JPH05170426A - Production of high purity synthetic kaolinite in high yield - Google Patents

Production of high purity synthetic kaolinite in high yield

Info

Publication number
JPH05170426A
JPH05170426A JP3356465A JP35646591A JPH05170426A JP H05170426 A JPH05170426 A JP H05170426A JP 3356465 A JP3356465 A JP 3356465A JP 35646591 A JP35646591 A JP 35646591A JP H05170426 A JPH05170426 A JP H05170426A
Authority
JP
Japan
Prior art keywords
kaolinite
solution
gel
product
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3356465A
Other languages
Japanese (ja)
Other versions
JPH06102536B2 (en
Inventor
Yasuo Shibazaki
靖雄 芝崎
Shinji Watamura
信治 渡村
Ritsuro Miyawaki
律郎 宮脇
Yasushi Osaki
恭 大崎
Setsuo Yoshida
節夫 吉田
Soichiro Samejima
宗一郎 鮫島
Shigeo Satokawa
重夫 里川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINKOU NENDO GOSEI GIJUTSU KEN
JINKOU NENDO GOSEI GIJUTSU KENKYU KUMIAI
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
JINKOU NENDO GOSEI GIJUTSU KEN
JINKOU NENDO GOSEI GIJUTSU KENKYU KUMIAI
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINKOU NENDO GOSEI GIJUTSU KEN, JINKOU NENDO GOSEI GIJUTSU KENKYU KUMIAI, Agency of Industrial Science and Technology filed Critical JINKOU NENDO GOSEI GIJUTSU KEN
Priority to JP3356465A priority Critical patent/JPH06102536B2/en
Publication of JPH05170426A publication Critical patent/JPH05170426A/en
Publication of JPH06102536B2 publication Critical patent/JPH06102536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/38Layered base-exchange silicates, e.g. clays, micas or alkali metal silicates of kenyaite or magadiite type
    • C01B33/40Clays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain a high purity synthetic kaolinite in high yield by gelating a Na2SiO3 aq. solution and an Al2(SO4)3 aq. solution with a pH controlled and hydrothermal treating after aging with aging with two steps of alkaline and acidic, filtrating and washing. CONSTITUTION:The sodium silicate aq. solution and the aluminum sulfate aq. solution are mixed and are gelated while keeping pH 4-12. The silica-alumina gel obtained is aged in the alkaline aq. solution of pH >=7, is filtrated and is washed to completely gelate an ungelated raw material and to completely remove residual SO4 ion. Next, the gel is aged in the acidic aq. solution of pH 3-4, is filtrated, is washed and sodium ion is ion exchanged with proton. And the synthetic kaolinite having <=0.1wt.% impurity content except silica, aluminum and water is obtained by hydrotherm-treating the gel in an autoclave or a pressure tight cup.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス用原料、
セラミックスの成型用バインダー、製紙用フィラーとし
て多用されており、また新しい機能材料として注目を集
めている高生成率、高純度合成カオリナイトの製造法に
関するものである。
FIELD OF THE INVENTION The present invention relates to a raw material for ceramics,
The present invention relates to a production method of high-purity, high-purity synthetic kaolinite, which is widely used as a binder for molding ceramics, a filler for papermaking, and is attracting attention as a new functional material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
らセラミックスの原料として、カオリナイトを主成分と
する天然粘土が用いられている。このカオリナイトは粘
土鉱物の中のカオリナイトグループの主要な鉱物であっ
て、白色、灰色又は黄色の鉱物である。カオリナイトを
主成分とする良質の天然粘土、特に愛知県瀬戸地区で産
出する木節粘土、蛙目粘土は永年の消費、呼び近年の急
激な宅地開発等に起因してそれらの産出量が減少してい
る。そこでこれらの天然粘土に代わる材料として板状結
晶であることを利用した新規な機能材料として人工粘土
の研究開発が推進されている。
2. Description of the Related Art Conventionally, natural clay containing kaolinite as a main component has been used as a raw material for ceramics. This kaolinite is the main mineral of the kaolinite group in clay minerals and is a white, gray or yellow mineral. The quality of natural clay mainly composed of kaolinite, especially the kibushi clay and frog clay produced in the Seto area of Aichi prefecture, has been declining due to long-term consumption and the recent rapid development of residential land. is doing. Therefore, research and development of artificial clay has been promoted as a novel functional material utilizing the fact that it is a plate crystal as a material replacing these natural clays.

