JPH05155656A - Ceramic composition for low temperature sintering for multilayered substrate - Google Patents
Ceramic composition for low temperature sintering for multilayered substrateInfo
- Publication number
- JPH05155656A JPH05155656A JP3349048A JP34904891A JPH05155656A JP H05155656 A JPH05155656 A JP H05155656A JP 3349048 A JP3349048 A JP 3349048A JP 34904891 A JP34904891 A JP 34904891A JP H05155656 A JPH05155656 A JP H05155656A
- Authority
- JP
- Japan
- Prior art keywords
- low temperature
- weight
- cordierite
- main component
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は多層基板用低温焼結磁
器組成物に関し、特にたとえば、複数の磁器層が積層化
され、磁器間に回路が形成されてなる多層磁器基板に適
した多層基板用低温焼結磁器組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low temperature sintered porcelain composition for a multi-layer substrate, and particularly to a multi-layer substrate suitable for a multi-layer porcelain substrate in which a plurality of porcelain layers are laminated and a circuit is formed between porcelains. Relates to a low temperature sintered porcelain composition.
【0002】[0002]
【従来の技術】一般に電子機器の小型化に伴い、電子回
路を構成する各種電子部品を実装するのに、磁器基板が
汎用されている。そして、最近では、実装密度をさらに
高めるために、表面に導電材料のペーストで回路パター
ンを形成した未完成の磁器シートを複数枚積層し、これ
を焼成して一体化した多層基板が開発されている。従
来、このような多層基板の材料としては、アルミナが用
いられていた。2. Description of the Related Art In general, with the miniaturization of electronic equipment, a porcelain substrate has been widely used for mounting various electronic components constituting an electronic circuit. And recently, in order to further increase the packaging density, a multilayer substrate has been developed in which a plurality of unfinished porcelain sheets with circuit patterns formed on the surface with a paste of a conductive material are laminated and fired to be integrated. There is. Conventionally, alumina has been used as a material for such a multilayer substrate.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、アルミ
ナはその焼結温度が1500〜1600℃と高温である
ため、焼結に要する多量のエネルギが必要となり、コス
ト高となる。さらに、多層基板内部に形成される内部回
路の導電材料としては、高温の焼成温度に耐え得るWや
Moなどの高融点金属に限定されるため、回路パターン
そのものの抵抗値が高くなるという欠点があった。ま
た、アルミナの熱膨張係数が、アルミナ基板の上に搭載
される半導体を構成するシリコンチップよりも大きいた
め、シリコンチップにサーマルストレスが加わり、シリ
コンチップにクラックを発生させる原因となる。さら
に、アルミナそのものの誘電率が高いため、回路の内部
を伝播する信号の遅延時間が大きくなるなどの問題点が
あった。However, since the sintering temperature of alumina is as high as 1500 to 1600 ° C., a large amount of energy required for sintering is required and the cost becomes high. Furthermore, the conductive material of the internal circuit formed inside the multilayer substrate is limited to refractory metals such as W and Mo that can withstand a high firing temperature, so that the resistance value of the circuit pattern itself becomes high. there were. Further, since the coefficient of thermal expansion of alumina is larger than that of the silicon chip that constitutes the semiconductor mounted on the alumina substrate, thermal stress is applied to the silicon chip, which causes cracks in the silicon chip. Further, since the dielectric constant of alumina itself is high, there is a problem that the delay time of a signal propagating inside the circuit becomes long.
【0004】これらの問題点を解決するために、特開平
1−230462号に開示されるように、コージェライ
ト−B2 O3 −SiO2 系材料において、熱膨張係数が
小さく、誘電率が小さく、比抵抗の高い多層基板用低温
磁器組成物が提供された。In order to solve these problems, as disclosed in Japanese Patent Application Laid-Open No. 1-230462, cordierite-B 2 O 3 -SiO 2 type materials have a small thermal expansion coefficient and a small dielectric constant. A low temperature porcelain composition for a multilayer substrate having a high specific resistance is provided.
【0005】一方、数M〜数十MHz帯を使用したLC
R回路内蔵型のLSI搭載用多層基板の必要性が強まっ
ている。この基板の特性として、前記特性に加えて、特
に容量の温度変化率が低く、たとえば±30ppm以下
であることが必要となる。On the other hand, LC using several M to several tens of MHz band
There is an increasing need for an R circuit built-in type multilayer substrate for mounting LSI. As a characteristic of this substrate, in addition to the above characteristics, it is necessary that the rate of temperature change of the capacitance is particularly low, for example, ± 30 ppm or less.
【0006】しかし、上記コージェライト−B2 O3 −
SiO2 系材料は、容量の温度変化率が90ppm/℃
以上と大きく、上記基板材料を高周波対応の2CR内蔵
基板に応用するには、制限があった。However, the above cordierite-B 2 O 3-
SiO 2 materials have a capacity temperature change rate of 90 ppm / ° C.
