JPH05117642A - Cold reserving material - Google Patents

Cold reserving material

Info

Publication number
JPH05117642A
JPH05117642A JP3311746A JP31174691A JPH05117642A JP H05117642 A JPH05117642 A JP H05117642A JP 3311746 A JP3311746 A JP 3311746A JP 31174691 A JP31174691 A JP 31174691A JP H05117642 A JPH05117642 A JP H05117642A
Authority
JP
Japan
Prior art keywords
phase change
water
compound
heat
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3311746A
Other languages
Japanese (ja)
Other versions
JP2988765B2 (en
Inventor
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP3311746A priority Critical patent/JP2988765B2/en
Publication of JPH05117642A publication Critical patent/JPH05117642A/en
Application granted granted Critical
Publication of JP2988765B2 publication Critical patent/JP2988765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare a water-base, liq. cold reserving material which exhibits a good fluidity even at low temp., stores latent heat, and is used for cooling various substances. CONSTITUTION:The title material is prepd. by using, as the main component, microcapsules comprising aminoplast resin shells and a water-immiscible, core compd. which undergoes a phase change and melts at 0-15 deg.C. Water-immiscib1e paraffins, fatty acids, and esters are examples of the compd.; a melamine resin and a urea resin, examples of the resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は物質を冷やすために用い
られる蓄冷材に関するものであり、さらに詳しくは、低
温でも良好な流動性を有し、高密度の潜熱を保持し得る
水性液状の蓄冷材に関する。本発明による蓄冷材は空調
用の冷媒、あるいは各種包材や容器で保持させることに
より携帯用保冷材や生鮮食料品等の鮮度保持材として利
用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold storage material used for cooling a substance, and more specifically, an aqueous liquid cold storage material having good fluidity even at low temperature and capable of retaining latent heat of high density. Regarding materials The cold accumulating material according to the present invention can be used as a cooling material for air conditioning, or as a freshness maintaining material such as a portable cold insulating material or a fresh food product by holding it in various packaging materials or containers.

【0002】[0002]

【従来の技術】日常、最も一般に用いられている蓄冷材
は氷であり、水が氷に相変化する際に約80kcal/
kg の冷潜熱を貯えることが可能であり、日常の生活
の中では例えば生鮮食料品類の鮮度保持、氷枕への利用
等多方面に用いられ生活に不可欠で最も安価な蓄冷材と
言える。
2. Description of the Related Art Ice is the most commonly used regenerator material on a daily basis, and when water undergoes a phase change into ice, approximately 80 kcal /
It can store kg of cold latent heat, and is used in many ways in daily life, such as keeping fresh food products fresh and used for ice pillows.

【0003】一般に、物質の相変化に伴う潜熱を利用し
て蓄熱を行なう方法は、相変化を伴わない顕熱のみを利
用した方法に比べ融点を含む狭い温度範囲に大量の熱エ
ネルギーを高密度に貯蔵できるため、蓄熱材容量の縮小
化が為されるだけでなく、蓄熱量が大きい割りには大き
な温度差が生じないため熱損失を少量に抑えられる利点
を有する。
Generally, a method of storing heat by utilizing latent heat associated with a phase change of a substance has a high density of a large amount of heat energy in a narrow temperature range including a melting point, as compared with a method utilizing only sensible heat without phase change. Since it can be stored at a low temperature, not only the heat storage material capacity can be reduced, but also a large temperature difference does not occur even if the heat storage amount is large, so that there is an advantage that heat loss can be suppressed to a small amount.

【0004】相変化、とりわけ液体と固体間の相変化に
伴う潜熱利用型の蓄熱材として、従来より次のようなも
のが知られている。 (1)塩化カルシウム・6水塩、硫酸ナトリウム・10水
塩、リン酸水素ナトリウム・12水塩 チオ硫酸ナトリウ
ム・5水塩、硝酸ニッケル・6水塩、等の多量の結晶水
を含む無機水和物 (2)石油パラフィン、ワックス類等の炭化水素化合
物、カプリル酸、ラウリン酸、ステアリン酸等の脂肪酸
Conventionally, the following types of heat storage materials have been known as a latent heat type heat storage material that accompanies a phase change, particularly a phase change between a liquid and a solid. (1) Inorganic water containing a large amount of crystal water such as calcium chloride hexahydrate, sodium sulfate decahydrate, sodium hydrogen phosphate decahydrate, sodium thiosulfate pentahydrate, nickel nitrate hexahydrate, etc. Japanese products (2) Hydrocarbon compounds such as petroleum paraffin and waxes, fatty acids such as caprylic acid, lauric acid and stearic acid