【0003】上記カオリナイトの製造法としては、通常
水熱合成法が用いられる。この水熱合成法とは、原材料
を水分の存在下でオートクレーブ内に密閉して一定時間
高温高圧状態に保持することによって所望の鉱物を得る
方法であり、各種人工鉱物の合成手段として広く用いら
れている。このような水熱合成法によるカオリナイトの
製造法としては、柴崎、渡村(Clays and
Clay Minerals,1983年)らによるシ
リカゾルとアルミナゾルを混合し原料として使用する方
法、アロフェン、ケイソウ土、モンモリロナイト、ゼ
オライト等とアルミニウム化合物を混合し原料として使
用する方法が知られている。
A hydrothermal synthesis method is usually used as a method for producing the above kaolinite. This hydrothermal synthesis method is a method of obtaining a desired mineral by sealing the raw material in an autoclave in the presence of water and maintaining it at a high temperature and high pressure for a certain time, and is widely used as a synthetic means for various artificial minerals. ing. Methods for producing kaolinite by such a hydrothermal synthesis method include Shibasaki and Watamura (Clays and
Clay Minerals, 1983) and the like, a method of mixing silica sol and alumina sol as a raw material, and a method of mixing allophane, diatomaceous earth, montmorillonite, zeolite and the like and an aluminum compound as a raw material are known.

【0004】しかしながら上記の方法では、シリカ原料
とアルミナ原料が固体混合又は固体/液体混合であるた
め難反応性部分が存在し、反応が100%進行せずカオ
リナイト含有率が上がらないという問題点があった。さ
らに天然原料を用いた場合は原料中に含まれる金属酸化
物等の不純物がカオリナイト中に残存し、着色といった
問題点も含有している。
However, in the above-mentioned method, since the silica raw material and the alumina raw material are solid mixed or solid / liquid mixed, there are difficult-to-react portions, the reaction does not proceed 100% and the kaolinite content does not increase. was there. Furthermore, when a natural raw material is used, impurities such as metal oxides contained in the raw material remain in kaolinite, which causes a problem of coloring.

【0005】例えば、合成品であるシリカゾルとアルミ
ナゾルを混合し原料として使用した場合、金属酸化物等
の不純物の混入はないが水熱処理温度、水熱処理時間に
関係なくカオリナイト含有率が90%程度で反応は終了
し未反応のシリカ、アルミナが残存する。これはシリ
カ、アルミナ原料の混合が固体混合でありそのため均一
混合になっていないこと、またゾルやゲルの製法上それ
らの安定剤を用いるため、これらを除去のために焼成を
おこなっていることに起因し、非反応性のシリカ、アル
ミナ部分が存在するためと考えられる。
For example, when silica sol and alumina sol, which are synthetic products, are mixed and used as a raw material, impurities such as metal oxides are not mixed, but the kaolinite content is about 90% regardless of the hydrothermal treatment temperature and the hydrothermal treatment time. Then the reaction is completed and unreacted silica and alumina remain. This is because the silica and alumina raw materials are mixed in a solid state and therefore are not homogeneously mixed, and because these stabilizers are used in the sol or gel manufacturing process, they are fired to remove them. It is considered that this is because of the presence of non-reactive silica and alumina parts.

【0006】残存する未反応のシリカ、アルミナはカオ
リナイト微結晶粉末の凝集を引き起こしそれを用いた練
土の粘土特性の低下を招く。さらにケイソウ土と塩化ア
ルミニウムを混合し原料として使用した場合、不純物と
して石英、鉄分、その他金属酸化物がカオリナイト中に
残存するうえ原料であるケイソウ土も残存する。
The remaining unreacted silica and alumina cause agglomeration of the kaolinite microcrystalline powder, resulting in deterioration of clay characteristics of the kneaded clay using the same. Further, when diatomaceous earth and aluminum chloride are mixed and used as a raw material, quartz, iron, and other metal oxides remain as impurities in kaolinite, and diatomaceous earth as a raw material also remains.

【0007】本発明の目的は、従来の方法よりも不純物
及び未反応物を含まない高生成率、高純度のカオリナイ
トを製造することができる方法を提供するものである。
An object of the present invention is to provide a method capable of producing kaolinite having a higher production rate and a higher purity that does not contain impurities and unreacted substances as compared with the conventional methods.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記問題
を解決するために鋭意検討を行った結果、本発明の高生
成率、高純度合成カオリナイトの製造法を得るに至っ
た。すなわち本発明は、ケイ酸ナトリウム水溶液と硫酸
アルミニウム水溶液をpH4〜12に維持しながらゲル
化し、ついでpH7以上のアルカリ水溶液中で熟成し、
濾過・洗浄した後さらにpH3〜4の酸性水溶液中で熟
成・濾過・洗浄した該ゲルを水熱処理することを特徴と
する高生成率、高純度合成カオリナイトの製造法であ
る。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have obtained a method for producing a synthetic kaolinite having a high production rate and a high purity according to the present invention. That is, the present invention gels while maintaining the sodium silicate aqueous solution and the aluminum sulfate aqueous solution at pH 4 to 12, and then ages in an alkaline aqueous solution having a pH of 7 or more,
A method for producing a high-purity, high-purity synthetic kaolinite, which comprises subjecting the gel, which has been filtered and washed and then aged, filtered and washed in an acidic aqueous solution of pH 3 to 4, to a hydrothermal treatment.

【0009】[0009]

【作用】以下本発明を具体的に説明する。本発明におけ
る合成カオリナイトとは、シリカ原料とアルミナ原料よ
り主に水熱処理により製造される化学式{Al2 Si2
5 (OH)4 }で表され、シリコンと4つの酸素から
なる4面体シートとアルミニウムを6つの酸素で囲む8
面体シートが1:1で構成された層状の含水アルミノケ
イ酸塩である。粒子形状は製造法により粒状、球状、板
状の形状を有する。
The present invention will be described in detail below. The synthetic kaolinite in the present invention is a chemical formula {Al 2 Si 2 produced mainly by hydrothermal treatment from a silica raw material and an alumina raw material.
O 5 (OH) 4 }, which is a tetrahedral sheet consisting of silicon and 4 oxygens, and aluminum is surrounded by 6 oxygens 8
The face sheet is a layered hydrous aluminosilicate composed of 1: 1. The particle shape has a granular, spherical, or plate-like shape depending on the manufacturing method.

【0010】また本発明の合成カオリナイトは、高生成
率、高純度なカオリナイトである。生成率は熱重量分析
(TG)によってカオリナイトの構造水の脱水にともな
う重量減少を測定することにより算出され、本発明は生
成率90%以上、好ましくは生成率95%以上の高生成
率の合成カオリナイトを提供する。つぎに高純度とは、
シリカ、アルミナ、水以外の不純物の含有量が0.1wt
%以下であることを意味する。不純物としては、ナトリ
ウム、カルシウム等のアルカリ金属、アルカリ土類金属
や鉄、チタン等の重金属が挙げられる。
The synthetic kaolinite of the present invention is a kaolinite having a high production rate and high purity. The production rate is calculated by measuring the weight loss of kaolinite with dehydration of the structured water by thermogravimetric analysis (TG). The present invention provides a high production rate of 90% or more, preferably 95% or more. Provide synthetic kaolinite. Next, what is high purity?
The content of impurities other than silica, alumina and water is 0.1wt
% Means less than or equal to%. Examples of the impurities include alkali metals such as sodium and calcium, alkaline earth metals, and heavy metals such as iron and titanium.

【0011】上記のように本発明におけるシリカ−アル
ミナゲルは、原料としてケイ酸ナトリウム水溶液と硫酸
アルミニウム水溶液を用い、これらをゲル化することに
より調整できる。ゲル化はpH4〜12好ましくはpH
10〜12で行い、必要によりアルカリ、酸を添加する
ことができる。ゲル化方法に特に制限はないが、ゲル中
のシリカとアルミナの粒子を均一に混合させるためには
攪拌しながら連続混合を行うことが好ましい。また合成
ゲル中のSi/Alのモル比は水熱反応における副生物
抑制のためにSi/Al=1に近いことが好ましい。
As described above, the silica-alumina gel of the present invention can be prepared by using an aqueous sodium silicate solution and an aluminum sulfate aqueous solution as raw materials and gelling these. Gelation is pH 4-12, preferably pH
It is carried out at 10 to 12, and an alkali and an acid can be added if necessary. The gelling method is not particularly limited, but continuous mixing is preferably performed with stirring in order to uniformly mix the silica and alumina particles in the gel. Further, the Si / Al molar ratio in the synthetic gel is preferably close to Si / Al = 1 in order to suppress by-products in the hydrothermal reaction.

【0012】そして本発明においては上記のように調整
したシリカ−アルミナゲルを、まずpH7以上のアルカ
リ溶液中で熟成・濾過・洗浄を行い、ゲル化未反応原料
を完全にゲル化するとともに残存SO4 イオンを除去す
る。この際熟成温度、時間は特に制限されるものではな
いが、反応の促進のため加熱することが好ましい。また
pH調整のため必要により水酸化ナトリウム、アンモニ
ア等のアルカリを添加することができる。
In the present invention, the silica-alumina gel prepared as described above is first aged, filtered and washed in an alkaline solution having a pH of 7 or higher to completely gelate the unreacted gelled raw material and the residual SO. Remove 4 ions. At this time, the aging temperature and time are not particularly limited, but it is preferable to heat to accelerate the reaction. If necessary, an alkali such as sodium hydroxide or ammonia can be added to adjust the pH.

【0013】ついでpH3〜4の酸性溶液中で熟成・濾
過・洗浄を行いナトリウムイオンとプロトンのイオン交
換を行う。熟成がpH3未満では、アルミニウムが溶解
しゲル最適組成からの変化が生じ、またpH4を越える
とイオン交換が不十分となる。このpH調整としては塩
酸、硝酸、硫酸及び有機酸を添加し、特に制限されるも
のではないが、例えば室温〜100℃の温度で1時間以
上熟成した後、濾過・洗浄により溶出したNaを除去
する。残存Na量はとくに制限されるものではないが、
結晶化促進のためNa/Alのモル比を0.1以下にす
ることが好ましい。
Then, aging, filtration and washing are carried out in an acidic solution having a pH of 3 to 4 to carry out ion exchange between sodium ions and protons. When the aging is less than pH3, aluminum is dissolved to cause a change from the optimum composition of gel, and when the aging is more than pH4, ion exchange becomes insufficient. The pH is adjusted by adding hydrochloric acid, nitric acid, sulfuric acid and an organic acid, and is not particularly limited. For example, after aging at a temperature of room temperature to 100 ° C for 1 hour or more, Na + eluted by filtration / washing is added. Remove. The amount of residual Na is not particularly limited,
To promote crystallization, the Na / Al molar ratio is preferably 0.1 or less.

【0014】本発明における水熱反応は通常のオートク
レーブ又は耐圧カップを用いて行うことができる。水熱
反応におけるスラリー濃度・反応温度・反応時間は特に
制限されないが、スラリー濃度は1〜20wt%、反応温
度は100℃以上、反応時間は1時間以上行うことが好
ましい。また必要により攪拌の実施及び/又は種晶の添
加により反応時間を短縮することができる。
The hydrothermal reaction in the present invention can be carried out by using an ordinary autoclave or pressure cup. The slurry concentration, reaction temperature, and reaction time in the hydrothermal reaction are not particularly limited, but it is preferable that the slurry concentration is 1 to 20 wt%, the reaction temperature is 100 ° C. or higher, and the reaction time is 1 hour or longer. If necessary, the reaction time can be shortened by performing stirring and / or adding seed crystals.

【0015】このような水熱処理により、従来の方法に
おいて生成率が90%程度であったのに比べ100%近
い生成率でカオリナイトが合成できる。
By such a hydrothermal treatment, kaolinite can be synthesized with a production rate close to 100% as compared with the production rate of about 90% in the conventional method.

【0016】[0016]

【実施例】以下、実施例により本発明を詳細に述べる
が、本発明はこれらに限定されるものではない。
The present invention is described in detail below with reference to examples, but the present invention is not limited to these.

【0017】(実施例1)原料として3号水ガラス(S
iO2 =29.3wt%、Na2 O=9.35wt%)と硫
酸アルミニウム(Al2 3 =8.02wt%)を用い、
モル比でSi/Al=1となるように攪拌しながら原料
を連続的に混合した。同時に反応pHが10〜12とな
るように水酸化ナトリウムを添加し混合することにより
シリカ−アルミナゲルを調整した。
(Example 1) No. 3 water glass (S
iO 2 = 29.3 wt%, Na 2 O = 9.35 wt%) and aluminum sulfate (Al 2 O 3 = 8.02 wt%),
The raw materials were continuously mixed while stirring so that the molar ratio was Si / Al = 1. At the same time, a silica-alumina gel was prepared by adding and mixing sodium hydroxide so that the reaction pH became 10-12.

【0018】このゲルの組成分析を行ったところ、モル
比でSi/Al=1、Na/Al=0.8とSO4 イオ
ン=2wt%(無水ゲル換算)であった。上記のシリカ−
アルミナゲルを濾過・洗浄し、副生した硫酸ナトリウム
及び過剰の水酸化ナトリウムを除去した後、pH=10
にスラリー調整し100℃、1時間加熱処理し残存SO
4 イオンを溶解した。
When the composition of this gel was analyzed, the molar ratios were Si / Al = 1, Na / Al = 0.8, and SO 4 ions = 2 wt% (calculated as anhydrous gel). Silica above
The alumina gel is filtered and washed to remove sodium sulfate as a by-product and excess sodium hydroxide, and then pH = 10.
Slurry is adjusted to 100 ° C. and heat-treated for 1 hour
Four ions were dissolved.

【0019】次に再度濾過・洗浄し溶出したSO4 イオ
ンを除去した後、0.5N−硝酸を滴下し最終pHを3
〜4に調整することによりナトリウムイオンとプロトン
のイオン交換を行ないナトリウムイオンを溶出させた。
室温で24時間熟成した後、濾過・洗浄によりナリトウ
ムイオンを除去し、水熱処理用のシリカ−アルミナゲル
とした。また再度このゲルの組成分析を行ったころ、モ
ル比でSi/Al=1、Na/Al=0.005とSO
4 イオン=0.1wt%(無水ゲル換算)であった。
Next, after filtering and washing again to remove the eluted SO 4 ions, 0.5N nitric acid was added dropwise to bring the final pH to 3
By adjusting to -4, the sodium ion and the proton were ion-exchanged to elute the sodium ion.
After aging for 24 hours at room temperature, the sodium ions were removed by filtration and washing to obtain a silica-alumina gel for hydrothermal treatment. When the composition of this gel was analyzed again, the molar ratios of Si / Al = 1, Na / Al = 0.005 and SO
4 ions = 0.1 wt% (anhydrous gel equivalent).

【0020】上記原料ゲルをスラリー濃度10wt%にな
るようにオートクレーブに仕込み、220℃、10日間
水熱反応を行った。冷却後、水洗濾過、乾燥し生成物を
得た。得られた生成物のX線回折結果を図1に示す。
The above-mentioned raw material gel was charged into an autoclave so that the slurry concentration would be 10 wt%, and hydrothermal reaction was carried out at 220 ° C. for 10 days. After cooling, it was washed with water, filtered, and dried to obtain a product. The X-ray-diffraction result of the obtained product is shown in FIG.

【0021】生成物はカオリナイトのX線パターンのみ
を示していた。また熱重量分析(TG)によってカオリ
ナイトの構造水の脱水にともなう重量減少を測定しカオ
リナイトの生成量を定量したところ、生成物中のカオリ
ナイト含有率は98%であった。
The product showed only the X-ray pattern of kaolinite. Further, the weight loss of kaolinite due to dehydration of structured water was measured by thermogravimetric analysis (TG) to quantify the amount of kaolinite produced, and the content of kaolinite in the product was 98%.

【0022】また化学組成分析の結果を下記表1に示
す。シリカ、アルミナ、水以外の不純物は0.1wt%以
下であり高純度であることがわかる。
The results of the chemical composition analysis are shown in Table 1 below. Impurities other than silica, alumina, and water are 0.1 wt% or less, which indicates that the purity is high.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2)実施例1で調整したゲルを用
い、250℃、5日間水熱処理を行った以外は実施例1
と同様の操作を行い生成物を得た。得られた生成物のX
線回折結果を図1に示す。
Example 2 Example 1 was repeated except that the gel prepared in Example 1 was used and hydrothermal treatment was carried out at 250 ° C. for 5 days.
The same operation was performed to obtain a product. X of the obtained product
The line diffraction result is shown in FIG.

【0025】生成物はカオリナイトのX線パターンのみ
を示していた。また熱重量分析(TG)によってカオリ
ナイトの構造水の脱水にともない重量減少を測定しカオ
リナイトの生成量を定量したところ、生成物中のカオリ
ナイト含有率は97%であった。
The product showed only the X-ray pattern of kaolinite. When the weight loss of kaolinite with dehydration of the structured water was measured by thermogravimetric analysis (TG) and the amount of kaolinite produced was quantified, the kaolinite content in the product was 97%.

【0026】(実施例3)実施例1において、混合ゲル
化する時の反応pHを4〜6に調整した以外は実施例1
と同様の操作を行い生成物を得た。また熟成処理を行う
前のゲルの組成分析結果は、モル比でSi/Al=1、
Na/Al=0.2、SO4 イオン4wt%(無水ゲル換
算)であり、熟成処理後のゲルの組成分析結果は、モル
比でSi/Al=1、Na/Al=0.005とSO4
イオン=0.2wt%(無水ゲル換算)であった。得られ
た生成物のX線回折結果を図1に示す。
(Example 3) Example 1 was repeated except that the reaction pH during mixed gelation was adjusted to 4 to 6.
The same operation was performed to obtain a product. The composition analysis result of the gel before aging treatment shows that Si / Al = 1 in molar ratio,
Na / Al = 0.2, SO 4 ion 4 wt% (anhydrous gel equivalent), and the composition analysis result of the gel after aging treatment was Si / Al = 1 and Na / Al = 0.005 in terms of molar ratio, SO Four
Ion = 0.2 wt% (converted to anhydrous gel). The X-ray-diffraction result of the obtained product is shown in FIG.

【0027】実施例1と同様に生成物はカオリナイトの
みであることがわかる。また熱重量分析より、生成物中
のカオリナイト含有量は97%であった。
It can be seen that the product is only kaolinite as in Example 1. Further, the thermogravimetric analysis revealed that the kaolinite content in the product was 97%.

【0028】(比較例1)実施例1において、アルカリ
溶液中での熟成及び酸性溶液中での熟成を行わなかった
以外は実施例1と同様の操作を行い生成物を得た。得ら
れた生成物のX線回折結果を図2に示す。
Comparative Example 1 A product was obtained by the same procedure as in Example 1 except that the aging in the alkaline solution and the aging in the acidic solution were not performed. The X-ray-diffraction result of the obtained product is shown in FIG.

【0029】図2から明らかな様にX線回折図にカオリ
ナイト様鉱物のピークは現れず、カオリナイト様鉱物は
生成していないことがわかる。
As is clear from FIG. 2, the peak of the kaolinite-like mineral does not appear in the X-ray diffraction pattern, indicating that the kaolinite-like mineral is not formed.

【0030】(比較例2)実施例1において酸性溶液中
の熟成をpH1〜2で行った以外は同様の操作を行い生
成物を得た。水熱処理用ゲルの組成分析を行なったとこ
ろ、モル比でSi/Al=1.8、Na/Al=0.1
0でありアルミの溶解が起きていることがわかる。得ら
れた生成物のX線回折結果を図2に示す。
(Comparative Example 2) A product was obtained in the same manner as in Example 1, except that the aging in an acidic solution was carried out at pH 1-2. The composition of the hydrothermally treated gel was analyzed and the molar ratios were Si / Al = 1.8 and Na / Al = 0.1.
It is 0, which means that melting of aluminum is occurring. The X-ray-diffraction result of the obtained product is shown in FIG.

【0031】実施例1と同様に生成物はカオリナイト様
鉱物のみであることがわかる。また熱重量分析より、生
成物中のカオリナイト含有率は45%であった。
It can be seen that the product is only kaolinite-like mineral as in Example 1. Further, the thermogravimetric analysis revealed that the kaolinite content in the product was 45%.

【0032】(比較例3)原料としてコロイダルシカリ
(日産化学製 スノーテックスN)とアルミナゾル(日
産化学製 アルミナゾル−200)を用い、モル比でS
i/Al=1となるように混合、攪拌した。ついで乾
燥、さらに安定剤である酢酸を除去するために600
℃、1時間の焼成処理を施し水熱処理に用いる原料ゲル
とした。
(Comparative Example 3) Colloidal shikari (Nissan Chemical's Snowtex N) and alumina sol (Nissan Chemical's alumina sol-200) were used as raw materials, and S was used in a molar ratio.
Mixing and stirring were performed so that i / Al = 1. Then dry and 600 to remove the stabilizer acetic acid.
A raw material gel used for hydrothermal treatment was obtained by performing a baking treatment at 1 ° C. for 1 hour.

【0033】上記原料ゲルをスラリー濃度5wt%になる
ようにオートクレーブに仕込み、220℃、10日間水
熱処理を行った。冷却後、水洗・濾過、乾燥し生成物を
得た。得られた生成物のX線回折結果を図2に示す。
The above-mentioned raw material gel was charged into an autoclave so that the slurry concentration was 5 wt%, and hydrothermal treatment was carried out at 220 ° C. for 10 days. After cooling, it was washed with water, filtered, and dried to obtain a product. The X-ray-diffraction result of the obtained product is shown in FIG.

【0034】生成物はカオリナイト様鉱物のX線回折パ
ターンと微量の硫酸アルミニウム水和物のX線回折パタ
ーンを示していた。また熱重量分析より、生成物中のカ
オリナイト含有率は90%であった。
The product showed an X-ray diffraction pattern of a kaolinite-like mineral and a trace amount of aluminum sulfate hydrate. Further, the thermogravimetric analysis revealed that the kaolinite content in the product was 90%.

【0035】(比較例4)比較例3で調整したゲルを用
い、250℃、5日間水熱処理を行った以外は比較例1
と同様の操作を行い生成物を得た。得られた生成物のX
線回折結果を図2に示す。
(Comparative Example 4) Comparative Example 1 except that the gel prepared in Comparative Example 3 was used and hydrothermal treatment was carried out at 250 ° C. for 5 days.
The same operation was performed to obtain a product. X of the obtained product
The line diffraction result is shown in FIG.

【0036】生成物はカオリナイトのX線パターンと微
量の硫酸アルミニウム水和物のX線回折パターンを示し
ていた。また熱重量分析(TG)によってカオリナイト
の構造水の脱水にともなう重量減少を測定しカオリナイ
トの生成量を定量したところ、生成物中のカオリナイト
含有率は92%であった。
The product showed an X-ray pattern of kaolinite and an X-ray diffraction pattern of a trace amount of aluminum sulfate hydrate. Further, the weight reduction of kaolinite due to dehydration of the structured water was measured by thermogravimetric analysis (TG) to quantify the amount of kaolinite produced, and the content of kaolinite in the product was 92%.

【0037】(比較例5)原料にケイソウ土と塩化アル
ミニウムを用い、モル比でSi/Al=1となるように
混合、攪拌した。次いでオートクレーブに仕込み、22
0℃、10日間水熱処理を行った。冷却後、水洗・濾
過、乾燥し生成物を得た。得られた生成物のX線回折結
果を図2に示す。
(Comparative Example 5) Diatomaceous earth and aluminum chloride were used as raw materials and mixed and stirred so that the molar ratio was Si / Al = 1. Then, put it in the autoclave, and
Hydrothermal treatment was performed at 0 ° C for 10 days. After cooling, it was washed with water, filtered, and dried to obtain a product. The X-ray-diffraction result of the obtained product is shown in FIG.

【0038】生成物はカオリナイトと不純物である石英
のX線回折パターンを示していた。また熱重量分析よ
り、生成物中のカオリナイト含有率は50%であった。
以上の結果をまとめて表2に示す。
The product showed an X-ray diffraction pattern of kaolinite and quartz as an impurity. Further, the thermogravimetric analysis revealed that the kaolinite content in the product was 50%.
The above results are summarized in Table 2.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】以上述べたとおり、本発明によればケイ
酸ナトリウム水溶液と硫酸アルミニウム水溶液をpH4
〜12に維持しながらゲル化し、ついでpH7以上のア
ルカリ水溶液中で熟成し、濾過・洗浄した後さらにpH
3〜4の酸性水溶液中で熟成・濾過・洗浄した該ゲルを
水熱処理を行うことにより、従来より高生成率、高純度
なカオリナイトを合成することができる。
As described above, according to the present invention, the sodium silicate aqueous solution and the aluminum sulfate aqueous solution are adjusted to pH 4
Gelation while maintaining at ~ 12, then aging in an alkaline aqueous solution of pH 7 or above, filtering and washing, then further pH
By subjecting the gel that has been aged, filtered and washed in an acidic aqueous solution of 3 to 4 to hydrothermal treatment, kaolinite having a higher production rate and a higher purity than conventional can be synthesized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で得られた生成物のX線回折測
定の結果を示す実測図である。
FIG. 1 is an actual measurement diagram showing a result of X-ray diffraction measurement of a product obtained in an example of the present invention.

【図2】比較例で得られた生成物のX線回折測定の結果
を示す実測図である。
FIG. 2 is an actual measurement diagram showing a result of X-ray diffraction measurement of a product obtained in a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡村 信治 愛知県名古屋市名東区平和が丘1丁目70番 (72)発明者 宮脇 律郎 愛知県名古屋市西区砂原町199 (72)発明者 大崎 恭 山口県新南陽市政所4丁目10番3−306 (72)発明者 吉田 節夫 山口県新南陽市長田町23番3号 (72)発明者 鮫島 宗一郎 山口県新南陽市宮の前2丁目6番10号東ソ ー自彊寮 (72)発明者 里川 重夫 愛知県名古屋市北区田幡2丁目14番8号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Watamura 1-70, Heiwagaoka, Meito-ku, Nagoya, Aichi (72) Inventor Ritsuro Miyawaki 199, Sunahara, Nishi-ku, Nagoya, Aichi (72) Inventor, Kyo Ohsaki Shinnanyo, Yamaguchi Prefecture 4-10-3-306 (72) Inventor Setsuo Yoshida 23-3, Nagata-cho, Shinnanyo-shi, Yamaguchi (72) Inventor Soichiro Samejima 2-6-10, East, Shinnanyo-shi, Yamaguchi Prefecture Sorojirai (72) Inventor Shigeo Satokawa 2-14-8 Tabata, Kita-ku, Nagoya-shi, Aichi

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ケイ酸ナトリウム水溶液と硫酸アルミニ
ウム水溶液をpH4〜12に維持しながらゲル化し、つ
いでpH7以上のアルカリ水溶液中で熟成し、濾過・洗
浄した後さらにpH3〜4の酸性水溶液中で熟成・濾過
・洗浄した該ゲルを水熱処理することを特徴とする高生
成率、高純度合成カオリナイトの製造法。
1. A sodium silicate aqueous solution and an aluminum sulfate aqueous solution are gelled while maintaining a pH of 4 to 12, then aged in an alkaline aqueous solution having a pH of 7 or more, filtered and washed, and then further aged in an acidic aqueous solution having a pH of 3 to 4. A method for producing a high-purity, high-purity synthetic kaolinite, which comprises subjecting the filtered and washed gel to hydrothermal treatment.
JP3356465A 1991-12-25 1991-12-25 Method for producing high-purity, high-purity synthetic kaolinite Expired - Lifetime JPH06102536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3356465A JPH06102536B2 (en) 1991-12-25 1991-12-25 Method for producing high-purity, high-purity synthetic kaolinite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3356465A JPH06102536B2 (en) 1991-12-25 1991-12-25 Method for producing high-purity, high-purity synthetic kaolinite

Publications (2)

Publication Number Publication Date
JPH05170426A true JPH05170426A (en) 1993-07-09
JPH06102536B2 JPH06102536B2 (en) 1994-12-14

Family

ID=18449152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3356465A Expired - Lifetime JPH06102536B2 (en) 1991-12-25 1991-12-25 Method for producing high-purity, high-purity synthetic kaolinite

Country Status (1)

Country Link
JP (1) JPH06102536B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026975A1 (en) * 2008-09-02 2010-03-11 独立行政法人産業技術総合研究所 Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same
US8865020B2 (en) 2007-12-27 2014-10-21 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex and high-performance adsorbent comprising the same
FR3041628A1 (en) * 2015-09-28 2017-03-31 Centre Nat De La Rech Scient (C N R S ) PROCESS FOR PREPARING SYNTHETIC MINERAL PARTICLES AND COMPOSITION COMPRISING SYNTHETIC MINERAL PARTICLES

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865020B2 (en) 2007-12-27 2014-10-21 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex and high-performance adsorbent comprising the same
WO2010026975A1 (en) * 2008-09-02 2010-03-11 独立行政法人産業技術総合研究所 Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same
JP4714931B2 (en) * 2008-09-02 2011-07-06 独立行政法人産業技術総合研究所 Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
US8202360B2 (en) 2008-09-02 2012-06-19 National Institute Of Advanced Industrial Science And Technology Method of producing amorphous aluminum silicate, amorphous aluminum silicate obtained with said method, and adsorbent using the same
FR3041628A1 (en) * 2015-09-28 2017-03-31 Centre Nat De La Rech Scient (C N R S ) PROCESS FOR PREPARING SYNTHETIC MINERAL PARTICLES AND COMPOSITION COMPRISING SYNTHETIC MINERAL PARTICLES
WO2017055735A1 (en) 2015-09-28 2017-04-06 Centre National De La Recherche Scientifique (C.N.R.S.) Method for preparing synthetic mineral particles
KR20180100295A (en) * 2015-09-28 2018-09-10 쌍트르 나쉬오날 드 라 르쉐르스 쉬앙티피끄 Manufacturing method of synthetic mineral particles
JP2018529622A (en) * 2015-09-28 2018-10-11 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) Method for preparing synthetic mineral particles
US11352264B2 (en) 2015-09-28 2022-06-07 Centre National De La Recherche Scientifique Method for preparing synthetic mineral particles

Also Published As

Publication number Publication date
JPH06102536B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
CN110526260B (en) Method for synthesizing aluminosilicate molecular sieve by using seed crystal method
EP0106552B1 (en) Process for preparation of zeolites
CN111268692A (en) Synthesis method of LSX zeolite molecular sieve with high crystallinity
JP2704421B2 (en) Method for producing chain-like horizontal clay mineral
CN109592696B (en) Preparation method of nano-sheet clinoptilolite molecular sieve
JPH07505112A (en) Synthesis method of smectite clay minerals
CN101462739A (en) Method for preparing 4A zeolite molecular sieve from red desmine
JP3547791B2 (en) High heat water resistant high silica zeolite and method for producing the same
JPH05170426A (en) Production of high purity synthetic kaolinite in high yield
CN113845128A (en) MOR zeolite molecular sieve and preparation method thereof
JP3674858B2 (en) Method for producing high specific surface area calcium hydroxide particles
EP0130809B1 (en) Method of preparing highly siliceous porous crystalline zeolites
US4144194A (en) Zeolite promoted hydrocarbon conversion catalysts
CN1272246C (en) Synthesis method of NaY molecular sieve
EP3778485B1 (en) Method for preparing zsm-5 zeolite
CN1184143C (en) Sodium fluorosilicate ammoniating process of producing high reinforcing silica white
DE19727893A1 (en) Process for the preparation of synthetic sheet silicates of the hectorite type
JP2564581B2 (en) Manufacturing method of high silica content zeolite
JPH05170427A (en) Production of kaolinite in high yield
JPS61155215A (en) Synthesizing method of l-type zeolite by stirring
JPH0629131B2 (en) Method for producing high-purity kaolinite-like minerals
JPH05170428A (en) Production of high dispersible synthetic kaolinite
CN115650250B (en) Method for continuously synthesizing ZSM-5 molecular sieve
JP3611185B2 (en) Method for producing fine particle zeolite
JPH08183611A (en) Production of mfi type zeolite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term