荷を行
なった後に探傷を行なった。この探傷に際しては、グリ
セリン系の接触媒質15を使用し、周波数5MHz、振
動子径20mmの点集束垂直探触子16、周波数5MH
z、振動子径20mm、屈折角45°±10°の横波斜
角探触子17,18を使用した。
Next, a case where ultrasonic flaw detection is actually performed using a test body will be described. In this case, the test piece shown in FIG. 2 was used as the test piece, and after the load was repeatedly applied, flaw detection was performed. At the time of this flaw detection, a glycerin-based contact medium 15 is used, a frequency 5 MHz, a point-focusing vertical probe 16 with a transducer diameter of 20 mm, and a frequency 5 MH.
The transverse wave bevel probes 17 and 18 having a z, a vibrator diameter of 20 mm and a refraction angle of 45 ° ± 10 ° were used.

【0020】そして、垂直探触子16により溶込み先端
位置を検出しつつ、同時に斜角探触子17,18により
探傷を開始した所、溶込み深さ14〜15mmの範囲
に、検査開始位置より1000mmの位置に溶込み先端
位置より深い領域において、斜角探触子17に横孔20
からの反射波のレベルより10〜14dB高いエコーが
深さ方向に5mmの範囲に亘って検出された。また、斜
角探触子18には、横孔20からの反射波のレベルより
23〜30dB低いエコーが検出された。
Then, while detecting the penetration tip position by the vertical probe 16 and at the same time the flaw detection is started by the oblique angle probes 17 and 18, the inspection start position is within the penetration depth of 14 to 15 mm. In the region deeper than the tip position, the lateral hole 20 is formed in the bevel probe 17.
Echoes 10 to 14 dB higher than the level of the reflected wave from were detected over a range of 5 mm in the depth direction. Further, an echo lower than the level of the reflected wave from the lateral hole 20 by 23 to 30 dB was detected in the bevel probe 18.

【0021】以上の結果から、上記エコー検出位置に疲
労亀裂1が発生しているものと判断して破断調査した
所、直径約9mmの疲労亀裂が発生しており、検査結果
の妥当性が確認された。
From the above results, when it was judged that the fatigue crack 1 had occurred at the echo detection position and the fracture inspection was conducted, a fatigue crack with a diameter of about 9 mm was found, and the validity of the inspection result was confirmed. Was done.

【0022】[0022]

【発明の効果】以上詳記したように本発明によれば、垂
直探触子からの検出信号を用いて部分溶込み角継手の溶
込み先端位置を検出しつつ、同時に斜角探触子の検出信
号を用いて上記溶込み先端位置より深い位置を探傷し、
疲労亀裂の発生に伴う強いコーナー反射波を検出して、
疲労亀裂発生の有無を判定するようにしたので、製作時
の超音波探傷データが無くても、製作時よりあるルート
ブローホールと、その後に発生した疲労亀裂を確実に識
別でき、重大事故の発生を未然に防止することができ
る。
As described in detail above, according to the present invention, while detecting the penetration tip position of the partial penetration angle joint by using the detection signal from the vertical probe, the angle probe of the bevel angle probe is detected at the same time. The detection signal is used to detect a position deeper than the penetration tip position,
Detects strong corner reflection waves associated with the occurrence of fatigue cracks,
Since the presence / absence of fatigue cracks is determined, even if there is no ultrasonic flaw detection data at the time of manufacturing, it is possible to reliably identify the root blowhole that was present during manufacturing and the fatigue cracks that occurred after that, and a serious accident could occur. Can be prevented in advance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る角継手の疲労亀裂検出
方法における探触子の配置状態を示す図。
FIG. 1 is a diagram showing an arrangement state of a probe in a fatigue crack detection method for a corner joint according to an embodiment of the present invention.

【図2】試験体の構成例を示す図。FIG. 2 is a diagram showing a configuration example of a test body.

【図3】斜角探触子により検出された信号の処理回路を
示すブロック図。
FIG. 3 is a block diagram showing a processing circuit for a signal detected by a bevel probe.

【図4】斜角探傷における反射強度分布図。FIG. 4 is a reflection intensity distribution map in oblique flaw detection.

【図5】疲労亀裂の角部の超音波反射状態を示す図。FIG. 5 is a diagram showing an ultrasonic wave reflection state at a corner portion of a fatigue crack.

【図6】疲労亀裂の角部の超音波反射特性を示す図。FIG. 6 is a diagram showing ultrasonic reflection characteristics of a corner portion of a fatigue crack.

【図7】疲労亀裂の上下端部及び破面からの反射状態を
示す図。
FIG. 7 is a diagram showing the reflection state from the upper and lower ends of the fatigue crack and the fracture surface.

【図8】橋梁の部分溶込み角継手における疲労亀裂発生
状態を示す図。
FIG. 8 is a diagram showing a fatigue crack generation state in a partial penetration corner joint of a bridge.

【図9】従来の部分溶込み角継手の疲労亀裂検出方法を
説明するための図。
FIG. 9 is a diagram for explaining a conventional fatigue crack detection method for a partial penetration angle joint.

【符号の説明】[Explanation of symbols]

11…フランジ、12…ウエブ、13…溶接部、14…
ルートブローホール、15…接触媒質、16垂直探触
子、17,18…斜角探触子、19…疲労亀裂、20…
横孔、21…送信器、22…チャンネルセレクタ、2
3,26…増幅器、24,27…ゲート回路、25,2
8…ピークディテクタ、29…A/D変換器、30…C
PU、31〜35…反射波発生領域。
11 ... Flange, 12 ... Web, 13 ... Weld, 14 ...
Root blow hole, 15 ... Contact medium, 16 vertical probe, 17, 18 ... Angle probe, 19 ... Fatigue crack, 20 ...
Side hole, 21 ... Transmitter, 22 ... Channel selector, 2
3, 26 ... Amplifier, 24, 27 ... Gate circuit, 25, 2
8 ... Peak detector, 29 ... A / D converter, 30 ... C
PU, 31-35 ... Reflected wave generation area.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 垂直探触子からの超音波を継手のウエブ
表面から垂直に入射させてウエブ底面からの反射波を検
出して継手の溶込み先端位置を検出し、屈折角が略45
°の斜角探触子からの超音波を継手のウエブ表面から入
射させて上記継手の溶込み先端位置より深い領域を探傷
し、予め設定した基準値より強い反射波を検出した際に
疲労亀裂が発生しているものと判定することを特徴とす
る角継手の疲労亀裂検出方法。
1. An ultrasonic wave from a vertical probe is vertically incident from the web surface of the joint to detect a reflected wave from the bottom surface of the web to detect the penetration tip position of the joint, and the refraction angle is about 45.
Fatigue cracks occur when ultrasonic waves from a beveled probe are injected from the web surface of the joint to detect a region deeper than the penetration tip position of the joint and a reflected wave stronger than a preset reference value is detected. A method for detecting fatigue cracks in a corner joint, which is characterized in that it is determined that a crack has occurred.
JP3340808A 1991-12-24 1991-12-24 Fatigue crack detection method for corner joint Withdrawn JPH05172791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340808A JPH05172791A (en) 1991-12-24 1991-12-24 Fatigue crack detection method for corner joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340808A JPH05172791A (en) 1991-12-24 1991-12-24 Fatigue crack detection method for corner joint

Publications (1)

Publication Number Publication Date
JPH05172791A true JPH05172791A (en) 1993-07-09

Family

ID=18340485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340808A Withdrawn JPH05172791A (en) 1991-12-24 1991-12-24 Fatigue crack detection method for corner joint

Country Status (1)

Country Link
JP (1) JPH05172791A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204147B2 (en) * 2003-05-09 2007-04-17 Kawada Industries, Inc. Ultrasonic inspection method for weld zone
US20210086282A1 (en) * 2019-09-24 2021-03-25 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204147B2 (en) * 2003-05-09 2007-04-17 Kawada Industries, Inc. Ultrasonic inspection method for weld zone
US20210086282A1 (en) * 2019-09-24 2021-03-25 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium
US11980975B2 (en) * 2019-09-24 2024-05-14 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium

Similar Documents

Publication Publication Date Title
US7698944B2 (en) Ultrasonic method and apparatus for evaluating spot weld zone
JP2010243375A (en) Extended crack detection method, apparatus, and program
JPH05172791A (en) Fatigue crack detection method for corner joint
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP2682390B2 (en) Ultrasonic flaw detector for welds
CN113640387A (en) Railway thermite welding rib flaw detection method and railway thermite welding rib flaw detection device
JP3932694B2 (en) Ultrasonic flaw detection
JP4367121B2 (en) Rail inspection method
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
JPH07280775A (en) Water penetration detecting method and apparatus for pole transformer and pole switchgear by using ultrasonic wave
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
JP3693282B2 (en) Inspection method for welds
Prabhakaran et al. Time of flight diffraction: an alternate non-destructive testing procedure to replace traditional methods
JPS6042416B2 (en) Ultrasonic inspection equipment for spot welding
US20050210953A1 (en) Method for determining temporal and amplitude threshold values of gates during ultrasound testing of spot welding joints
JPS6229023B2 (en)
JP6808682B2 (en) Inspection device and inspection method for joint members
JPH0412456Y2 (en)
JP2824330B2 (en) Inspection method of creep damage of turbine rotor by ultrasonic wave
JP2539019B2 (en) Ultrasonic flaw detection
JPH07325070A (en) Ultrasonic method for measuring depth of defect
CN117665131A (en) Rail weld damage detection method
JPH0278949A (en) Ultrasonic flaw detecting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311