【0005】これら各種蓄熱材の熱交換効率を高めるた
めに上記蓄熱材をマイクロカプセル化する手段が提案さ
れている(例えば特開昭62−1452号公報、同62
−45680号公報、同62−149334号公報、同
62−225241号公報、同63−115718号公
報、同63−217196号公報、特開平2−2580
52号公報)。
In order to improve the heat exchange efficiency of these various heat storage materials, means for microencapsulating the heat storage material has been proposed (for example, Japanese Patent Laid-Open Nos. 62-1452 and 62-62).
-45680, 62-149334, 62-225241, 63-115718, 63-217196, and JP-A-2-2580.
No. 52).

【0006】上記公報中に示されているマイクロカプセ
ル化手法の中で、一般に界面重合法と称されるマイクロ
カプセル化法は、水性物質あるいは水と非混和性の物質
のいずれもがカプセル化可能であるが、芯物質として水
や(1)の無機水和物を用いる場合には(例えば特開昭
61−192785号公報)、カプセルの分散媒は水に
非混和性の有機溶媒(例えば、シクロヘキサン、トルエ
ン、四塩化炭素、クロロホルム、フタル酸ブチル等の各
種可塑材等)が通常用いられるため、油中水滴型のマイ
クロカプセル分散液しか得られないため、水性の蓄冷材
を得るためには何らかの脱溶媒工程が必要となる。
Among the microencapsulation methods disclosed in the above publication, the microencapsulation method generally called an interfacial polymerization method can encapsulate either an aqueous substance or a substance immiscible with water. However, when water or an inorganic hydrate of (1) is used as the core substance (for example, JP-A-61-2192785), the dispersion medium of the capsule is an organic solvent immiscible with water (for example, Since various plasticizers such as cyclohexane, toluene, carbon tetrachloride, chloroform, and butyl phthalate are usually used, only water-in-oil type microcapsule dispersions can be obtained. Some desolvation step is required.

【0007】また、一般に液中乾燥法と称される手法で
は、水溶性物質を含むマイクロカプセルが水分散系で直
接得られる利点を有するが、膜材となる高分子化合物の
溶媒となる低沸点の有機溶剤(例えば、ベンゼン、エー
テル、クロロホルム等)の除去工程が必要であり、さら
にマイクロカプセル皮膜の安定性についても改良を要す
る点が多い。
In addition, the method generally referred to as the in-liquid drying method has an advantage that microcapsules containing a water-soluble substance can be directly obtained in an aqueous dispersion system, but has a low boiling point as a solvent for a polymer compound as a film material. The organic solvent (for example, benzene, ether, chloroform, etc.) needs to be removed, and the stability of the microcapsule film also needs to be improved.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、蓄熱
を目的としたカプセル化手法における前記問題点を解決
し、次の様な効果を有する蓄冷材を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems in the encapsulation method for heat storage and to obtain a cold storage material having the following effects.

【0009】第1に、水性の不凍液や各種無機塩類とも
自由に混合可能であり、尚且つ長期使用においても壊れ
ることのない丈夫なマイクロカプセルを主成分とする水
性の蓄冷材を得ることである。これは前記界面重合法に
よる水性物質のマイクロカプセルや液中乾燥法では製造
が困難なものであった。
[0009] First, to obtain a water-based cold accumulating material containing a strong microcapsule as a main component, which can be freely mixed with an aqueous antifreeze liquid and various inorganic salts and is not broken even in long-term use. .. This is difficult to manufacture by microcapsules of an aqueous substance by the interfacial polymerization method or a submerged drying method.

【0010】第2に、蓄冷材が、マイクロカプセルに内
包されている相変化を伴う化合物の融点以下に冷却され
ても、マイクロカプセル分散媒の融点以上の温度であれ
ば蓄冷材そのものの流動性には何ら変化を及ぼすことの
ない、常に液状を呈する蓄冷材を得ることにある。これ
は前記無機系、有機系蓄熱材単独では得られない特性で
あった。
Secondly, even if the cold storage material is cooled to a temperature lower than the melting point of the phase change compound contained in the microcapsules, if the temperature is higher than the melting point of the microcapsule dispersion medium, the fluidity of the cold storage material itself. The purpose is to obtain a cold storage material that is always in a liquid state that does not change at all. This is a characteristic that cannot be obtained by the inorganic or organic heat storage material alone.