As described above, there are limitations in applying the above substrate material to a high frequency compatible 2CR built-in substrate.
【0007】それゆえに、この発明の主たる目的は、比
較的低温で焼結可能で、熱膨張係数が小さく、誘電率が
小さく、容量の温度変化率の制御が容易な多層基板用低
温磁器組成物を提供することである。Therefore, a main object of the present invention is a low temperature porcelain composition for a multilayer substrate which can be sintered at a relatively low temperature, has a small coefficient of thermal expansion, a small dielectric constant, and is easy to control the temperature change rate of capacitance. Is to provide.
【0008】[0008]
【課題を解決するための手段】この発明は、コージェラ
イトが40〜85重量%と、B2 O3 が10〜40重量
%と、SiO2 が5〜50重量%とからなる主成分10
0重量部に、副成分としてTiO2を20重量部以下添
加した、多層基板用低温焼結磁器組成物である。According to the present invention, a main component 10 comprising 40 to 85% by weight of cordierite, 10 to 40% by weight of B 2 O 3 and 5 to 50% by weight of SiO 2 is used.
This is a low temperature sintered porcelain composition for a multilayer substrate, in which 20 parts by weight or less of TiO 2 is added as an accessory component to 0 parts by weight.
【0009】[0009]
【作用】TiO2 は負の温度係数をもつ材料であり、コ
ージェライト−B2 O3 −SiO2 系材料に添加混焼す
ることによって、温度係数の絶対値が小さくなる。FUNCTION TiO 2 is a material having a negative temperature coefficient, and the absolute value of the temperature coefficient becomes small by adding and co-firing a cordierite-B 2 O 3 -SiO 2 based material.
【0010】[0010]
【発明の効果】この発明によれば、比較的低温で焼結可
能で、熱膨張係数が小さく、誘電率が小さく、より広い
周波数帯域において容量の温度変化率を容易に制御でき
る多層基板用低温磁器組成物が得られる。According to the present invention, it is possible to sinter at a relatively low temperature, the coefficient of thermal expansion is small, the dielectric constant is small, and the temperature change rate of the capacitance can be easily controlled in a wider frequency band. A porcelain composition is obtained.
【0011】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments with reference to the drawings.
【0012】[0012]
【実施例】まず、コージェライトの原料であるSi
O2 ,MgOまたはMgCO3 ,Al2 O3 を秤量混合
し、混合物を得た。この混合物を1350〜1400℃
で仮焼し、図1に示す組成のコージェライト仮焼物を得
た。EXAMPLES First, Si which is a raw material of cordierite
O 2 , MgO or MgCO 3 , Al 2 O 3 were weighed and mixed to obtain a mixture. This mixture at 1350-1400 ° C
To obtain a cordierite calcined product having the composition shown in FIG.
【0013】次に、このコージェライト原料と、他の主
成分構成材料であるB2 O3 ,BNまたはB4 Cおよび
SiO2 と、添加物構成材料であるTiO2 とを準備
し、表1に示す組成の磁器が得られるように秤量混合
し、混合物を得た。Next, the cordierite raw material, B 2 O 3 , BN or B 4 C and SiO 2 which are other main component constituent materials, and TiO 2 which is an additive constituent material are prepared, and Table 1 The mixture was weighed and mixed so that a porcelain having the composition shown in 1 was obtained.
【0014】[0014]
【表1】 [Table 1]
【0015】そして、この混合物を800〜900℃の
温度で仮焼し、粉砕し、粉末を得た。この粉末に有機バ
インダを加えて混練し、スラリを得た。得られたスラリ
をドクターブレード法にて厚さ1mmのシート状に成形
し、セラミックグリーンシートを得た。このセラミック
グリーンシートを縦30mm,横10mmの大きさにカ
ットし、水蒸気中に通過させた窒素をキャリヤガスとす
る窒素−水蒸気の還元性もしくは非酸化性雰囲気中にお
いて、900℃の温度でバインダ成分を燃焼させ、表1
に示す各温度で1時間焼成して、磁器を得た。また、前
記セラミックグリーンシートを縦3mm,横40mmの
角板状にカットし、これを積層して、200kg/cm
2 で加圧して、約4mm×3mm×40mmの角柱状に
した。そして、これを上記の方法で焼成し、熱膨張係
数,抗折強度などを測定する測定用試料とした。Then, this mixture was calcined at a temperature of 800 to 900 ° C. and pulverized to obtain a powder. An organic binder was added to this powder and kneaded to obtain a slurry. The obtained slurry was formed into a sheet having a thickness of 1 mm by a doctor blade method to obtain a ceramic green sheet. This ceramic green sheet was cut into a size of 30 mm in length and 10 mm in width, and the binder component was heated at 900 ° C. in a nitrogen-steam reducing or non-oxidizing atmosphere using nitrogen passed through the steam as a carrier gas. Burning, Table 1
It was fired at each temperature shown in 1 hour for 1 hour to obtain a porcelain. In addition, the ceramic green sheet is cut into a rectangular plate having a length of 3 mm and a width of 40 mm, and the cut sheets are stacked to obtain 200 kg / cm.
It was pressed with 2 to form a prism having a size of about 4 mm × 3 mm × 40 mm. Then, this was fired by the above method to obtain a measurement sample for measuring the coefficient of thermal expansion, bending strength, and the like.
【0016】このようにして得られた各試料についての
各特性の測定結果を表1に示す。なお、表1中の添加物
の量は、主成分であるコージェライト−SiO2 −B2
O3 系に対する外添加量であり、より具体的には、コー
ジェライト中への固溶量とSiO2 −B2 O3 中への添
加量とを合わせたものである。Table 1 shows the measurement results of each characteristic of each sample thus obtained. In addition, the amount of the additive in Table 1 is the cordierite-SiO 2 -B 2 which is the main component.
It is the amount added externally to the O 3 system, and more specifically, it is the total amount of the solid solution in cordierite and the amount added in SiO 2 —B 2 O 3 .
【0017】比誘電率は周波数1MHzで測定した値で
あり、比抵抗は試料に直流100Vを印加したときの値
である。また、線熱膨張係数αは、 α = {ΔL/L(T2 −T1 )}+αSiO2 の式によって算出した値である。ここで、ΔLは加熱に
よる試料の見掛けの伸び(mm)、Lは室温での試料の
長さ(mm)、T1 は室温、T2は500℃、αSiO
2 は石英ガラスの熱膨張係数である。抗折強度は、JI
S規格(R1601)の3点曲げ法に従って測定した値
である。また、気孔率はアルキメデス法で測定した密度
より算出した値である。The relative dielectric constant is a value measured at a frequency of 1 MHz, and the specific resistance is a value when a direct current of 100 V is applied to the sample. The coefficient of linear thermal expansion α is a value calculated by the formula of α = {ΔL / L (T 2 −T 1 )} + αSiO 2 . Here, ΔL is the apparent elongation (mm) of the sample due to heating, L is the length (mm) of the sample at room temperature, T 1 is room temperature, T 2 is 500 ° C., αSiO
2 is the coefficient of thermal expansion of quartz glass. The bending strength is JI
It is a value measured according to the three-point bending method of S standard (R1601). The porosity is a value calculated from the density measured by the Archimedes method.
【0018】表1に示すように、TiO2 の添加量を変
化させることによって、容量の温度変化率を容易に制御
でき、温度係数を±30ppm以下にすることもでき
る。また、この発明の組成物は比較的低温で焼結可能
で、熱膨張係数が小さく、誘電率が小さいなど従来の特
性も満たす。As shown in Table 1, the temperature change rate of the capacity can be easily controlled by changing the addition amount of TiO 2 , and the temperature coefficient can be set to ± 30 ppm or less. Further, the composition of the present invention can be sintered at a relatively low temperature, has a small coefficient of thermal expansion, and has a small dielectric constant, which satisfies the conventional characteristics.
【0019】なお、コージェライトとは2MgO・2A
l2 O3・5SiO2 の他、アメリカンセラミックソサ
イアティ(TheAmerican Ceramic
Society),コロンブス(Columbus),
1964のイーエヌレビンら(E.N.Levin e
t al.)によるセラミックのフェーズダイアグラム
(Phase Diagrams for Ceram
ic)のP246,図712に開示されている組成範囲
から構成されるものであり、より具体的には、図1にお
ける領域Aのものである。図2はこの発明の組成物の主
成分組成比を示す主成分組成図であり、領域Bがこの発
明の組成物の主成分の範囲である。Cordierite is 2MgO.2A
l 2 O 3 .5SiO 2 as well as the American Ceramic Society (TheAmerican Ceramic)
Society, Columbus,
1964, EN Levine et al.
t al. )) Phase diagram of ceramic (Phase Diagrams for Ceram)
ic), P246, and the composition range disclosed in FIG. 712, and more specifically, the region A in FIG. FIG. 2 is a main component composition diagram showing the main component composition ratio of the composition of the present invention, and the region B is the range of the main component of the composition of the present invention.
【0020】上記のように組成範囲を限定した理由は次
の通りである。The reason for limiting the composition range as described above is as follows.
【0021】すなわち、コージェライトが40重量%未
満では、機械的強度が低く、一方85重量%を超える
と、焼結温度が高くなる。また、B2 O3 が10重量%
未満では、焼結温度が高くなり、一方40重量%を超え
ると、多孔質になり機械的強度が低くなる。That is, when the cordierite content is less than 40% by weight, the mechanical strength is low, while when it exceeds 85% by weight, the sintering temperature is high. Also, B 2 O 3 is 10% by weight
If it is less than 40%, the sintering temperature becomes high, while if it exceeds 40% by weight, it becomes porous and the mechanical strength becomes low.
【0022】添加物であるTiO2 が、100重量部の
主成分に対して20重量部を超えると、主成分がコージ
ェライトリッチ系では、焼結温度が高くなり、B2 O3
−SiO2 リッチ系では、機械的強度が低くなり、いず
れの場合も、比抵抗が小さくなり、誘電率が高くなる。When the content of TiO 2 as an additive exceeds 20 parts by weight with respect to 100 parts by weight of the main component, the sintering temperature becomes high when the main component is cordierite-rich, and B 2 O 3 is added.
In the —SiO 2 rich system, the mechanical strength is low, and in any case, the specific resistance is low and the dielectric constant is high.
【図1】コージェライトの組成比を示す組成図である。FIG. 1 is a composition diagram showing a composition ratio of cordierite.
【図2】この発明の組成物の主成分組成比を示す主成分
組成図である。FIG. 2 is a main component composition diagram showing a main component composition ratio of the composition of the present invention.
Claims (1)
0重量%からなる主成分100重量部に、 副成分としてTiO2 を20重量部以下添加した、多層
基板用低温焼結磁器組成物。1. Cordierite is 40 to 85% by weight, B 2 O 3 is 10 to 40% by weight, and SiO 2 is 5 to 5%.
A low temperature sintered porcelain composition for a multilayer substrate, wherein 20 parts by weight or less of TiO 2 is added as an accessory component to 100 parts by weight of a main component of 0% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03349048A JP3134437B2 (en) | 1991-12-05 | 1991-12-05 | Low-temperature sintered ceramic composition for multilayer substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03349048A JP3134437B2 (en) | 1991-12-05 | 1991-12-05 | Low-temperature sintered ceramic composition for multilayer substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05155656A true JPH05155656A (en) | 1993-06-22 |
JP3134437B2 JP3134437B2 (en) | 2001-02-13 |
Family
ID=18401141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03349048A Expired - Fee Related JP3134437B2 (en) | 1991-12-05 | 1991-12-05 | Low-temperature sintered ceramic composition for multilayer substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3134437B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6820333B2 (en) * | 2002-03-27 | 2004-11-23 | Hitachi, Ltd. | Method of converting storage pumps into reversible pump-turbines |
-
1991
- 1991-12-05 JP JP03349048A patent/JP3134437B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6820333B2 (en) * | 2002-03-27 | 2004-11-23 | Hitachi, Ltd. | Method of converting storage pumps into reversible pump-turbines |
Also Published As
Publication number | Publication date |
---|---|
JP3134437B2 (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03241724A (en) | Composite circuit board with a built-in capacitor | |
IE64626B1 (en) | Ceramic composition of matter and its use | |
JPH10310468A (en) | Porcelain composition sintered at low temperature and multilayered ceramic substrate using same | |
EP1022264B1 (en) | Low temperature-fired porcelain articles and electronic parts including such porcelain articles | |
JP3134437B2 (en) | Low-temperature sintered ceramic composition for multilayer substrate | |
KR100404815B1 (en) | Ceramic material substrate | |
JP3151972B2 (en) | Porcelain composition for multilayer substrate and multilayer substrate | |
JP3120603B2 (en) | Low-temperature sintered porcelain composition for multilayer substrates | |
JP3082478B2 (en) | Porcelain composition for multilayer substrate | |
JPH0667783B2 (en) | Low temperature sintered porcelain composition for multilayer substrate | |
JPS63265858A (en) | Low-temperature sintered ceramics composition for multi-layered substrate | |
JPH1036167A (en) | Low-temperature sintering inorganic composition | |
JP2002173362A (en) | Dielectric ceramic composition and multilayer substrate using the same | |
JPS6049149B2 (en) | Manufacturing method of white alumina/ceramic for electronic parts | |
JPH05178659A (en) | Porcelain composition for insulator | |
JP4047050B2 (en) | Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same | |
JPH062619B2 (en) | Low temperature sintered porcelain composition for multilayer substrate | |
JP2000063182A (en) | Production of ceramic raw material capable of being sintered at low temperature | |
JPH0555079A (en) | Composite circuit board containing capacitor | |
JPH0643270B2 (en) | Low temperature sintered porcelain composition for multilayer substrate | |
JP2971273B2 (en) | Method for producing mullite sintered body | |
JPH0676255B2 (en) | Low temperature sintered porcelain composition for multilayer substrate | |
JP4576151B2 (en) | Ceramic composition and ceramic wiring board | |
JPH0372593B2 (en) | ||
JPH04167412A (en) | Composite circuit board with built-in capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |