JPH05129832A - Antenna system and feeding part - Google Patents
Antenna system and feeding partInfo
- Publication number
- JPH05129832A JPH05129832A JP29136191A JP29136191A JPH05129832A JP H05129832 A JPH05129832 A JP H05129832A JP 29136191 A JP29136191 A JP 29136191A JP 29136191 A JP29136191 A JP 29136191A JP H05129832 A JPH05129832 A JP H05129832A
- Authority
- JP
- Japan
- Prior art keywords
- wave
- feeding
- waves
- plane
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は2枚の平行平板導体間
に電波を進行させる給電形式のアンテナ装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a feeding type antenna device for propagating radio waves between two parallel plate conductors.
【0002】[0002]
【従来の技術】図2a、bは、例えば1991年電子情
報通信学会技術研究報告A・P−91−2に掲載された
直交2偏波共用アンテナの正面図と断面図である。図に
おいて18は給電点位置、19はX軸方向偏波のスロッ
ト、20はY軸方向偏波のスロット、21は上記スロッ
ト19、20が並んだ平板導体、22は平板導体21の
下に平行に置かれた平板導体、23はX軸方向偏波のス
ロット19を給電する導波管、24はY軸方向偏波のス
ロット20を給電する導波管、25は導波管23と平板
導体21の間に設けられた給電用結合スロット、26は
導波管24と平板導体21の間に設けられた給電用結合
スロット、27は図2bの断面の位置を示す直線、28
は座標軸、29は導波管23より給電された電波の進行
方向である。2. Description of the Related Art FIGS. 2a and 2b are a front view and a cross-sectional view of an orthogonal dual-polarization dual-purpose antenna, for example, published in Technical Research Report AP-91-2 of the Institute of Electronics, Information and Communication Engineers in 1991. In the figure, 18 is a feeding point position, 19 is a slot for X-axis direction polarization, 20 is a slot for Y-axis direction polarization, 21 is a flat plate conductor in which the slots 19 and 20 are arranged, and 22 is parallel to the bottom of the flat plate conductor 21. Is a flat plate conductor, 23 is a waveguide that feeds the X-axis polarization slot 19, 24 is a waveguide that feeds the Y polarization slot 20, and 25 is a waveguide 23 and a flat conductor. 21 is a feed coupling slot, 26 is a feed coupling slot provided between the waveguide 24 and the plate conductor 21, 27 is a straight line indicating the position of the cross section of FIG. 2b, 28
Is a coordinate axis, and 29 is a traveling direction of a radio wave fed from the waveguide 23.
【0003】次に動作について説明する。給電点位置1
8より給電され、導波管23の中を進行する電波は途中
にある給電用結合スロット25を励振する。給電用結合
スロット25は導波管23の管内波長の間隔で並んでい
るので、皆同相で励振される。一方、各平板導体21、
22の間隔は十分小さくしてあるので、上記の給電用結
合スロット25で励振された電波は平板導体21、22
の間をX軸の±方向へTEM波で伝搬し、X軸方向偏波
のスロット19を励振する。これにより図2のアンテナ
装置はX軸方向偏波を放射する。このとき給電用結合ス
ロット25で励振された電波がX軸の±方向のみに伝搬
するならY軸方向偏波のスロット20は励振されない。Next, the operation will be described. Feeding point position 1
A radio wave fed from 8 and traveling in the waveguide 23 excites a feeding coupling slot 25 on the way. Since the power feeding coupling slots 25 are arranged at intervals of the in-tube wavelength of the waveguide 23, they are all excited in the same phase. On the other hand, each plate conductor 21,
Since the distance between the electrodes 22 is sufficiently small, the radio waves excited by the power feeding coupling slot 25 described above are flat conductors 21, 22.
A TEM wave is propagated in the ± direction of the X-axis between them to excite the slot 19 of the X-axis direction polarized wave. As a result, the antenna device of FIG. 2 radiates polarized waves in the X-axis direction. At this time, if the electric wave excited in the power feeding coupling slot 25 propagates only in the ± directions of the X axis, the slot 20 of the Y axis direction polarized wave is not excited.
【0004】給電点位置18より給電され、導波管24
の中を進行する電波は上述の過程と同じように給電用結
合スロット26を励振し、給電用結合スロット26で励
振された電波は平板導体21、22の間をY軸の±方向
へTEM波で伝搬して、Y軸方向偏波のスロット20を
励振する。これにより図2のアンテナ装置はY軸方向偏
波も放射し得る。なお導波管23と導波管24の給電点
の位置18は図2の中では同じ場所だが両者の給電点は
別個のものである。Power is fed from the feed point position 18 and the waveguide 24
In the same manner as the above-mentioned process, the electric wave traveling in the inside excites the power feeding coupling slot 26, and the electric wave excited in the power feeding coupling slot 26 is a TEM wave between the flat plate conductors 21 and 22 in the ± direction of the Y axis. Propagates in the Y axis direction and excites the slot 20 of polarization in the Y-axis direction. As a result, the antenna device of FIG. 2 can also radiate the Y-axis direction polarized wave. The position 18 of the feed point of the waveguide 23 and the position of the feed point of the waveguide 24 are the same in FIG. 2, but the feed points of the two are different.
【0005】[0005]
【発明が解決しようとする課題】従来の直交2偏波共用
アンテナは以上のように構成されていた。しかしこの形
式のアンテナ装置では複数の給電用結合スロット25、
26を介して給電するので、平板導体21、22の間に
完全な平面波を伝搬させることが難しく、そのためスロ
ット19、20に任意の分布をつけることや直交偏波間
のアイソレーションをとるのが難しいという問題があ
り、また送受信の偏波も2つに限られていた。The conventional dual antenna for dual polarized waves is configured as described above. However, in this type of antenna device, a plurality of feeding coupling slots 25,
Since power is supplied via 26, it is difficult to propagate a complete plane wave between the flat plate conductors 21 and 22, and therefore it is difficult to provide an arbitrary distribution in the slots 19 and 20 and to isolate the orthogonal polarizations. However, the polarization of transmission and reception was limited to two.
【0006】この発明は上記のような問題点を解消する
ためになされたもので、放射口の励振分布が意図したと
おりに付けやすく、また、直交2偏波間のアイソレーシ
ョンが改善されかつ、任意の偏波を送受信できるアンテ
ナ装置を得ることを目的としており、さらにビーム方向
の周波数特性のより小さいアンテナ装置、物理的面積の
より小さいアンテナ装置、折り曲げ部分をより少なくす
る給電部、ブロッキングがなく同時に複数の放射部を給
電できる給電部を得ることを目的としている。The present invention has been made in order to solve the above problems, and the excitation distribution of the radiation port can be easily attached as intended, the isolation between the two orthogonal polarizations can be improved, and can be arbitrarily set. The purpose is to obtain an antenna device that can transmit and receive polarized waves of, and an antenna device that has a smaller frequency characteristic in the beam direction, an antenna device that has a smaller physical area, a feeding part that reduces the number of bent parts, and there is no blocking at the same time. The purpose is to obtain a power supply unit that can supply power to a plurality of radiation units.
【0007】[0007]
【課題を解決するための手段】この発明に係るアンテナ
装置は、2枚の平行平板導体の一方に偏波の直交した複
数の放射口を設けた放射部、及び平行平板導体内で励振
した部分円筒波をその位相中心を焦点とした放物線上の
反射壁で反射させることにより平行平板導体の間に平面
波を伝搬させる給電部2組を備え、上記放射部に、直交
する2つの平面波を伝搬させ得るようにしかつ、上記直
交する2つの平面波の振幅、位相を調整する偏波制御機
構を設けたものである。SUMMARY OF THE INVENTION An antenna device according to the present invention has a radiation portion in which one of two parallel plate conductors is provided with a plurality of radiation ports whose polarizations are orthogonal to each other, and a portion excited in the parallel plate conductor. Two sets of feeding parts for propagating a plane wave between parallel plate conductors by reflecting a cylindrical wave by a reflection wall on a parabola whose center is the phase center are provided, and two plane waves orthogonal to each other are propagated to the radiation part. In addition, a polarization control mechanism for adjusting the amplitude and phase of the two orthogonal plane waves is provided.
【0008】また、ビーム方向の周波数特性を無くすた
めには、放射部を挟んで互いに対向するように給電部を
設置し、放射部に進行方向が逆で同一偏波、同一周波数
の2つの平面波を伝搬させる。Further, in order to eliminate the frequency characteristic in the beam direction, the feeding parts are installed so as to face each other with the radiating part in between, and two plane waves having the same polarization and the same frequency but opposite traveling directions are arranged in the radiating part. Propagate.
【0009】また、アンテナ装置の物理的面積をより小
さくするためには給電部を、放射部と給電部の境目で放
射部の地導体側に折り込みかつ、上記給電部が上記放射
部からはみ出す部分を放射部と反対側に折り込む。In order to further reduce the physical area of the antenna device, the feeding portion is folded at the boundary between the radiation portion and the feeding portion to the ground conductor side of the radiation portion, and the feeding portion protrudes from the radiation portion. Fold the side opposite to the radiation part.
【0010】また、折り曲げの回数を少なくして給電す
るためには、2枚の平行平板導体間に円筒波の励振波
源、及び上記励振波源の位相中心を中心とする半径
(0.5n+0.25)λの半円筒反射壁(n:正整
数、λ:給電部内の波長)を設け、さらに上記励振波源
を挟んで上記半円筒反射壁の反対側に、上記励振波源の
位相中心を焦点とする放物線上の反射壁を設置すること
により給電部を構成する。In order to reduce the number of times of bending and to supply electric power, an exciting wave source of a cylindrical wave between two parallel plate conductors and a radius (0.5n + 0.25) about the phase center of the exciting wave source are used. ) A semi-cylindrical reflection wall of λ (n: positive integer, λ: wavelength in the feeding part) is provided, and the phase center of the excitation wave source is focused on the opposite side of the semi-cylindrical reflection wall across the excitation wave source. A power feeding unit is configured by installing a reflecting wall on a parabola.
【0011】また、給電部におけるブロッキングを防
ぎ、また複数の放射部に給電するには、上中下3層の平
行平板導波路の下層平行平板導波路内に円筒波の励振波
源を設け、また上記中下2層の平行平板導波路は、上記
励振波源の位相中心を焦点として互いに対向する2つの
放物線上で接続し、また上記上中2層の平行平板導波路
は上記2つの放物線が交わる点を結ぶ直線上に仕切りを
設けて接続し、また上記のすべての接続部分には平面波
が反射せずに次の層に進行できるように傾いた反射壁を
設けることにより給電部を構成する。Further, in order to prevent blocking in the power feeding section and to feed power to a plurality of radiation sections, an exciting wave source of a cylindrical wave is provided in the lower parallel plate waveguide of the upper, middle and lower three parallel plate waveguides, and The middle-lower two-layer parallel plate waveguides are connected on two parabolas facing each other with the phase center of the excitation wave source as a focal point, and the upper-middle two-layer parallel plate waveguides intersect with each other. A partition is provided on the straight line connecting the points to connect them, and a reflecting wall that is inclined so as to allow the plane wave to proceed to the next layer without being reflected is formed in all the above-mentioned connecting portions to form a power feeding unit.
【0012】[0012]
【作用】上記のように構成されたアンテナ装置は、平行
平板導体内で励振した部分円筒波をその位相中心を焦点
とした放物線上の反射壁で反射させることにより平行平
板導体の間に平面波を伝搬させる給電部2組を用いて、
偏波の直交した複数の放射口を片方の面に設けた平行平
板導体間に、直交したより完全な平面波を伝搬させるの
で、放射口の励振分布が意図したとおりに付けやすく、
直交2偏波間のアイソレーションも改善され、また直交
する2つの平面波の振幅、位相を調整するので、任意の
偏波を送受信できる。In the antenna device configured as described above, the partial cylindrical wave excited in the parallel plate conductor is reflected by the reflecting wall on the parabola whose focal point is the center of the phase to generate the plane wave between the parallel plate conductors. By using two sets of power feeding parts to propagate,
Between parallel plate conductors with a plurality of radiation ports with orthogonal polarizations provided on one surface, a more complete plane wave that is orthogonal is propagated, so the excitation distribution of the radiation ports can be easily attached as intended,
The isolation between two orthogonal polarizations is also improved, and the amplitude and phase of two orthogonal plane waves are adjusted, so that arbitrary polarizations can be transmitted and received.
【0013】また、放射部を挟んで互いに対向するよう
に給電部を設置することにより進行方向が逆の2つの平
面波を放射部に伝搬させて、給電部内に定在波を励振さ
せる。これにより周波数が変化した場合の各放射口の励
振位相ずれを相殺され、ビーム方向の周波数特性を無く
すことができる。Further, by disposing the feeding parts so as to face each other with the radiating part in between, two plane waves having traveling directions opposite to each other are propagated to the radiating part to excite a standing wave in the feeding part. This cancels the excitation phase shift of each radiation port when the frequency changes, and the frequency characteristic in the beam direction can be eliminated.
【0014】また、給電部を放射部と給電部の境目で、
放射部の地導体側に折り込みかつ、上記給電部が上記放
射部からはみ出す部分を放射部と反対側に折り込むこと
により、アンテナ装置の物理的面積を小さくすることが
できる。Further, at the boundary between the radiation part and the power feeding part, the power feeding part is
The physical area of the antenna device can be reduced by folding the radiation portion on the ground conductor side and folding the portion of the feeding portion protruding from the radiation portion on the side opposite to the radiation portion.
【0015】また、2枚の平行平板導体間に円筒波の励
振波源、及び上記励振波源の位相中心を中心とする半径
(0.5n+0.25)λの半円筒反射壁(n:正数、
λ:給電部内の波長)を設け、さらに上記励振波源を挟
んで上記半円筒反射壁の反対側に、上記励振波源の位相
中心を焦点とする放物線上の反射壁を設置することによ
り給電部を構成すれば、折り込むところは放射部と給電
部の境目だけですむので、より折り曲げの回数を少なく
して放射部に給電することができる。Further, an exciting wave source of a cylindrical wave is provided between two parallel plate conductors, and a semi-cylindrical reflecting wall having a radius (0.5n + 0.25) λ centering on the phase center of the exciting wave source (n: positive number,
λ: wavelength in the feeding section), and further, by installing a reflecting wall on a parabola whose focal point is the phase center of the exciting wave source, on the opposite side of the half cylindrical reflecting wall with the exciting wave source interposed therebetween, With this configuration, since the folding part only needs to be the boundary between the radiation part and the power feeding part, it is possible to feed the radiation part with a smaller number of bendings.
【0016】また、上中下3層の平行平板導波路の下層
平行平板導波路内に円筒波の励振波源を設け、中下2層
の平行平板導波路は、励振波源の位相中心を焦点として
互いに対向する2つの放物線上で接続し、また上中2層
の平行平板導波路は上記2つの放物線が交わる点を結ぶ
直線上に仕切りを設けて接続し、また上記のすべての接
続部分には平面波が反射せずに次の層に進行できるよう
に傾いた反射壁を設けて構成した給電部により、励振波
源より出た円筒波は下層から中層に進行する際に平面波
となり、上層へは向きが逆の2つの平面波として進行
し、また途中障害物もないので、給電部におけるブロッ
キングなしに複数の放射部に給電できる。Further, an exciting wave source of a cylindrical wave is provided in the lower parallel plate waveguide of the upper and lower middle parallel plate waveguides, and the middle and lower two layers of the parallel flat plate waveguide are focused on the phase center of the exciting wave source. Two parallel parabolic lines facing each other are connected, and the parallel-plate waveguides of the upper and middle two layers are connected by providing a partition on a straight line connecting the points where the above two parabolas intersect, and all the above connecting parts are connected. With the feed part configured by providing a tilted reflection wall so that the plane wave can travel to the next layer without being reflected, the cylindrical wave emitted from the excitation wave source becomes a plane wave when traveling from the lower layer to the middle layer, and is directed to the upper layer. 2 propagates as two opposite plane waves, and there are no obstacles on the way, so that it is possible to feed power to a plurality of radiators without blocking in the feeder.
【0017】[0017]
【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1において、1は円筒波の位相中
心、2は円筒波を放射するH面ホーン等の一次放射器、
3は円筒波の位相中心1を焦点とする放物線上にある反
射壁、4は座標系、5は座標系4のX軸方向に平面波を
放射する給電部、6は座標系4のY軸方向に平面波を放
射する給電部、7は座標系4のX軸方向に、1波長(放
射部9内での管内波長)間隔で並ぶY軸方向に細長いス
ロット、8は座標系4のY軸方向に、1波長(放射部9
内での管内波長)間隔で並ぶX軸方向に細長いスロッ
ト、9は放射部、10は放射側の平板導体、11は放射
側でない方の平板導体、12は放射部9の端に沿って設
けられた電波吸収体、13は給電部5より放射した平面
波の進行方向、14は給電部5と給電部6への給電振
幅、位相を調整する偏波制御機構、15は給電部6より
放射した平面波の進行方向、16は給電部5と放射部9
の境目、17は給電部6と放射部9の境目である。EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is the phase center of a cylindrical wave, 2 is a primary radiator such as an H-plane horn that radiates a cylindrical wave,
3 is a reflection wall on a parabola whose center is the phase center 1 of the cylindrical wave, 4 is a coordinate system, 5 is a feeding portion that radiates a plane wave in the X-axis direction of the coordinate system 4, 6 is the Y-axis direction of the coordinate system 4. Is a feeder for radiating a plane wave, 7 is a slot elongated in the Y-axis direction arranged at intervals of one wavelength (wavelength in the radiation section 9) in the X-axis direction of the coordinate system 4, and 8 is the Y-axis direction of the coordinate system 4. 1 wavelength (radiation part 9
Slots elongated in the X-axis direction, which are arranged at intervals of (inner tube wavelength), 9 is a radiating portion, 10 is a radiating side flat plate conductor, 11 is a non-radiating side flat plate conductor, and 12 is provided along the end of the radiating part 9. The electromagnetic wave absorber, 13 is the traveling direction of the plane wave radiated from the power feeding section 5, 14 is the polarization control mechanism for adjusting the feeding amplitude and phase to the power feeding section 5 and the power feeding section 6, and 15 is the radiation from the power feeding section 6. The plane wave traveling direction, 16 is the feeding portion 5 and the radiating portion 9.
Is a boundary between the power feeding section 6 and the radiating section 9.
【0018】次に、動作について説明する。給電部5を
給電すると電波は給電部5の一次放射器2から円筒波と
なって放射され、位相中心1を焦点とする放物線上にあ
る反射壁3で反射されて放射部9に進行する。このとき
境目16上ではどの点でも位相中心1からの行路長が一
致するのでこれから先は平面波となる。平面波はY軸方
向に細長いスロット7のみを励振して減衰しながら放射
部9内をX軸方向に進行し、最後に電波吸収体12に吸
収される。スロット7はX軸方向の偏波を放射し、かつ
1波長ごとにならんでいるので励振位相が一致して、正
面(Z軸)方向に、X軸方向の直線偏波を放射する。Next, the operation will be described. When the power feeding unit 5 is fed, a radio wave is emitted as a cylindrical wave from the primary radiator 2 of the power feeding unit 5, is reflected by the reflection wall 3 on the parabola whose focal point is the phase center 1, and travels to the radiation unit 9. At this time, the path lengths from the phase center 1 match at any point on the boundary 16, so that a plane wave is formed in the future. The plane wave travels in the radiation section 9 in the X-axis direction while exciting and attenuating only the elongated slot 7 in the Y-axis direction, and is finally absorbed by the radio wave absorber 12. Since the slot 7 radiates polarized waves in the X-axis direction and is aligned for each wavelength, the excitation phases match and radiate linearly polarized waves in the X-axis direction in the front (Z-axis) direction.
【0019】次に給電部6を給電した場合も給電部5を
給電したときと同じ原理で、平面波が放射部9内をY軸
方向に進行する。この平面波は、X軸方向に細長いスロ
ット8のみを励振し、結果として正面(Z軸)方向に、
Y軸方向の直線偏波が放射される。Next, when the power feeding section 6 is fed, the plane wave travels in the radiation section 9 in the Y-axis direction according to the same principle as when feeding the power feeding section 5. This plane wave excites only the elongated slot 8 in the X-axis direction, and as a result, in the front (Z-axis) direction,
A linearly polarized wave in the Y-axis direction is emitted.
【0020】以上のように放射部9からは偏波面の直交
した2つの直線偏波が放射される。この2つの直線偏波
の振幅、位相を偏波制御機構14により調整すれば任意
の偏波で送受信できる。As described above, the radiation section 9 radiates two linearly polarized waves whose polarization planes are orthogonal to each other. If the amplitude and phase of these two linearly polarized waves are adjusted by the polarization control mechanism 14, transmission and reception with arbitrary polarized waves can be performed.
【0021】例えば直交した2つの直線偏波の位相を互
いに同相もしくは逆相とし、両偏波の振幅を調整すれ
ば、任意の偏波面の直線偏波を送受信できる。For example, if the phases of two orthogonal linearly polarized waves are the same or opposite to each other and the amplitudes of the two polarized waves are adjusted, linearly polarized waves having arbitrary polarization planes can be transmitted and received.
【0022】また、直交した2つの直線偏波の振幅を同
じにし、互いの位相に±90゜の位相差を与えれば円偏
波を送受信できる。Circularly polarized waves can be transmitted / received by setting the amplitudes of two orthogonal linearly polarized waves to be the same and giving a phase difference of ± 90 ° to each other.
【0023】また、直交した2つの直線偏波の振幅、位
相を共に調整すれば、任意の楕円偏波を送受信できる。Further, by adjusting both the amplitude and phase of two orthogonal linearly polarized waves, an arbitrary elliptically polarized wave can be transmitted and received.
【0024】以上のように偏波制御機構14を用いるこ
とにより、本発明のアンテナ装置1つで複数の偏波を送
受信できる。By using the polarization control mechanism 14 as described above, a plurality of polarizations can be transmitted / received by one antenna device of the present invention.
【0025】実施例2.図3は上記実施例1のアンテナ
装置で電波吸収体を取り去り、代わりに給電部を2個加
えた場合の正面図である。図3で30は給電部5とは進
行方向が逆になる平面波を放射する給電部、31は給電
部6とは進行方向が逆になる平面波を放射する給電部で
ある。また図4は図3の断面図であり、aはスロット7
の間隔が1波長となる場合、bはaより周波数が高くな
ってスロット7の間隔が1波長以下となった場合であ
る。図4において32は給電部30から放射した平面波
の進行方向を示す矢印、33は給電部5から進行する平
面波によって励振される各スロット7の電界ベクトル、
34は給電部30から進行する平面波によって励振され
る各スロット7の電界ベクトル。35は電界ベクトル3
3と34の和ベクトル、すなわち各スロット7の全励振
電界ベクトル、36はある瞬間における給電部5から進
行する平面波による電流分布、37は電流分布36と同
じ瞬間における給電部30から進行する平面波による電
流分布である。Example 2. FIG. 3 is a front view of the antenna device according to the first embodiment with the electromagnetic wave absorber removed and two power feeding units added instead. In FIG. 3, reference numeral 30 denotes a power feeding portion that radiates a plane wave whose traveling direction is opposite to that of the power feeding portion 5, and reference numeral 31 denotes a power feeding portion that radiates a plane wave whose traveling direction is opposite to that of the power feeding portion 6. 4 is a cross-sectional view of FIG. 3, where a is slot 7
In the case where the interval is 1 wavelength, b is the case where the frequency is higher than a and the interval between the slots 7 is 1 wavelength or less. In FIG. 4, 32 is an arrow indicating the traveling direction of the plane wave radiated from the power feeding unit 30, 33 is an electric field vector of each slot 7 excited by the plane wave traveling from the power feeding unit 5,
34 is an electric field vector of each slot 7 excited by a plane wave traveling from the power feeding unit 30. 35 is the electric field vector 3
The sum vector of 3 and 34, that is, the total excitation electric field vector of each slot 7, 36 is the current distribution due to the plane wave traveling from the feeding portion 5 at a certain moment, and 37 is the plane wave traveling from the feeding portion 30 at the same moment as the current distribution 36. It is a current distribution.
【0026】次に動作を説明する。図4aからわかるよ
うにスロット7の間隔が1波長となるとき、各スロット
7は給電部5、30のどちらからくる平面波によっても
同相で励振される。したがって給電部は必ずしも2つ必
要とはしない。Next, the operation will be described. As can be seen from FIG. 4a, when the spacing between the slots 7 is one wavelength, each slot 7 is excited in phase by a plane wave coming from either of the feeding parts 5 and 30. Therefore, two power feeding units are not always required.
【0027】一方周波数がやや高くなってスロット7の
間隔が1波長以上となった場合、図4bから明らかなよ
うに各スロット7の励振位相は平面波の進行方向に向か
って少しずつ遅れる。もし給電が給電部5もしくは、3
0の一方だけで行われるならこの励振位相差によりビー
ム方向は正面からずれてしまう。しかし両方から給電す
れば、給電方向が反対なことから励振位相差が相殺さ
れ、かつ励振振幅位相の分布が対称となるためビーム方
向は正面から動かない。給電部6、31による給電につ
いても全く同じである。以上のように進行方向が互いに
逆の平面波を放射部9に進行させることにより周波数変
化によるビーム方向変化を防げる。On the other hand, when the frequency becomes slightly higher and the spacing between the slots 7 becomes one wavelength or more, the excitation phase of each slot 7 is gradually delayed in the traveling direction of the plane wave, as is apparent from FIG. 4b. If the power supply is the power supply unit 5 or 3
If it is performed only on one side of 0, the beam direction will shift from the front due to this excitation phase difference. However, if power is supplied from both sides, the excitation phase difference is canceled because the feeding directions are opposite, and the distribution of the excitation amplitude phase becomes symmetrical, so the beam direction does not move from the front. The same applies to the power feeding by the power feeding units 6 and 31. As described above, by propagating the plane waves whose traveling directions are opposite to each other to the radiating section 9, it is possible to prevent the beam direction change due to the frequency change.
【0028】実施例3.図5は上記実施例2のアンテナ
装置において平行平板導体を給電部5、6、30、31
と放射部9の境目で折り畳んだ場合の正面図、図6は図
5の直線38における断面図である。Example 3. FIG. 5 is a plan view of the antenna device of the second embodiment, in which the parallel plate conductors are connected to the feeding portions 5, 6, 30, 31.
And FIG. 6 is a sectional view taken along the straight line 38 in FIG.
【0029】次に動作について説明する。上記のように
本実施例は平行平板導体を給電部5、6、30、31と
放射部9の境目で折り畳んだものである。折り目に当た
る部分は図6の斜線部のように反射壁が設けてあり電波
が不要な反射を起こさずに放射部9に進行するようにな
っている。電波の行路長は変わらないため後の動作は実
施例2と同じである。Next, the operation will be described. As described above, in the present embodiment, the parallel plate conductor is folded at the boundary between the feeding portions 5, 6, 30, 31 and the radiation portion 9. At the portion corresponding to the fold, a reflection wall is provided as shown by the hatched portion in FIG. 6 so that the radio wave travels to the radiating section 9 without causing unnecessary reflection. Since the path length of the radio wave does not change, the subsequent operation is the same as in the second embodiment.
【0030】一般に実施例2のアンテナ装置でより高い
利得を得るためには放射部9を大きくすれば良いがそれ
につれて給電部5、6、30、31も大きくなり、必要
利得を満たしてかつなるべく小さいアンテナ装置が必要
な場合には不利になる。さらにまた、実施例2のアンテ
ナ装置においてはビーム方向の周波数特性は防げるが、
図4b全励振電界ベクトルの合計は図4aのそれより大
きさが小さくなることから周波数変化によって利得の低
下を生じる。この利得の低下は放射部9が大きいほど顕
著になる。利得の低下を抑えつつ利得を増加するにはア
ンテナ装置を多数組み合わせてアレー化すればよいが実
施例2のアンテナ装置では給電部の存在によりアレー開
口が必要以上に大きくなる。In general, in order to obtain a higher gain in the antenna device of the second embodiment, the radiating portion 9 may be made larger, but the feeding portions 5, 6, 30, 31 are also made larger accordingly, and the necessary gain should be satisfied as much as possible. It is disadvantageous if a small antenna arrangement is required. Furthermore, although the frequency characteristic in the beam direction can be prevented in the antenna device of the second embodiment,
FIG. 4b The sum of all excitation electric field vectors is smaller in magnitude than that of FIG. This decrease in gain becomes more remarkable as the radiation portion 9 is larger. In order to increase the gain while suppressing the decrease in the gain, a large number of antenna devices may be combined to form an array, but in the antenna device of the second embodiment, the presence of the feeding portion causes the array aperture to be larger than necessary.
【0031】本実施例のアンテナ装置は同じ利得でも実
施例2より物理的面積が小さい利点を有する。さらに物
理的面積は放射部9のみであるからアレー化してもアレ
ー開口は最小の大きさで済み無駄を生じない。The antenna device of the present embodiment has an advantage that the physical area is smaller than that of the second embodiment even with the same gain. Further, since the physical area is only the radiating portion 9, the array aperture can be made to have the minimum size even if it is made into an array, and no waste occurs.
【0032】実施例4.図7a、bは上記実施例3のア
ンテナ装置の給電部をより折り曲げの少ない給電部にし
た場合のXY面の断面図、及びZX面の断面図である。
39は円筒波の励振波源、40は励振波源39を中心と
する半径(0.5n+0.25)×波長の半円筒反射
壁、41は励振波源39を挟んで上記半円筒反射壁40
の反対側に設置された励振波源39を焦点とした放物線
上の反射壁、42は放射部9と給電部の折り目にある傾
いた反射壁、43は図7bの断面を示す直線、44は励
振波源39で励振された電波の進行方向を示す印であ
る。Example 4. 7A and 7B are a cross-sectional view of the XY plane and a ZX plane when the feeding portion of the antenna device of the third embodiment is a feeding portion with less bending.
Reference numeral 39 is an excitation wave source of a cylindrical wave, 40 is a semi-cylindrical reflection wall of radius (0.5n + 0.25) × wavelength centered on the excitation wave source 39, 41 is the semi-cylindrical reflection wall 40 sandwiching the excitation wave source 39.
A parabolic reflection wall focusing on the excitation wave source 39 installed on the opposite side of the, a slanted reflection wall 42 at the fold of the radiation part 9 and the feeding part, 43 a straight line showing the cross section of FIG. 7b, and 44 an excitation This is a mark indicating the traveling direction of the radio wave excited by the wave source 39.
【0033】次に動作について説明する。励振波源39
で励振された円筒波のうち半円筒反射壁40で反射され
たものまた励振波源39の方へ戻り、反対側に設置され
た放物線上の反射壁41へ進むが、反円筒反射壁40の
半径は(0.5n+0.25)×波長であるため、初め
から放物線上の反射壁41へ進んだ電波と位相が一致す
る。このため励振波源39励振された円筒波のほとんど
は放物線上の反射壁41で反射された後、放射部9と給
電部の折り目にある傾いた反射壁で反射されて放射部へ
進行する。放射部へ進行する時点でY軸方向に位相面が
揃っていることは実施例1と同じである。Next, the operation will be described. Excitation wave source 39
Of the cylindrical wave excited by the half-cylindrical reflection wall 40, returns to the excitation wave source 39, and advances to the parabolic reflection wall 41 installed on the opposite side, but the radius of the anti-cylindrical reflection wall 40 Is (0.5n + 0.25) × wavelength, and therefore has the same phase as the radio wave that has traveled from the beginning to the parabolic reflection wall 41. Therefore, most of the cylindrical wave excited by the excitation wave source 39 is reflected by the reflection wall 41 on the parabola, then reflected by the inclined reflection wall at the fold of the radiation portion 9 and the feeding portion, and advances to the radiation portion. As in the first embodiment, the phase planes are aligned in the Y-axis direction when traveling to the radiating portion.
【0034】本実施例の給電部は実施例3の給電部より
折り曲げの回数が少なくて済むという利点を持つ。The power feeding unit of this embodiment has an advantage that the number of times of bending is smaller than that of the power feeding unit of the third embodiment.
【0035】図7では給電部を一つしか示していない
が、これを放射部9の四隅に配置できることはいうまで
もない。また四隅の給電部を折り曲げて重なる場合には
実施例3のように多層に重ねればよい。Although only one power feeding portion is shown in FIG. 7, it goes without saying that this can be arranged at the four corners of the radiation portion 9. Further, when the power feeding portions at the four corners are bent and overlapped, they may be stacked in multiple layers as in the third embodiment.
【0036】実施例5.図8、図9、図10は実施例3
のアンテナ装置の給電部を、励振波源を焦点とした放物
線上にある傾いた反射壁を上下2段に組み合わせること
により、給電部におけるブロッキングを防ぐ構造にした
場合のZX面の断面図、及び図8の直線47、48にお
けるXY面での断面図である。なお複数の放射部を給電
している。図8で45は励振波源39を焦点とした放物
線上にある傾いた反射壁で、図のように上下2段に組み
合わせてある。46は放射部と給電部の折り目にある傾
いた反射壁、47、48は断面図図9、図10の断面を
表わす直線、49は励振波源39で励振された電波の進
行方向を示す印、50は隣り合う放射部の境目である。Example 5. 8, 9 and 10 show the third embodiment.
The cross-sectional view of the ZX plane in the case where the feeding part of the antenna device is combined with the inclined reflecting walls on the parabola with the excitation wave source as the focal point in two upper and lower stages to prevent blocking in the feeding part, and FIG. 8 is a cross-sectional view taken along the XY plane of the straight lines 47 and 48 of FIG. It should be noted that a plurality of radiating parts are fed. In FIG. 8, reference numeral 45 denotes an inclined reflecting wall on a parabola with the excitation wave source 39 as a focal point, and is combined in two stages as shown in the figure. 46 is an inclined reflecting wall at the fold of the radiation part and the power feeding part, 47 and 48 are straight lines representing the cross sections of the cross-sectional views 9 and 10, 49 is a mark indicating the traveling direction of the radio wave excited by the excitation wave source 39, 50 is a boundary between adjacent radiating parts.
【0037】次に動作について説明する。励振波源39
で励振された円筒波は図9のように励振波源39を焦点
とする放物線上の反射壁45で反射され、そこから図1
0の層に進行する。電波が図10を進行する時点ではす
でにY軸方向に位相が揃っている。電波はさらに放射部
と給電部の折り目にある傾いた反射壁46で反射され放
射部に進行する。後の動作は実施例2と同じである。Next, the operation will be described. Excitation wave source 39
The cylindrical wave excited by is reflected by the reflection wall 45 on the parabola whose focal point is the excitation wave source 39 as shown in FIG.
Proceed to layer 0. By the time the radio waves travel through FIG. 10, the phases are already aligned in the Y-axis direction. The radio wave is further reflected by the inclined reflecting wall 46 at the fold line between the radiating portion and the power feeding portion and travels to the radiating portion. The subsequent operation is the same as that of the second embodiment.
【0038】本実施例は実施例4の半円筒反射壁40に
よるブロッキングが無いため、より効率良く励振波源3
9から放射部に給電できる。また、1つの給電点で2つ
の放射部を給電するのでアレーアンテナ時には大変有利
である。In this embodiment, since there is no blocking by the semi-cylindrical reflecting wall 40 of the fourth embodiment, the excitation wave source 3 can be more efficiently used.
Power can be supplied to the radiator from 9. Further, since the two radiating parts are fed at one feeding point, it is very advantageous for an array antenna.
【0039】本給電部を放射部の四隅に配置できるこ
と、また四隅の給電部が重なる場合には実施例3のよう
に多層に重ねればよいことは実施例4と同じである。As in the case of the fourth embodiment, it is possible to dispose the main power feeding portions at the four corners of the radiating portion, and when the power feeding portions at the four corners overlap, they can be stacked in multiple layers as in the third embodiment.
【0040】上記説明では複数の偏波を送受信可能なア
ンテナ装置として述べたが、偏波面を変化させる必要が
生じた場合、本発明はアンテナを物理的に動かすことな
く、偏波制御機構14による調整だけで偏波面を変化さ
せられるという利点を持つ。In the above description, the antenna device capable of transmitting and receiving a plurality of polarized waves is described. However, when it is necessary to change the plane of polarization, the present invention uses the polarization control mechanism 14 without physically moving the antenna. It has the advantage that the plane of polarization can be changed only by adjustment.
【0041】例えばTDMA(時分割多元接続)方式の
通信において、時分割で偏波が変化する場合は、TDM
Aで送られてくる信号に同期させて偏波制御機構14で
偏波を調整する。For example, in TDMA (time division multiple access) communication, when the polarization changes in time division, TDM
The polarization control mechanism 14 adjusts the polarization in synchronization with the signal sent by A.
【0042】また電離層による影響等、伝播状態によっ
て偏波が変化するようなときにも偏波制御機構14で偏
波を調整することにより良好な通信状態を保てる。Further, even when the polarization changes depending on the propagation state due to the influence of the ionosphere, the polarization control mechanism 14 adjusts the polarization to maintain a good communication state.
【0043】また、上記本発明はマイクロストリップア
ンテナやトリプレート線路、マイクロストリップ線路を
用いて構成した同様の機能を持つアンテナ装置に比べ
て、給電系がはるかに簡単な構造で製作しやすくかつ損
失が少ないという利点を有する。In addition, the present invention has a much simpler feeding system than the antenna device having a similar function formed by using a microstrip antenna, a triplate line, or a microstrip line, and is easy to manufacture with a loss. Has the advantage that
【0044】[0044]
【発明の効果】この発明は以上説明したように構成され
ているので以下に記載されるような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0045】平行平板導体内で励振した部分円筒波をそ
の位相中心を焦点とした放物線上の反射壁で反射させる
ことにより平行平板導体の間に平面波を伝搬させる給電
部2組を用いて、偏波の直交した複数の放射口を片方の
面に設けた平行平板導体間に、直交したより完全な平面
波を伝搬させるので、放射口の励振分布が意図した通り
に付けやすく、直交2偏波間のアイソレーションが改善
され、また2つの直交した平面波の振幅、位相を調整す
る偏波制御機構を設けたので、任意の偏波を送受信でき
る。Using two sets of feeding parts for propagating a plane wave between parallel plate conductors by reflecting a partial cylindrical wave excited in the parallel plate conductor by a reflection wall on a parabola whose focal point is the phase center, Since a more complete orthogonal plane wave is propagated between parallel plate conductors with a plurality of radiation openings orthogonal to each other on one surface, it is easy to attach the excitation distribution of the radiation openings as intended, and between the two orthogonal polarizations. Since the isolation is improved and a polarization control mechanism for adjusting the amplitude and phase of two orthogonal plane waves is provided, arbitrary polarization can be transmitted and received.
【0046】また、放射部を挟んで互いに対向するよう
に給電部を設置することにより、放射部に進行方向が逆
になる2つの平面波を伝搬させて放射部内に定在波を励
振し、周波数が変化したときのビーム方向の変動を防ぐ
ことができる。Further, by disposing the feeding parts so as to face each other with the radiating part sandwiched therebetween, two plane waves whose traveling directions are opposite to each other are propagated to the radiating part to excite the standing wave in the radiating part and It is possible to prevent the beam direction from fluctuating when the value changes.
【0047】また、給電部を放射部と給電部の境目で放
射部の地導体側に折り込みかつ、上記給電部が上記放射
部からはみ出す部分を放射部と反対側に折り込むことに
よりアンテナ装置の物理的な面積を小さくできる。Further, by folding the power feeding portion on the ground conductor side of the radiation portion at the boundary between the radiation portion and the radiation portion, and folding the portion of the feeding portion protruding from the radiation portion on the side opposite to the radiation portion, the antenna device physical Area can be reduced.
【0048】また、円筒波の励振波源に半円筒反射壁
と、放物線上の反射壁を用いて給電部を構成することに
より折り曲げの回数を少なくして放射部に給電すること
ができる。Further, the semi-cylindrical reflection wall and the reflection wall on the parabola are used as the excitation wave source of the cylindrical wave to form the power feeding portion, so that the number of bendings can be reduced and power can be fed to the radiation portion.
【0049】また、円筒波励振波源の位相中心を焦点と
した放物線上に設けた傾いた反射壁を上下2段に組み合
わせる給電部を用いることにより、給電部におけるブロ
ッキングを防ぎ、また複数の放射部に給電できる。Further, by using a power feeding section in which inclined reflecting walls provided on a parabola whose focal point is the center of the phase of the cylindrical wave excitation wave source is combined in upper and lower stages, blocking in the power feeding section is prevented and a plurality of radiation sections are provided. Can be powered.
【図面の簡単な説明】[Brief description of drawings]
【図1】この発明の実施例1のアンテナ装置を示す正面
図である。FIG. 1 is a front view showing an antenna device according to a first embodiment of the present invention.
【図2】従来のアンテナ装置の正面図である。FIG. 2 is a front view of a conventional antenna device.
【図3】この発明の実施例2のアンテナ装置を示す正面
図である。FIG. 3 is a front view showing an antenna device according to a second embodiment of the present invention.
【図4】この発明の実施例2のアンテナ装置の断面と励
振電界ベクトルの様子を示す図である。FIG. 4 is a diagram showing a cross section of an antenna device according to a second embodiment of the present invention and a state of an excitation electric field vector.
【図5】この発明の実施例3のアンテナ装置を示す正面
図である。FIG. 5 is a front view showing an antenna device according to a third embodiment of the present invention.
【図6】この発明の実施例3のアンテナ装置を示す断面
図である。FIG. 6 is a sectional view showing an antenna device according to a third embodiment of the present invention.
【図7】この発明の実施例4のアンテナ装置を示す断面
図である。FIG. 7 is a sectional view showing an antenna device according to a fourth embodiment of the present invention.
【図8】この発明の実施例5のアンテナ装置を示す断面
図である。FIG. 8 is a sectional view showing an antenna device according to a fifth embodiment of the present invention.
【図9】この発明の実施例5のアンテナ装置を示す断面
図である。FIG. 9 is a sectional view showing an antenna device according to a fifth embodiment of the present invention.
【図10】この発明の実施例5のアンテナ装置を示す断
面図である。FIG. 10 is a sectional view showing an antenna device according to a fifth embodiment of the present invention.
1 円筒波の位相中心 2 一次放射器 3 反射壁 4 座標系 5 給電部 6 給電部 7 Y軸方向に細長いスロット 8 X軸方向に細長いスロット 9 放射部 10 放射側の平板導体 11 放射側でない方の平板導体 12 電波吸収体 13 給電部5より給電した平面波の進行方向 14 給電部5、6より給電した平面波の振幅、位相を
調整する偏波制御機構 15 給電部6より給電した平面波の進行方向 16 給電部5と放射部9の境目 17 給電部5と放射部9の境目 18 給電位置 19 X軸方向偏波のスロット 20 Y軸方向偏波のスロット 21 平板導体 22 平板導体21の下に平行に置かれた平板導体 23 X軸方向偏波のスロット19を給電する導波管 24 Y軸方向偏波のスロット20を給電する導波管 25 給電用結合スロット 26 給電用結合スロット 27 図2bの断面の位置を示す直線 28 座標軸 29 導波管23より給電された電波の進行方向 30 給電部 31 給電部 32 平面波の進行方向を示す矢印 33 給電部5によって励振されるスロット7の電界ベ
クトル 34 給電部30によって励振されるスロット7の電界
ベクトル 35 スロット7の全励振電界ベクトル 36 ある瞬間における給電部5による電流分布 37 電流分布36と同じ瞬間における給電部30によ
る電流分布 38 図6の断面を示す直線 39 円筒波の励振波源 40 半円筒反射壁 41 放物線上の反射壁 42 放射部9と給電部の折り目にある傾いた反射壁 43 図7bの断面を示す直線 44 励振波源39で励振された電波の進行方向を示す
印 45 放物線上にある傾いた反射壁 46 放射部と給電部の折り目にある傾いた反射壁 47 図8bの断面を示す直線 48 図8cの断面を示す直線 49 励振波源39で励振された電波の進行方向を示す
印 50 隣り合う放射部の境目である1 Phase Center of Cylindrical Wave 2 Primary Radiator 3 Reflection Wall 4 Coordinate System 5 Feeding Part 6 Feeding Part 7 Elongated Slot in Y-axis 8 Elongated Slot in X-axis 9 Radiating Part 10 Plate Conductor on Radiation Side 11 Non-Radiation Side Flat conductor of 12 Electromagnetic wave absorber 13 Direction of travel of plane wave fed from power supply section 5 14 Polarization control mechanism for adjusting amplitude and phase of plane wave fed from power supply sections 5 and 6 15 Direction of travel of plane wave fed from power supply section 6 16 Boundary between the feeding part 5 and the radiating part 17 Boundary between the feeding part 5 and the radiating part 18 Feeding position 19 Slot for X-axis direction polarization 20 Slot for Y-axis direction polarization 21 Plate conductor 22 Parallel to the bottom of the plate conductor 21 A flat plate conductor placed on the wire 23 A waveguide for feeding the slot 19 for X-axis polarization 24 A waveguide for feeding the slot 20 for Y-axis polarization 25 Feeding coupling slot 26 For feeding Combined slot 27 Straight line showing the position of the cross section of FIG. 2b 28 Coordinate axis 29 Direction of travel of radio wave fed from the waveguide 23 30 Feed part 31 Feed part 32 Arrow indicating the direction of travel of plane wave 33 Slot excited by the feed part 5 7 Electric field vector 34 Electric field vector of slot 7 excited by power supply 30 35 Total excitation electric field vector 36 of slot 7 Current distribution by power supply 5 at a certain moment 37 Current distribution by power supply 30 at the same moment as current distribution 36 38 Straight line 39 showing cross section of FIG. 6 Excitation source of cylindrical wave 40 Semi-cylindrical reflection wall 41 Reflection wall on parabola 42 Inclined reflection wall at fold of radiating part 9 and feeding part 43 Straight line showing cross section of FIG. 7b 44 Excitation wave source Mark indicating the traveling direction of the radio wave excited by 39 45 Inclined reflecting wall on the parabola 46 Radiating part and feeding part Is at the boundary of the radiation unit indicia 50 adjacent indicating the traveling direction of the electromagnetic wave excited by the linear 49 excitation wave source 39 showing a cross-section of the linear 48 Figure 8c illustrating the inclined section of the reflecting wall 47 Figure 8b in the fold
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年2月20日[Submission date] February 20, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0002[Name of item to be corrected] 0002
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0002】[0002]
【従来の技術】図2a、bは、例えば1991年電子情
報通信学会技術研究報告A・P−91−2に掲載された
直交2偏波共用アンテナの正面図と断面図である。図に
おいて18は給電点位置、19はX軸方向偏波のスロッ
ト、20はY軸方向偏波のスロット、21は上記スロッ
ト19、20が並んだ平板導体、22は平板導体21の
下に平行に置かれた平板導体、23はX軸方向偏波のス
ロット19を給電する導波管、24はY軸方向偏波のス
ロット20を給電する導波管、25は導波管23と平板
導体22の間に設けられた給電用結合スロット、26は
導波管24と平板導体22の間に設けられた給電用結合
スロット、27は図2bの断面の位置を示す直線、28
は座標軸、29は導波管23より給電された電波の進行
方向である。2. Description of the Related Art FIGS. 2a and 2b are a front view and a cross-sectional view of an orthogonal dual-polarization dual-purpose antenna, for example, published in Technical Research Report AP-91-2 of the Institute of Electronics, Information and Communication Engineers in 1991. In the figure, 18 is a feeding point position, 19 is a slot for X-axis direction polarization, 20 is a slot for Y-axis direction polarization, 21 is a flat plate conductor in which the slots 19 and 20 are arranged, and 22 is parallel to the bottom of the flat plate conductor 21. Is a flat plate conductor, 23 is a waveguide that feeds the X-axis polarization slot 19, 24 is a waveguide that feeds the Y polarization slot 20, and 25 is a waveguide 23 and a flat conductor. 22 is a feed coupling slot provided between the waveguides, 26 is a feed coupling slot provided between the waveguide 24 and the plate conductor 22 , 27 is a straight line indicating the position of the cross section of FIG.
Is a coordinate axis, and 29 is a traveling direction of a radio wave fed from the waveguide 23.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】00013[Correction target item name] 00013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【00013】また、放射部を挟んで互いに対向するよ
うに給電部を設置することにより進行方向が逆の2つの
平面波を放射部に伝搬させて、給電部内に定在波を励振
させる。これにより周波数が変化した場合の各放射口の
励振位相ずれを相殺し、ビーム方向の周波数特性を無く
すことができる。Further, by disposing the feeding parts so as to face each other with the radiating part in between, two plane waves having traveling directions opposite to each other are propagated to the radiating part to excite a standing wave in the feeding part. As a result, the excitation phase shift of each radiation port when the frequency changes can be canceled out , and the frequency characteristic in the beam direction can be eliminated.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0025[Name of item to be corrected] 0025
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0025】実施例2.図3は上記実施例1のアンテナ
装置で電波吸収体を取り去り、代わりに給電部を2個加
えた場合の正面図である。図3で30は給電部5とは進
行方向が逆になる平面波を放射する給電部、31は給電
部6とは進行方向が逆になる平面波を放射する給電部で
ある。また図4は図3の断面図であり、aはスロット7
の間隔が1波長となる場合、bはaより周波数が低くな
ってスロット7の間隔が1波長以下となった場合であ
る。図4において32は給電部30から放射した平面波
の進行方向を示す矢印、33は給電部5から進行する平
面波によって励振される各スロット7の電界ベクトル、
34は給電部30から進行する平面波によって励振され
る各スロット7の電界ベクトル、35は電界ベクトル3
3と34の和ベクトル、すなわち各スロット7の全励振
電界ベクトル、36はある瞬間における給電部5から進
行する平面波による電流分布、37は電流分布36と同
じ瞬間における給電部30から進行する平面波による電
流分布である。Example 2. FIG. 3 is a front view of the antenna device according to the first embodiment with the electromagnetic wave absorber removed and two power feeding units added instead. In FIG. 3, reference numeral 30 denotes a power feeding portion that radiates a plane wave whose traveling direction is opposite to that of the power feeding portion 5, and reference numeral 31 denotes a power feeding portion that radiates a plane wave whose traveling direction is opposite to that of the power feeding portion 6. 4 is a cross-sectional view of FIG. 3, where a is slot 7
In the case where the interval is 1 wavelength, b is the case where the frequency is lower than a and the interval between the slots 7 is 1 wavelength or less. In FIG. 4, 32 is an arrow indicating the traveling direction of the plane wave radiated from the power feeding unit 30, 33 is an electric field vector of each slot 7 excited by the plane wave traveling from the power feeding unit 5,
34 is the electric field vector of each slot 7 excited by the plane wave traveling from the power feeding unit 30 , 35 is the electric field vector 3
The sum vector of 3 and 34, that is, the total excitation electric field vector of each slot 7, 36 is the current distribution due to the plane wave traveling from the feeding portion 5 at a certain moment, and 37 is the plane wave traveling from the feeding portion 30 at the same moment as the current distribution 36. It is a current distribution.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0027[Name of item to be corrected] 0027
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0027】一方周波数がやや低くなってスロット7の
間隔が1波長以下となった場合、図4bから明らかなよ
うに各スロット7の励振位相は平面波の進行方向に向か
って少しずつ進む。もし給電が給電部5もしくは、30
の一方だけで行われるならこの励振位相差によりビーム
方向は正面からずれてしまう。しかし両方から給電すれ
ば、給電方向が反対なことから励振位相差が相殺され、
かつ励振振幅位相の分布が対称となるためビーム方向は
正面から動かない。給電部6、31による給電について
も全く同じである。以上のように進行方向が互いに逆の
平面波を放射部9に進行させることにより周波数変化に
よるビーム方向変化を防げる。On the other hand, when the frequency becomes slightly lower and the spacing between the slots 7 becomes one wavelength or less , the excitation phase of each slot 7 gradually advances in the traveling direction of the plane wave, as is apparent from FIG. 4b. If the power supply is 5 or 30
If it is performed only on one side, this excitation phase difference causes the beam direction to shift from the front. However, if power is supplied from both, the excitation phase difference is canceled out because the power supply directions are opposite,
Moreover, the beam direction does not move from the front because the distribution of the excitation amplitude phase is symmetric. The same applies to the power feeding by the power feeding units 6 and 31. As described above, by propagating the plane waves whose traveling directions are opposite to each other to the radiating section 9, it is possible to prevent the beam direction change due to the frequency change.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0033[Correction target item name] 0033
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0033】次に動作について説明する。励振波源39
で励振された円筒波のうち半円筒反射壁40で反射され
たものは、励振波源39の方へ戻り、反対側に設置され
た放物線上の反射壁41へ進むが、反円筒反射壁40の
半径は(0.5n+0.25)×波長であるため、励振
波源39から直接、放物線上の反射壁41へ進んだ電波
と位相が一致する。このため励振波源39で励振された
円筒波のほとんどは放物線上の反射壁41で反射された
後、放射部9と給電部の折り目にある傾いた反射壁で反
射されて放射部へ進行する。放射部へ進行する時点でY
軸方向に位相面が揃っていることは実施例1と同じであ
る。Next, the operation will be described. Excitation wave source 39
In also is given of the excited cylindrical wave reflected by the semi-cylindrical reflection wall 40, back towards the excitation wave source 39, the process proceeds to the reflecting wall 41 on parabola disposed on the opposite side, counter-cylindrical reflection wall 40 for radius is (0.5n + 0.25) × wavelength, excitation
Directly from the wave source 39, the radio wave proceeds to the reflecting wall 41 of the parabolic line and phase match. Thereafter Since most cylindrical wave excited by the excitation wave source 39 reflected by the reflecting wall 41 on the parabola, proceeds to radiation portion is reflected in a certain inclined reflecting wall to fold the feeding portion and the radiating portion 9. Y when proceeding to the radiating section
The fact that the phase planes are aligned in the axial direction is the same as in the first embodiment.
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】符号の説明[Correction target item name] Explanation of code
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【符号の説明】 1 円筒波の位相中心 2 一次放射器 3 反射壁 4 座標系 5 給電部 6 給電部 7 Y軸方向に細長いスロット 8 X軸方向に細長いスロット 9 放射部 10 放射側の平板導体 11 放射側でない方の平板導体 12 電波吸収体 13 給電部5より給電した平面波の進行方向 14 給電部5、6より給電した平面波の振幅、位相を
調整する偏波制御機構 15 給電部6より給電した平面波の進行方向 16 給電部5と放射部9の境目 17 給電部6と放射部9の境目 18 給電位置 19 X軸方向偏波のスロット 20 Y軸方向偏波のスロット 21 平板導体 22 平板導体21の下に平行に置かれた平板導体 23 X軸方向偏波のスロット19を給電する導波管 24 Y軸方向偏波のスロット20を給電する導波管 25 給電用結合スロット 26 給電用結合スロット 27 図2bの断面の位置を示す直線 28 座標軸 29 導波管23より給電された電波の進行方向 30 給電部 31 給電部 32 平面波の進行方向を示す矢印 33 給電部5によって励振されるスロット7の電界ベ
クトル 34 給電部30によって励振されるスロット7の電界
ベクトル 35 スロット7の全励振電界ベクトル 36 ある瞬間における給電部5による電流分布 37 電流分布36と同じ瞬間における給電部30によ
る電流分布 38 図6の断面を示す直線 39 円筒波の励振波源 40 半円筒反射壁 41 放物線上の反射壁 42 放射部9と給電部の折り目にある傾いた反射壁 43 図7bの断面を示す直線 44 励振波源39で励振された電波の進行方向を示す
印 45 放物線上にある傾いた反射壁 46 放射部と給電部の折り目にある傾いた反射壁 47 図9の断面を示す直線 48 図10の断面を示す直線 49 励振波源39で励振された電波の進行方向を示す
印 50 隣り合う放射部の境目である[Explanation of Codes] 1 Phase center of cylindrical wave 2 Primary radiator 3 Reflection wall 4 Coordinate system 5 Feed section 6 Feed section 7 Slot elongated in the Y-axis direction 8 Slot elongated in the X-axis 9 Radiating section 10 Flat plate conductor on the radiating side 11 Plane conductor on the side not on the radiation side 12 Radio wave absorber 13 Direction of travel of the plane wave fed from the feeding section 5 14 Polarization control mechanism for adjusting the amplitude and phase of the plane wave fed from the feeding sections 5 and 6 15 Feeding from the feeding section 6 Direction of traveling plane wave 16 Boundary between feeding part 5 and radiating part 17 Boundary between feeding part 6 and radiating part 18 Feeding position 19 Slot for X-axis polarized wave 20 Slot for Y-axis polarized wave 21 Plate conductor 22 Plate conductor 21 a flat plate conductor placed in parallel underneath 23 a waveguide for feeding slot 19 of X-axis polarized wave 24 a waveguide for feeding slot 20 of Y-axis polarized wave 25 a coupling slot for feeding 2 26 Coupling slot for feeding 27 Straight line showing the position of the cross section of FIG. 2b 28 Coordinate axis 29 Direction of travel of the radio wave fed from the waveguide 30 30 Feed part 31 Feed part 32 Arrow indicating the direction of plane wave 33 By the feed part 5 Electric field vector 34 of slot 7 to be excited 34 Electric field vector of slot 7 to be excited by power supply 30 35 Total electric field vector 36 to be excited of slot 7 Current distribution by power supply 5 at a certain moment 37 Power supply 30 at the same moment as current distribution 36 Current distribution by 38 38 Straight line showing cross section of FIG. 39 Excitation source of cylindrical wave 40 Semi-cylindrical reflection wall 41 Reflection wall on parabola 42 Inclined reflection wall at fold of radiation part 9 and feeding part 43 Shows cross section of FIG. 7b Straight line 44 Mark indicating the traveling direction of the radio wave excited by the excitation wave source 39 45 Inclined reflection wall on the parabola 46 Radiating portion adjacent indicia 50 indicating the traveling direction of the electromagnetic wave excited by the linear 49 excitation wave source 39 showing a cross-section of the linear 48 Figure 10 shows the inclined section of the reflecting wall 47 Figure 9 in the folds of the feeding portion and the radiating portion It is a boundary
───────────────────────────────────────────────────── フロントページの続き (72)発明者 古野 孝允 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 (72)発明者 折目 晋啓 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayoshi Furuno 325 Kamimachiya, Kamakura City Mitsubishi Electric Co., Ltd. Kamakura Factory (72) Inventor Shin Kei Kamikura 325 Kamimachiya, Mitsubishi Electric Corporation Kamakura Factory
Claims (5)
した複数の放射口を設けた放射部、及び平行平板導体内
で励振した部分円筒波を上記部分円筒波の位相中心を焦
点とした放物線上の反射壁で反射させることにより上記
平行平板導体の間に平面波を伝搬させる給電部を備えた
アンテナ装置において、上記給電部を2組用いて上記放
射部に、直交する2つの平面波を伝搬させ得るように
し、かつ上記直交する2つの平面波の振幅、位相を調整
する偏波制御機構を設けて構成したことを特徴とするア
ンテナ装置。1. A radiation part in which a plurality of radiation ports of orthogonal polarization are provided on one of two parallel plate conductors, and a partial cylindrical wave excited in the parallel plate conductor is focused on the phase center of the partial cylindrical wave. In an antenna device provided with a feeding portion for propagating a plane wave between the parallel plate conductors by reflecting the reflection wave on the parabola, two plane waves orthogonal to the radiation portion by using two sets of the feeding portions. And a polarization control mechanism for adjusting the amplitude and phase of the two plane waves that are orthogonal to each other.
けた放射部、及び上記放射部に接続して上記放射部内に
電磁波を伝搬させる複数の給電部を備えたアンテナ装置
において、上記給電部を2つ組にし、上記放射部を挟ん
で互いに対向するように設置し、進行方向が逆でかつ同
一偏波、同一周波数の2つの平面波を伝搬させ、上記放
射部内で定在波がたつように構成したことを特徴とする
アンテナ装置。2. An antenna device comprising: a radiating part having a radiating port formed in one of two parallel plate conductors; and a plurality of feeding parts connected to the radiating part for propagating electromagnetic waves in the radiating part. Two sets of power feeding units are installed so as to face each other with the radiating unit interposed therebetween, and two plane waves having opposite traveling directions, the same polarization and the same frequency are propagated, and a standing wave is generated in the radiating unit. An antenna device characterized in that it is constructed in a tatsutsu.
けた放射部を備え、平行平板導体内で励振した部分円筒
波を上記部分円筒波の位相中心を焦点とした放物線上の
反射壁で反射させることにより上記平行平板導体の間に
平面波を伝搬させる給電部を上記放射部に接続したアン
テナ装置において、上記給電部を、上記放射部と上記給
電部の境目で上記平行平板導体の地導体側に折り込みか
つ、上記給電部が上記放射部からはみ出す部分を放射部
と反対側に折りこんで構成したことを特徴とするアンテ
ナ装置。3. A parabola reflecting a partial cylindrical wave excited in the parallel flat plate conductor with a radiation center provided on one of the two parallel flat plate conductors and focusing on the phase center of the partial cylindrical wave. In an antenna device in which a feeding part for propagating a plane wave between the parallel plate conductors by being reflected by a wall is connected to the radiating part, the feeding part is arranged at the boundary between the radiating part and the feeding part. An antenna device, characterized in that it is folded into the ground conductor side, and a portion of the power feeding portion protruding from the radiation portion is folded into a side opposite to the radiation portion.
源、および上記励振波源の位相中心を中心とする半径
(0.5n+0.25)λの半円筒反射壁(n:正整
数、λ:給電部内の波長)を設け、さらに上記励振波源
を挟んで上記半円筒反射壁の反対側に、上記励振波源の
位相中心を焦点とする放物線上の反射壁を設置し、上記
平行平板導体間に平面波を伝搬させることを特徴とする
給電部。4. An exciting wave source of a cylindrical wave between two parallel plate conductors, and a semi-cylindrical reflecting wall (n: a positive integer, with a radius (0.5n + 0.25) λ centered on the phase center of the exciting wave source. λ: wavelength in the feeding part), and a parabolic reflection wall whose focal point is the phase center of the excitation wave source is provided on the opposite side of the half-cylindrical reflection wall with the excitation wave source interposed therebetween. A power feeding unit characterized by propagating a plane wave between them.
平板導波路内に円筒波の励振波源を設け、また上記中下
2層の平行平板導波路は、上記励振波源の位相中心を焦
点として互いに対向する2つの放物線上で接続し、また
上記上中2層の平行平板導波路は上記2つの放物線が交
わる点を結ぶ直線上に仕切りを設けて接続し、また上記
のすべての接続部分には平面波が反射せずに次の層に進
行できるように傾いた反射壁を設けることにより、上記
上層平行平板導波路に2つの向きの異なる平面波を伝搬
させることを特徴とする給電部。5. An excitation wave source of a cylindrical wave is provided in a lower layer parallel plate waveguide of the upper and lower middle three layers of the parallel plate waveguide, and the middle and lower two layers of the parallel plate waveguide have a phase center of the excitation wave source. Are connected on two parabola opposed to each other with a focal point as a focal point, and the parallel-plate waveguides of the upper middle two layers are connected by providing a partition on a straight line connecting the points where the two parabola intersect, and all of the above. A feed portion characterized by propagating two plane waves in different directions in the upper layer parallel plate waveguide by providing a reflection wall inclined so that the plane wave does not reflect and can travel to the next layer in the connecting portion. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3291361A JP2684902B2 (en) | 1991-11-07 | 1991-11-07 | Antenna device and power supply unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3291361A JP2684902B2 (en) | 1991-11-07 | 1991-11-07 | Antenna device and power supply unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05129832A true JPH05129832A (en) | 1993-05-25 |
JP2684902B2 JP2684902B2 (en) | 1997-12-03 |
Family
ID=17767931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3291361A Expired - Lifetime JP2684902B2 (en) | 1991-11-07 | 1991-11-07 | Antenna device and power supply unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2684902B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049991A (en) * | 2010-08-30 | 2012-03-08 | Nagoya Institute Of Technology | Progressive wave exciting antenna |
JP2012523149A (en) * | 2009-04-02 | 2012-09-27 | ユニヴェルシテ・ドゥ・レンヌ・1 | Pill box type multilayer parallel plate waveguide antenna and corresponding antenna system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02302104A (en) * | 1989-05-16 | 1990-12-14 | Arimura Giken Kk | Square waveguide slot array antenna |
JPH03195105A (en) * | 1989-12-25 | 1991-08-26 | Arimura Giken Kk | Rectangular waveguide slot array antenna |
-
1991
- 1991-11-07 JP JP3291361A patent/JP2684902B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02302104A (en) * | 1989-05-16 | 1990-12-14 | Arimura Giken Kk | Square waveguide slot array antenna |
JPH03195105A (en) * | 1989-12-25 | 1991-08-26 | Arimura Giken Kk | Rectangular waveguide slot array antenna |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012523149A (en) * | 2009-04-02 | 2012-09-27 | ユニヴェルシテ・ドゥ・レンヌ・1 | Pill box type multilayer parallel plate waveguide antenna and corresponding antenna system |
JP2012049991A (en) * | 2010-08-30 | 2012-03-08 | Nagoya Institute Of Technology | Progressive wave exciting antenna |
Also Published As
Publication number | Publication date |
---|---|
JP2684902B2 (en) | 1997-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6490422B2 (en) | Antenna array system for generating dual polarization signals using serpentine waveguides | |
EP0209156B1 (en) | Planar antenna with patch radiators | |
JP2569230B2 (en) | Multi-frequency patch antenna device | |
US5173714A (en) | Slot array antenna | |
EP0812029B1 (en) | Plural frequency antenna feed | |
US3665480A (en) | Annular slot antenna with stripline feed | |
US11043741B2 (en) | Antenna array system for producing dual polarization signals | |
KR0184529B1 (en) | Slot-coupled fed dual circular polarization tem mode slot array antenna | |
JPH11168323A (en) | Multi-frequency antenna device and multi-frequency array antenna device using multi-frequency sharing antenna | |
EP0390350B1 (en) | Low cross-polarization radiator of circularly polarized radiation | |
US20030201944A1 (en) | Two-element and multi-element planar array antennas | |
US8421698B2 (en) | Leaky wave antenna using waves propagating between parallel surfaces | |
EP1018778B1 (en) | Multi-layered patch antenna | |
JPH0246004A (en) | Square waveguide slot array antenna | |
JP2684902B2 (en) | Antenna device and power supply unit | |
JP3822818B2 (en) | Dielectric Leaky Wave Antenna | |
JPH0722833A (en) | Crossing-slot microwave antenna | |
US4476470A (en) | Three horn E-plane monopulse feed | |
US10403982B2 (en) | Dual-mode antenna array system | |
JP2008148149A (en) | Antenna device | |
JP2003158420A (en) | Dielectric leak wave antenna | |
JPS6216602A (en) | Waveguide excitation printed dipole array antenna | |
JP2001156542A (en) | Waveguide slot array antenna | |
JPH1032425A (en) | Antenna system | |
JPH06260834A (en) | Antenna device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20070815 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080815 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20090815 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20100815 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20110815 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110815 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120815 Year of fee payment: 15 |