【0011】[0011]

【課題を解決するための手段】本発明者は上記目的を達
成すべく検討を行なった結果、融点が0〜15℃の水と
非混和性の相変化を伴う化合物をアミノプラスト樹脂皮
膜で被覆したマイクロカプセルを蓄冷材の主成分とする
ことより、上記課題を達成し得る蓄冷材を得ることが可
能となった。次にその詳細について説明する。
Means for Solving the Problems As a result of studies to achieve the above object, the present inventor has found that a compound having a phase change immiscible with water and having a melting point of 0 to 15 ° C. is coated with an aminoplast resin film. By using the above-mentioned microcapsules as the main component of the cold storage material, it has become possible to obtain a cold storage material that can achieve the above-mentioned object. Next, the details will be described.

【0012】一般に、蓄冷材の効果が実感として感じら
れる温度域としては、外気の気温、蓄冷材の形態、量に
よっても感触が異なるが、約20℃以下が必要と判断さ
れ、さらに顕著にその効果を実感するには約15℃以下
が好ましい温度と判断される。また、生鮮食料品等の鮮
度維持及び凍結防止、適度の皮膚感触などを勘案すれ
ば、0〜15℃を保冷対象温度とすることが最も効果的
であると判断される。
Generally, the temperature range in which the effect of the regenerator material is actually felt differs depending on the temperature of the outside air, the form and amount of the regenerator material, but it is judged that about 20 ° C. or less is necessary, and more notably A temperature of about 15 ° C. or lower is considered to be a preferable temperature to realize the effect. In addition, considering the freshness of fresh foods and the like, prevention of freezing, and appropriate skin feel, it is judged that it is most effective to set 0 to 15 ° C as the temperature to be kept cold.

【0013】この温度域に融点を有する、水に非混和性
の相変化を伴う化合物としては、テトラデカン、p-クロ
ロトルエン、1-エトキシナフタレン、o-アニシジン、1-
ヨードナフタレン、 o-ジブロモベンゼン、シクロヘキ
サン、ベンゼン、o-ブロモフェノール、d-フェンコン、
炭酸ジメチル、セバシン酸ジブチル、ケイヒ酸ジエチ
ル、オレイン酸、3,3-ジメチルビフェニル、ジブロモエ
タン、等が使用できるが、とりわけテトラデカンは純度
98%以上のものであれば約50kcal/kgの融解
熱を有し相変化を伴う化合物としては最も好ましいもの
として挙げられる。これら相変化を伴う化合物は、単独
もしくは2種以上を組合せて用いることもでき、必要で
あれば金属粉、各種顔料を添加して熱伝導性、及び比重
調節材を添加することも可能である。
As the compound having a melting point in this temperature range and having a phase change immiscible with water, tetradecane, p-chlorotoluene, 1-ethoxynaphthalene, o-anisidine, 1-
Iodonaphthalene, o-dibromobenzene, cyclohexane, benzene, o-bromophenol, d-phencon,
Dimethyl carbonate, dibutyl sebacate, diethyl cinnamate, oleic acid, 3,3-dimethylbiphenyl, dibromoethane, etc. can be used, but especially tetradecane has a heat of fusion of about 50 kcal / kg if it has a purity of 98% or more. The compound having a phase change is mentioned as the most preferable compound. These compounds accompanied by phase change may be used alone or in combination of two or more kinds, and if necessary, metal powder, various pigments may be added, and thermal conductivity and specific gravity adjusting material may be added. ..

【0014】本発明において用いられる相変化を伴う化
合物は適当なマイクロカプセル化法を用いてカプセル化
される。水と非混和性の液体のマイクロカプセル化法と
しては、ゼラチンとアニオン性高分子を用いたコアセル
ベーション法、界面重合法、in−situ法、酵母菌
を用いた手法(特開昭63−88033号公報等)等を
用いることが可能であるが、蓄冷材として長期に使用し
得るためには、より堅牢性の高いマイクロカプセルが要
求され、そのためにはin−situ法によるアミノプ
ラスト樹脂を皮膜とするマイクロカプセルを使用するこ
とが最も望ましい。
The phase change compound used in the present invention is encapsulated using a suitable microencapsulation method. As a method for microencapsulating a water-immiscible liquid, a coacervation method using gelatin and an anionic polymer, an interfacial polymerization method, an in-situ method, a method using yeast (Japanese Patent Laid-Open No. 63- However, microcapsules with higher robustness are required for long-term use as a cold storage material, and for that purpose, aminoplast resin by in-situ method is used. It is most desirable to use microcapsules for coating.

【0015】本発明で用いられるアミノプラスト樹脂と
は、アミノ化合物とホルムアルデヒドとの重合反応によ
り得られる樹脂のことをいい、具体的には、尿素−ホル
マリン樹脂、メラミン−ホルマリン樹脂、ベンゾグアナ
ミン−ホルマリン樹脂、等が挙げられるが、メラミン−
ホルマリン樹脂が最も好ましいアミノプラスト樹脂とし
て挙げられる。これらアミノプラスト樹脂によるマイク
ロカプセル化は一般に次の手順により得られる。 1.アミノプラスト樹脂初期縮合物を調製する工程。 2.相変化を伴う化合物を分散剤水溶液中に乳化分散す
る工程。 3.1.の初期縮合物を2.の乳化分散液中に添加した後、
加熱攪拌を施し相変化を伴う化合物粒子の周囲に皮膜を
形成する工程。
The aminoplast resin used in the present invention refers to a resin obtained by a polymerization reaction of an amino compound and formaldehyde, and specifically, urea-formalin resin, melamine-formalin resin, benzoguanamine-formalin resin. , Melamine-
Formalin resin is mentioned as the most preferred aminoplast resin. Microencapsulation with these aminoplast resins is generally obtained by the following procedure. 1. A step of preparing an aminoplast resin precondensate. 2. A step of emulsifying and dispersing a compound with a phase change in an aqueous dispersant solution. After adding the initial condensate of 3.1 to the emulsified dispersion of 2.
A step of forming a film around compound particles accompanied by phase change by heating and stirring.

【0016】1.のアミノプラスト樹脂初期縮合物の製
法としては、メラミン樹脂の場合の具体例を示せば、メ
ラミン粉末とホルマリン(37%ホルムアルデヒド水溶
液)をモル比で1:1〜1:4の比率で混合し、弱アル
カリ性で約60℃以上に加熱することにより水溶性のメ
ラミン−ホルマリン初期縮合物が得られる。
1. As a method for producing the aminoplast resin initial condensate, the melamine resin is mixed with melamine powder and formalin (37% aqueous formaldehyde solution) at a molar ratio of 1: 1 to 1: 4. A weakly alkaline water-soluble melamine-formalin initial condensate can be obtained by heating above about 60 ° C.

【0017】アミノプラスト樹脂の添加量は、相変化を
伴う化合物の重量に対し、約1〜30(wt/wt) %好まし
くは5〜20%の範囲で添加される。これ以下の添加量
であるとマイクロカプセルとしての強度が不十分であ
り、逆にこの範囲以上であると蓄冷材中に占める膜材量
の割合が高くなり蓄冷効率が低下し好ましくない。
The amount of aminoplast resin added is in the range of about 1 to 30 (wt / wt)%, preferably 5 to 20%, based on the weight of the compound accompanied by the phase change. If the amount added is less than this range, the strength as a microcapsule is insufficient, and conversely, if it is more than this range, the ratio of the amount of film material in the cold storage material increases, and the cold storage efficiency decreases, which is not preferable.

【0018】2.の分散剤の具体例としては、アクリル
酸共重合体、エチレン−無水マレイン酸共重合体、メチ
ルビニルエーテル−無水マレイン酸共重合体、スチレン
−無水マレイン酸共重合体、ブタジエン−無水マレイン
酸共重合体、酢酸ビニル−無水マレイン酸共重合体、及
びこれらのナトリウム塩が使用される。これらの分散剤
は分散剤水溶液中に対し1.0〜20.0(wt/wt) %の
範囲で添加される。
2. Specific examples of the dispersant include acrylic acid copolymer, ethylene-maleic anhydride copolymer, methyl vinyl ether-maleic anhydride copolymer, styrene-maleic anhydride copolymer, butadiene-maleic anhydride copolymer. Coalescence, vinyl acetate-maleic anhydride copolymers, and their sodium salts are used. These dispersants are added in the range of 1.0 to 20.0 (wt / wt)% with respect to the dispersant aqueous solution.

【0019】分散剤水溶液のpHは、アミノプラスト樹
脂の皮膜形成反応が最も効率的に進行するpHに設定さ
れるが、一般にはpH2〜7の酸性側、好ましくはpH
3〜6の範囲に調整される。
The pH of the aqueous dispersant solution is set to the pH at which the film-forming reaction of the aminoplast resin proceeds most efficiently, but it is generally on the acidic side of pH 2 to 7, preferably pH.
It is adjusted to the range of 3 to 6.

【0020】相変化を伴う化合物の乳化工程は、分散剤
水溶液中に相変化を伴う化合物を添加し市販の乳化、分
散装置等を用いて乳化粒径が約1〜50μmになるまで
攪拌を施すことにより行なわれる。
In the step of emulsifying the compound with phase change, the compound with phase change is added to the aqueous dispersant solution, and the mixture is stirred using a commercially available emulsifying and dispersing device until the emulsified particle size becomes about 1 to 50 μm. It is done by

【0021】次いで、先に調製したアミノプラスト樹脂
初期縮合物と、相変化を伴う化合物の乳化液を混合し、
加熱、攪拌を施して乳化粒子の周囲に初期縮合物を重合
させることにより水不溶性樹脂を形成し相変化を伴う化
合物を内包するマイクロカプセルを得る。カプセル化時
の加熱温度は、40〜100℃、好ましくは60〜80
℃の範囲の温度で30分から4時間の範囲で攪拌が施さ
れる。
Next, the aminoplast resin initial condensate prepared above is mixed with an emulsion of a compound accompanied by a phase change,
By heating and stirring to polymerize the initial condensate around the emulsified particles, a water-insoluble resin is formed to obtain microcapsules containing a compound accompanied by a phase change. The heating temperature at the time of encapsulation is 40 to 100 ° C., preferably 60 to 80
Stirring is performed at a temperature in the range of 30 ° C. for 30 minutes to 4 hours.

【0022】かくして得られた相変化を伴う化合物を内
包するマイクロカプセル分散液はそのままでも本発明の
目的を達し得るものであるが、必要であれば、エチレン
グリコール、プロピレングリコール、各種無機塩類、防
腐剤、各種劣化防止剤、増粘剤、着色剤、分散補助剤、
比重調節材、湿潤材等が添加され目的とする水性液状の
蓄冷材を得る。
The microcapsule dispersion liquid containing the compound accompanied by the phase change thus obtained can achieve the object of the present invention as it is, but if necessary, ethylene glycol, propylene glycol, various inorganic salts, antiseptic Agents, various anti-deterioration agents, thickeners, colorants, dispersion aids,
A specific cold storage material is obtained by adding a specific gravity adjusting material, a wetting material and the like.

【0023】蓄冷材中のマイクロカプセルの占める割合
は高いほど潜熱量が増し好ましいが、良好な流動性を維
持するには20〜70(wt/wt) %、好ましくは40〜6
0(wt/wt) %の範囲に設定するのが好ましい。この範囲
以上の含有率であると蓄冷材の粘度上昇が伴い流動性に
乏しくなり、またこの範囲以下の含有率であると蓄冷効
果に乏しいものとなり好ましくない。
The higher the proportion of the microcapsules in the regenerator material, the higher the latent heat amount, which is preferable, but 20 to 70 (wt / wt)%, preferably 40 to 6 to maintain good fluidity.
It is preferable to set in the range of 0 (wt / wt)%. If the content is above this range, the viscosity of the cold storage material will increase and the fluidity will be poor, and if it is below this range, the cold storage effect will be poor, which is not preferable.

【0024】[0024]

【実施例】以下に、本発明を実施例により詳細に説明す
る。尚、本発明は実施例に限定されるものでない。
EXAMPLES The present invention will be described in detail below with reference to examples. The present invention is not limited to the embodiments.

【0025】実施例1 [初期縮合物の調製]メラミン粉末5gに37%ホルム
アルデヒド水溶液6.5gと水10gを加え、pHを8
に調製した後、約70℃まで加熱しメラミン−ホルムア
ルデヒド初期縮合物水溶液を得た。
Example 1 [Preparation of initial condensate] To 5 g of melamine powder, 6.5 g of 37% aqueous formaldehyde solution and 10 g of water were added to adjust the pH to 8.
Then, the mixture was heated to about 70 ° C. to obtain an aqueous melamine-formaldehyde initial condensate solution.

【0026】[乳化工程]pHを4.5に調整した5%
のスチレン−無水マレイン酸共重合体のナトリウム塩水
溶液100g中に、相変化を伴う化合物としてn-テトラ
デカン(融点約5℃、融解熱50.8kcal/kg)
80gを激しく攪拌しながら添加し、粒子径が10μm
になるまで乳化を行なった。
[Emulsification step] 5% adjusted to pH 4.5
N-tetradecane (melting point: about 5 ° C., heat of fusion: 50.8 kcal / kg) as a compound accompanied by a phase change in 100 g of a sodium salt aqueous solution of styrene-maleic anhydride copolymer.
80 g was added with vigorous stirring, and the particle size was 10 μm.
Was emulsified until.

【0027】[カプセル化工程]上記乳化液に上記メラ
ミン−ホルムアルデヒド初期縮合物水溶液全量を添加し
70℃で2時間攪拌を施した後、pHを9に調整してカ
プセル化を終了した。
[Encapsulation Step] The whole amount of the above melamine-formaldehyde initial condensate aqueous solution was added to the above emulsion and stirred at 70 ° C. for 2 hours, and then the pH was adjusted to 9 to complete the encapsulation.

【0028】[蓄冷材の調製]得られたマイクロカプセ
ル分散液100部とエチレングリコール30部との混合
液を硬質ポリエチレン袋に充填し、携帯用の蓄冷材を得
た。この蓄冷材を家庭用の冷凍庫内で約1時間放置した
ところ、蓄冷材は凝固する事無く、尚且つ長時間蓄冷効
果が持続するものであった。
[Preparation of Regenerator Material] A hard polyethylene bag was filled with a mixed solution of 100 parts of the obtained microcapsule dispersion liquid and 30 parts of ethylene glycol to obtain a portable regenerator material. When this cold storage material was left in a domestic freezer for about 1 hour, the cold storage material did not solidify, and the cold storage effect continued for a long time.

【0029】[融解熱の測定]この蓄冷材の融解熱を示
差走査熱量計(米国パーキンエルマー社製、DSC7
型)を用いて行なったところ、n-テトラデカンの融点を
挟む範囲に18kcal/kgの融解熱が観察された。
また、本蓄冷材の融解熱測定を行なった−20〜30℃
の範囲では、常に良好な流動性を維持するものであっ
た。
[Measurement of heat of fusion] The heat of fusion of this regenerator material was measured by a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer, USA).
Type), a heat of fusion of 18 kcal / kg was observed in the range sandwiching the melting point of n-tetradecane.
In addition, the heat of fusion of this cold storage material was measured at -20 to 30 ° C.
Within the range, good fluidity was always maintained.

【0030】実施例2 [初期縮合物の調製]メラミン粉末10gに37%ホル
ムアルデヒド水溶液12.9gと水10gを加え、pH
を8に調製した後、約70℃まで加熱しメラミン−ホル
ムアルデヒド初期縮合物水溶液を得た。
Example 2 [Preparation of initial condensate] To 10 g of melamine powder was added 12.9 g of 37% aqueous formaldehyde solution and 10 g of water, and the pH was adjusted.
Was adjusted to 8 and then heated to about 70 ° C. to obtain a melamine-formaldehyde initial condensate aqueous solution.

【0031】[乳化工程]pHを3.5に調整した5%
のエチレン−無水マレイン酸共重合体のナトリウム塩水
溶液100g中に、相変化を伴う化合物としてn-ペンタ
デカン(融点約10℃、融解熱40kcal/kg)8
0gを激しく攪拌しながら添加し、粒子径が5μmにな
るまで乳化を行なった。
[Emulsification step] 5% adjusted to pH 3.5
N-pentadecane (melting point: about 10 ° C, heat of fusion: 40 kcal / kg) as a compound accompanied by a phase change in 100 g of an aqueous sodium salt solution of ethylene-maleic anhydride copolymer
0 g was added with vigorous stirring, and the mixture was emulsified until the particle size became 5 μm.

【0032】以下、実施例1と同様にして上記初期縮合
物と乳化液を混合しカプセル化を行ない、さらに得られ
たマイクロカプセル分散液100部にエチレングリコー
ル30部を添加して蓄冷材を得た。
Thereafter, the initial condensate and the emulsion were mixed and encapsulated in the same manner as in Example 1, and 30 parts of ethylene glycol was added to 100 parts of the obtained microcapsule dispersion to obtain a cold storage material. It was

【0033】[融解熱の測定]この蓄冷材の融解熱を実
施例1と同型の示差走査熱量計を用いて行なったとこ
ろ、n-ペンタデカンの融点を挟む範囲に14kcal/
kgの融解熱が観察された。また、本蓄冷材の融解熱測
定を行なった−20〜30℃の範囲では、常に良好な流
動性を維持するものであった。
[Measurement of heat of fusion] The heat of fusion of this regenerator material was measured by using a differential scanning calorimeter of the same type as in Example 1, and found to be 14 kcal / in the range sandwiching the melting point of n-pentadecane.
A heat of fusion of kg was observed. Further, in the range of −20 to 30 ° C. at which the heat of fusion measurement of the present cold storage material was performed, good fluidity was always maintained.

【0034】[0034]

【発明の効果】実施例で明らかな様に、本発明による蓄
冷材は相変化を伴う化合物の凝固点を挟む範囲に多量の
冷熱を蓄積することが可能であり、また、相変化を伴う
化合物の融点以下の温度でも流動性に富む水性液状の蓄
冷材を得ることが可能となり、蓄冷材として有用なもの
である。
As is apparent from the examples, the regenerator material according to the present invention is capable of accumulating a large amount of cold heat in the range sandwiching the freezing point of the compound accompanied by the phase change, and the compound It becomes possible to obtain an aqueous liquid regenerator material having a high fluidity even at a temperature below the melting point, and it is useful as a regenerator material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 相変化を伴う化合物を内包するマイクロ
カプセルを主成分として成る蓄冷材において、相変化を
伴う化合物が、水と非混和性で融点が0〜15℃の範囲
にある化合物であり、マイクロカプセルの皮膜がアミノ
プラスト樹脂から成ることを特徴とする蓄冷材。
1. A regenerator material comprising, as a main component, microcapsules encapsulating a compound with a phase change, the compound with a phase change is a compound which is immiscible with water and has a melting point in the range of 0 to 15 ° C. A cold storage material characterized in that the film of the microcapsule is made of aminoplast resin.
【請求項2】 相変化を伴う化合物がテトラデカンであ
ることを特徴とする請求項1記載の蓄冷材。
2. The regenerator material according to claim 1, wherein the compound accompanied by a phase change is tetradecane.
JP3311746A 1991-10-29 1991-10-29 Cool storage material Expired - Fee Related JP2988765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3311746A JP2988765B2 (en) 1991-10-29 1991-10-29 Cool storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3311746A JP2988765B2 (en) 1991-10-29 1991-10-29 Cool storage material

Publications (2)

Publication Number Publication Date
JPH05117642A true JPH05117642A (en) 1993-05-14
JP2988765B2 JP2988765B2 (en) 1999-12-13

Family

ID=18020984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3311746A Expired - Fee Related JP2988765B2 (en) 1991-10-29 1991-10-29 Cool storage material

Country Status (1)

Country Link
JP (1) JP2988765B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176623A (en) * 1995-12-22 1997-07-08 Mitsubishi Paper Mills Ltd Microcapsule dispersion for cold transfer
KR20020078220A (en) * 2001-04-06 2002-10-18 케이엔디산업(주) Method for preparing microcapsules containing phase change materials and articles including microcapsules prepared therefrom
WO2003002424A3 (en) * 2001-06-29 2003-03-06 Thermotic Dev Ltd Material for temperature control
JP2005255726A (en) * 2004-03-09 2005-09-22 Sumitomo Rubber Ind Ltd Cold reserving material and heat reserving material using gel and pillow, foot-warming tool and face mask using those
JP2005314539A (en) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Cutting oil for machining, and cooling/temperature uniformity improving method in machining by using the same
KR100569883B1 (en) * 2003-07-15 2006-04-11 한국에너지기술연구원 Circulating Coolant for Thermo Electric Cooler Used for Manufacturing Process of Semiconductor
WO2007058003A1 (en) * 2005-11-17 2007-05-24 Mitsubishi Paper Mills Limited Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solidified product
JP2007137992A (en) * 2005-11-17 2007-06-07 Mitsubishi Paper Mills Ltd Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage microcapsule solid material
JP2007137991A (en) * 2005-11-17 2007-06-07 Mitsubishi Paper Mills Ltd Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid material
JP2007145942A (en) * 2005-11-25 2007-06-14 Mitsubishi Paper Mills Ltd Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solid matter
JP2008106164A (en) * 2006-10-26 2008-05-08 Nissan Motor Co Ltd Method for producing heat storage material microcapsule, and heat storage material microcapsule
JP2008529900A (en) * 2005-02-09 2008-08-07 リアクター スピリッツ ノルウェー リミテッド Bottle
KR101386547B1 (en) * 2013-06-18 2014-04-17 김형만 Phase change compound and manufacturing method thereof
CN114152013A (en) * 2021-11-09 2022-03-08 大连理工大学 Movable type hydrate phase change microcapsule cold accumulation system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176623A (en) * 1995-12-22 1997-07-08 Mitsubishi Paper Mills Ltd Microcapsule dispersion for cold transfer
KR20020078220A (en) * 2001-04-06 2002-10-18 케이엔디산업(주) Method for preparing microcapsules containing phase change materials and articles including microcapsules prepared therefrom
WO2003002424A3 (en) * 2001-06-29 2003-03-06 Thermotic Dev Ltd Material for temperature control
KR100569883B1 (en) * 2003-07-15 2006-04-11 한국에너지기술연구원 Circulating Coolant for Thermo Electric Cooler Used for Manufacturing Process of Semiconductor
JP2005255726A (en) * 2004-03-09 2005-09-22 Sumitomo Rubber Ind Ltd Cold reserving material and heat reserving material using gel and pillow, foot-warming tool and face mask using those
JP2005314539A (en) * 2004-04-28 2005-11-10 Ishikawajima Harima Heavy Ind Co Ltd Cutting oil for machining, and cooling/temperature uniformity improving method in machining by using the same
JP2008529900A (en) * 2005-02-09 2008-08-07 リアクター スピリッツ ノルウェー リミテッド Bottle
WO2007058003A1 (en) * 2005-11-17 2007-05-24 Mitsubishi Paper Mills Limited Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solidified product
JP2007137991A (en) * 2005-11-17 2007-06-07 Mitsubishi Paper Mills Ltd Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid material
JP2007137992A (en) * 2005-11-17 2007-06-07 Mitsubishi Paper Mills Ltd Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage microcapsule solid material
JP2007145942A (en) * 2005-11-25 2007-06-14 Mitsubishi Paper Mills Ltd Heat storage material microcapsule, heat storage material microcapsule dispersion and heat storage material microcapsule solid matter
JP2008106164A (en) * 2006-10-26 2008-05-08 Nissan Motor Co Ltd Method for producing heat storage material microcapsule, and heat storage material microcapsule
KR101386547B1 (en) * 2013-06-18 2014-04-17 김형만 Phase change compound and manufacturing method thereof
CN114152013A (en) * 2021-11-09 2022-03-08 大连理工大学 Movable type hydrate phase change microcapsule cold accumulation system
CN114152013B (en) * 2021-11-09 2023-08-11 大连理工大学 Working method of movable hydrate phase-change microcapsule cold accumulation system

Also Published As

Publication number Publication date
JP2988765B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
JP3751028B2 (en) Microcapsules for heat storage materials
JP2988765B2 (en) Cool storage material
Alehosseini et al. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry
KR970008262B1 (en) Global shaped capsule of thermal energy storage material & process
CN102311720A (en) Phase-change energy storage capsule and preparation method thereof
CN105219352B (en) A kind of phase-change accumulation energy composite micro-capsule and preparation method
CA2125687C (en) Salt mixtures for storing thermal energy in the form of heat of phase transformation
JPH07133479A (en) Heat-storing material
CA2210095A1 (en) Heat-transfer concentrate, method of manufacturing it and its use, as well as a latent-heat accumulator making use of the concentrate
JP2631841B2 (en) Latent heat storage material microcapsules
CN107722943A (en) A kind of preparation method of wax phase change microcapsules
KR100481283B1 (en) Microencapsulation Method of Phase Change Materials(PCM) using Emulsion
Li et al. Preparation and characterization of Na2HPO4· 12H2O@ polymethyl methacrylate nanocapsule for efficient thermal energy storage
JPH08259932A (en) Heat-storing material microcapsule
CN111518517A (en) Organic phase change microcapsule, organic phase change microcapsule composite heat dissipation material and preparation method thereof
Yin et al. Fabrication and performance of polyurethane/polyurea microencapsulated phase change materials with isophorone diisocyanate via interfacial polymerization
KR100886820B1 (en) Manufacturing method of phase change material
Liu et al. Microencapsulation of biobased phase change material by interfacial polycondensation for thermal energy storage applications
JPH11152466A (en) Heat storage microcapsule
JP2001124456A (en) Refrigerator
JP3059558B2 (en) Microcapsule dispersion for heat storage material
US4406804A (en) Heat accumulating material
Jose et al. Advanced Energy Storage Solutions: Innovative Approaches to Microencapsulation of Phase Change Materials
JP2001303031A (en) Microcapsuled solidified product for thermal storage
JP2001040342A (en) Heat storage material microcapsule

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees