JPH05114559A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05114559A
JPH05114559A JP3296074A JP29607491A JPH05114559A JP H05114559 A JPH05114559 A JP H05114559A JP 3296074 A JP3296074 A JP 3296074A JP 29607491 A JP29607491 A JP 29607491A JP H05114559 A JPH05114559 A JP H05114559A
Authority
JP
Japan
Prior art keywords
film
light
pattern
photoresist
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3296074A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yano
博之 矢野
Haruo Okano
晴雄 岡野
Toru Watanabe
徹 渡辺
Keiji Horioka
啓治 堀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3296074A priority Critical patent/JPH05114559A/en
Priority to KR1019910021213A priority patent/KR950011563B1/en
Priority to DE4138999A priority patent/DE4138999C2/en
Publication of JPH05114559A publication Critical patent/JPH05114559A/en
Priority to US08/263,415 priority patent/US5437961A/en
Priority to US08/428,522 priority patent/US5733713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To pattern a light transmissive film without deteriorating the accuracy and reliability of the pattern by setting the film thickness and extinction coefficient of a carbon film and wavelength of exposing light in a specific relation. CONSTITUTION:After a carbon film 5 and photosensitive resin layer 6 are successively formed on a light transmissive film 4 to be worked, a desired pattern is formed by exposing and developing the layer 6. Then the film 5 is etched by using the formed pattern as a mask and the film 4 is etched by using the layer 6 or film 5 as another mask. At the time of etching the film 4, the film thickness (d) and extinction coefficient (k) of the carbon film 5 and the wavelength lambda of the exposing light are set so that they can satisfy a specific relation, 0.17<=kd/lambda. As a result, the exposing light is sufficiently weakened after passing through the layer 6. Therefore, the intensity of the light reflected by a light reflecting film 3 below the film 4 can be lowered to a sufficiently low level and abnormal exposure of the photosensitive resin layer 6 by the reflected light can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係わり、特に絶縁膜等のパタ−ン加工の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to improvement of pattern processing of an insulating film or the like.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において、
層間絶縁膜のパタ−ニングは次のように行なっている。
図20,図21はその方法を示す工程断面図である。ま
ず、図20(a)に示す如く、半導体基板51上に絶縁
膜52を堆積し、続いてこの絶縁膜52上に下層配線5
3を形成する。
2. Description of the Related Art Conventionally, in the manufacturing process of semiconductor devices,
The patterning of the interlayer insulating film is performed as follows.
20 and 21 are process sectional views showing the method. First, as shown in FIG. 20A, the insulating film 52 is deposited on the semiconductor substrate 51, and then the lower layer wiring 5 is formed on the insulating film 52.
3 is formed.

【0003】次に図20(b)に示す如く、全面に層間
絶縁膜となる絶縁膜54を堆積し、次いで図20(c)
に示す如く、この絶縁膜54上にフォトレジスト(感光
性樹脂層)55を直接塗布する。
Next, as shown in FIG. 20 (b), an insulating film 54 to be an interlayer insulating film is deposited on the entire surface, and then FIG. 20 (c).
As shown in, a photoresist (photosensitive resin layer) 55 is directly applied on the insulating film 54.

【0004】次に図20(d)に示す如く、フォトレジ
スト55に所望のパタ−ンを露光し、次いで図21
(a)に示す如く、フォトレジスト55の現像工程を行
なってフォトレジストパタ−ン55を形成する。
Next, as shown in FIG. 20 (d), a desired pattern is exposed on the photoresist 55, and then the photoresist 55 is exposed as shown in FIG.
As shown in (a), the photoresist 55 is developed to form a photoresist pattern 55.

【0005】次に図21(b)に示す如く、このフォト
レジストパタ−ン55をマスクとして反応性イオンエッ
チング(RIE)法を用いて絶縁膜54を選択エッチン
グする。最後に、図21(c)に示す如く、フォトレジ
ストパタ−ン55を除去して、層間絶縁膜54のパタ−
ニングが完成する。しかしながら、この方法には次のよ
うな問題があった。
Next, as shown in FIG. 21B, the insulating film 54 is selectively etched by the reactive ion etching (RIE) method using the photoresist pattern 55 as a mask. Finally, as shown in FIG. 21C, the photoresist pattern 55 is removed, and the pattern of the interlayer insulating film 54 is removed.
Is completed. However, this method has the following problems.

【0006】図20(d)に示すように、露光の際にフ
ォトレジスト55を通過した入射光56の一部は、更に
絶縁膜54を通過して下層配線53の表面に到達し、こ
の表面で反射光57として反射し、再びフォトレジスト
55に侵入する。また、別の入射光56aは絶縁膜5
4,52を通過して半導体基板51に到達し、この表面
で反射光58として反射し、再びフォトレジスト55に
侵入する。これらの反射光57,58によりフォトレジ
スト55は再び露光されてしまう。このとき、下層配線
53の光学的性質と半導体基板51のそれとが異なるた
め、反射光57の強度と反射光58のそれとは異なる。
更に、反射光57が通過する絶縁膜の距離と反射光58
のそれとは異なるため、フォトレジスト55に到達した
際に位相差が生じ、入射光56,56aと干渉したとき
に光の強度に差が生じる。
As shown in FIG. 20D, a part of the incident light 56 that has passed through the photoresist 55 during exposure further passes through the insulating film 54 and reaches the surface of the lower layer wiring 53. Is reflected as reflected light 57 and enters the photoresist 55 again. In addition, another incident light 56a is the insulating film 5
After passing through 4, 52, it reaches the semiconductor substrate 51, is reflected as reflected light 58 on this surface, and enters the photoresist 55 again. The photoresist 55 is exposed again by these reflected lights 57 and 58. At this time, since the optical properties of the lower layer wiring 53 and that of the semiconductor substrate 51 are different, the intensity of the reflected light 57 and that of the reflected light 58 are different.
Further, the distance of the insulating film through which the reflected light 57 passes and the reflected light 58
Therefore, a phase difference occurs when reaching the photoresist 55, and a difference in light intensity occurs when the light interferes with the incident lights 56 and 56a.

【0007】したがって、フォトレジスト55の感光は
位置によって大きく異なってしまい、マスクパタ−ンを
忠実にフォトレジスト55に転写できないという問題が
発生する。図22,図23は他の従来の絶縁膜のパタ−
ニングの方法を示す形成工程断面図である。
Therefore, the photosensitivity of the photoresist 55 varies greatly depending on the position, which causes a problem that the mask pattern cannot be faithfully transferred to the photoresist 55. 22 and 23 show other conventional insulating film patterns.
FIG. 6 is a sectional view of a forming process showing a method of polishing.

【0008】まず、図22(a)に示す如く、半導体基
板61の表面を選択的に酸化して酸化絶縁膜62を形成
し、続いて、この酸化絶縁膜62が形成された基板61
の全面に絶縁膜63,ポリシリコン膜64をこの順に形
成する。
First, as shown in FIG. 22A, the surface of a semiconductor substrate 61 is selectively oxidized to form an oxide insulating film 62, and subsequently, the substrate 61 on which the oxide insulating film 62 is formed is formed.
An insulating film 63 and a polysilicon film 64 are formed in this order on the entire surface of.

【0009】次に図22(b)に示す如く、ポリシリコ
ン膜64上に絶縁膜65を堆積した後、図22(c)に
示す如く、この絶縁膜65上にフォトレジスト66を直
接塗布する。
Next, as shown in FIG. 22B, an insulating film 65 is deposited on the polysilicon film 64, and then a photoresist 66 is directly coated on the insulating film 65 as shown in FIG. 22C. ..

【0010】次に図22(d)に示す如く、フォトレジ
スト66に所望のパタ−ンを露光した後、図23(a)
に示す如く、フォトレジスト66の現像工程を行なって
フォトレジストパタ−ン66を形成する。
Next, as shown in FIG. 22 (d), after exposing the photoresist 66 to a desired pattern, FIG.
As shown in FIG. 3, a developing process of the photoresist 66 is performed to form a photoresist pattern 66.

【0011】次に図23(b)に示す如く、フォトレジ
ストパタ−ン66をマスクとして用い、反応性イオンエ
ッチング(RIE)法により絶縁膜65を選択エッチン
グする。最後に、図23(c)に示す如く、フォトレジ
ストパタ−ン66を除去して絶縁膜65のパタ−ニング
が完成する。しかしながら、この方法においても次のよ
うな問題があった。
Next, as shown in FIG. 23B, the insulating film 65 is selectively etched by the reactive ion etching (RIE) method using the photoresist pattern 66 as a mask. Finally, as shown in FIG. 23 (c), the photoresist pattern 66 is removed to complete the patterning of the insulating film 65. However, this method also has the following problems.

【0012】即ち、図22(d)に示すように、露光の
際にフォトレジスト66を通過した入射光67は、更に
絶縁膜65を通過してポリシリコン膜64の表面に到達
し、この表面で反射光68として反射した後に再びフォ
トレジスト66に侵入するため、フォトレジスト66は
マスクパタ−ンで決まる部分以外も露光され、異常露光
が生じる。特に、図22(d)に示したように、ポリシ
リコン膜64の表面の凹凸が大きい場合には、異常露光
の影響が大きく、この結果、図23(a)に示すよう
に、フォトレジスト66に転写されるパタ−ンはマスク
パタ−ンに比べて歪んだものとなってしまう。
That is, as shown in FIG. 22D, the incident light 67 that has passed through the photoresist 66 during exposure further passes through the insulating film 65 and reaches the surface of the polysilicon film 64. Since the light penetrates into the photoresist 66 again after being reflected as reflected light 68, the photoresist 66 is exposed to a portion other than the portion determined by the mask pattern, resulting in abnormal exposure. In particular, as shown in FIG. 22D, when the surface roughness of the polysilicon film 64 is large, the effect of abnormal exposure is large, and as a result, as shown in FIG. The pattern to be transferred to is distorted as compared with the mask pattern.

【0013】また、絶縁膜65の膜厚が位置によってば
らついている場合には、フォトレジスト66に到達した
反射光68の位相は到達位置により異なるため、入射光
67と干渉したときに光の強度に差が生じ、フォトレジ
ストパタ−ン66の寸法が位置により異なってしまう。
Further, when the film thickness of the insulating film 65 varies depending on the position, the phase of the reflected light 68 reaching the photoresist 66 differs depending on the arrival position, and therefore the intensity of the light when interfering with the incident light 67. And the size of the photoresist pattern 66 varies depending on the position.

【0014】上述したフォトレジストパタ−ン66の歪
みや位置による寸法差は、フォトレジストパタ−ン66
をマスクとして絶縁膜65をRIE加工した後に、絶縁
膜65に反映されるため、絶縁膜65のパタ−ンにも歪
みや位置による寸法差が生じる。このような不都合は、
絶縁膜のパタ−ニングの精度や信頼性を低下させるばか
りでなく、製品の歩留まりを低下させる要因となる。
The dimensional difference due to the distortion and the position of the photoresist pattern 66 is caused by the photoresist pattern 66.
After the insulating film 65 is subjected to RIE using the mask as a mask, the pattern is reflected in the insulating film 65, so that the pattern of the insulating film 65 also has a dimensional difference due to distortion and position. Such inconvenience
This not only lowers the accuracy and reliability of the patterning of the insulating film, but also reduces the product yield.

【0015】この種の問題を避けるため、色素含有レジ
ストを用いた絶縁膜のパタ−ニング方法が提案されてい
る。しかしながら、色素含有レジストを用いた方法で
は、異常露光によるフォトレジストパタ−ンの歪みを抑
えるのには不十分であり、前述した問題を解決すること
ができず、しかも、露光時のフォ−カスのマ−ジンが小
さくなるという問題があった。
In order to avoid this kind of problem, a method of patterning an insulating film using a dye-containing resist has been proposed. However, the method using the dye-containing resist is insufficient to suppress the distortion of the photoresist pattern due to abnormal exposure, cannot solve the above-mentioned problems, and further, the focus at the time of exposure. However, there was a problem that the margin of the

【0016】[0016]

【発明が解決しようとする課題】上述の如く、従来の絶
縁膜のパタ−ニング工程においては、フォトレジストに
対して露光を行なう際に、半導体基板或いは下層金属配
線の表面で露光光が反射するため、フォトレジストに転
写されるパタ−ンが歪んでしまった。この結果、歪んだ
フォトレジストパタ−ンをマスクとして絶縁膜をパタ−
ニングすることになり、パタ−ニングの精度や信頼性が
低下し、製造歩留まりが低下するという問題があった。
As described above, in the conventional insulating film patterning process, when the photoresist is exposed, the exposure light is reflected on the surface of the semiconductor substrate or the lower metal wiring. Therefore, the pattern transferred to the photoresist is distorted. As a result, the insulating film is patterned using the distorted photoresist pattern as a mask.
Therefore, there is a problem that the precision and reliability of the patterning are lowered and the manufacturing yield is lowered.

【0017】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、精度や信頼性の低下を
招かないで、光反射性膜上に形成された透光性の被加工
膜をパタ−ン加工できる半導体装置の製造方法を提供す
ることにある。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a light-transmitting film formed on a light-reflecting film without degrading accuracy and reliability. It is an object of the present invention to provide a method of manufacturing a semiconductor device capable of patterning a processed film.

【0018】[0018]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、光反射性膜上の透光性の被加工膜をパ
タ−ン加工する工程を有する半導体装置の製造方法にお
いて、透光性の被加工膜上に炭素膜,感光性樹脂層を順
次形成した後、露光工程,現像工程により所望のパタ−
ン状に前記感光性樹脂層をパタ−ン加工し、これをマス
クとして前記炭素膜をエッチングし、前記感光性樹脂層
又は炭素膜をマスクとして前記被加工膜エッチングし、
前記炭素膜の膜厚dと、前記炭素膜の消衰係数kと、露
光光の波長λとの関係を0.17≦kd/λに設定する
ことを特徴とする。
In order to achieve the above object, the present invention provides a method of manufacturing a semiconductor device including a step of patterning a translucent film to be processed on a light reflective film. After a carbon film and a photosensitive resin layer are sequentially formed on a translucent film to be processed, a desired pattern is formed by an exposure process and a development process.
Patterning the photosensitive resin layer into a pattern, etching the carbon film using this as a mask, etching the film to be processed using the photosensitive resin layer or the carbon film as a mask,
The relationship between the film thickness d of the carbon film, the extinction coefficient k of the carbon film, and the wavelength λ of the exposure light is set to 0.17 ≦ kd / λ.

【0019】[0019]

【作用】本発明者等の研究によれば、感光性樹脂層を通
過した露光光は、炭素膜の膜厚dと、消衰係数kと、露
光光の波長λとの関係が、0.17≦kd/λを満足す
る場合、この炭素膜中で十分弱められることが分かっ
た。この結果、透光性の被加工膜の下層の光反射性膜で
反射した光の強度が十分小さくなり、この反射光により
感光性樹脂層が異常露光されたりするという問題は生じ
ない。
According to the research conducted by the present inventors, the exposure light that has passed through the photosensitive resin layer has a relationship that the relationship between the film thickness d of the carbon film, the extinction coefficient k, and the wavelength λ of the exposure light is 0. It was found that when 17 ≦ kd / λ was satisfied, the carbon film was sufficiently weakened. As a result, the intensity of the light reflected by the light-reflecting film below the translucent film to be processed becomes sufficiently small, and there is no problem that the photosensitive resin layer is abnormally exposed by the reflected light.

【0020】したがって、透光性の被加工膜と感光性樹
脂層との間に炭素膜を設けて、感光性樹脂層の露光,現
像を行なえば、正確なレジストパタ−ンを容易に形成で
き、パタ−ニングの精度や信頼性が改善される。
Therefore, if a carbon film is provided between the light-transmitting processed film and the photosensitive resin layer and the photosensitive resin layer is exposed and developed, an accurate resist pattern can be easily formed. The accuracy and reliability of patterning are improved.

【0021】[0021]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1,図2には本発明の第1の実施例に係る接続孔
の形成工程断面図が示されている。
Embodiments will be described below with reference to the drawings. 1 and 2 are sectional views showing a process of forming a connection hole according to the first embodiment of the present invention.

【0022】まず、図1(a)に示す如く、表面に素子
(不図示)が形成されたSi基板1上に、厚さ1μmの
SiO2 膜2を形成する。次いでこのSiO2 膜2上に
厚さ800nmのAl配線(光反射性膜)3を形成す
る。
First, as shown in FIG. 1A, a SiO 2 film 2 having a thickness of 1 μm is formed on a Si substrate 1 on the surface of which elements (not shown) are formed. Next, an Al wiring (light reflecting film) 3 having a thickness of 800 nm is formed on the SiO 2 film 2.

【0023】次に図1(b)に示す如く、全面に層間絶
縁膜として厚さ1μmのSiO2 膜4を形成する。ここ
で、SiO2 膜4の表面にはAl配線3に対応して段差
が生じた。
Next, as shown in FIG. 1B, a 1 μm thick SiO 2 film 4 is formed as an interlayer insulating film on the entire surface. Here, a step was formed on the surface of the SiO 2 film 4 corresponding to the Al wiring 3.

【0024】次に図1(c)に示す如く、SiO2
(被加工膜)4上に厚さ80nmの炭素膜5を形成す
る。この炭素膜5は、Ar雰囲気中でグラファイト板を
タ−ゲットとしたDCマグネトロンスパッタリング法に
より形成できる。その形成条件は、室温、圧力4×10
-3Torr、電力密度3.5W/cm2 、Ar流量40
SCCMである。なお、この炭素膜5の構造をX線回折
を用いて調べたところ、その構造は非晶質若しくはマイ
クロクリスタル(微結晶)の構造となっていることが判
明した。また、光学エリプソンメ−タ−を用いて光学定
数を測定したところ、露光波長が365nmの場合に
は、屈折率nが1.86,消衰係数kは0.79であっ
た。更に四探針法により比抵抗を測定したところ、0.
3Ωcmという値が得られた。
Next, as shown in FIG. 1C, a carbon film 5 having a thickness of 80 nm is formed on the SiO 2 film (processed film) 4. This carbon film 5 can be formed by a DC magnetron sputtering method using a graphite plate as a target in an Ar atmosphere. The formation conditions are room temperature and a pressure of 4 × 10.
-3 Torr, power density 3.5W / cm 2 , Ar flow rate 40
It is SCCM. When the structure of the carbon film 5 was examined by X-ray diffraction, it was found that the structure was an amorphous structure or a microcrystal structure. When the optical constants were measured using an optical Ellipson meter, the refractive index n was 1.86 and the extinction coefficient k was 0.79 when the exposure wavelength was 365 nm. Furthermore, when the specific resistance was measured by the four-point probe method, it was found that
A value of 3 Ωcm was obtained.

【0025】次に図1(d)に示す如く、炭素膜5上に
厚さ1.5μmのポジ型のフォトレジスト(感光性樹脂
層,住友化学製PFI15AA)6を塗布し、マスクパ
タ−ン(図示せず)を用いてこのフォトレジスト6を露
光する。マスクパタ−ンは0.5μm□及び0.7μm
□のコンタクトホールのパターンとした。また、露光波
長は365nmとする。
Next, as shown in FIG. 1D, a positive photoresist (photosensitive resin layer, PFI15AA manufactured by Sumitomo Chemical Co., Ltd.) 6 having a thickness of 1.5 μm is applied on the carbon film 5 to form a mask pattern ( This photoresist 6 is exposed using (not shown). Mask pattern is 0.5μm and 0.7μm
The contact hole pattern of □ was used. The exposure wavelength is 365 nm.

【0026】次に図2(a)に示す如く、現像液、例え
ばコリンを主成分とするアルカリ現像液を用いてフォト
レジスト6を現像して、フォトレジストパタ−ン6を形
成する。このフォトレジストパタ−ン6を調べたとこ
ろ、後述するように、露光時におけるAl配線3や基板
1からの反射による影響が殆どなく、マスクパタ−ンに
忠実なものだった。また、炭素膜5を調べたところ、溶
出,剥離等は全く観察されなかった。
Next, as shown in FIG. 2A, the photoresist 6 is developed by using a developing solution, for example, an alkaline developing solution containing choline as a main component, to form a photoresist pattern 6. When the photoresist pattern 6 was examined, it was found to be faithful to the mask pattern with almost no influence of reflection from the Al wiring 3 or the substrate 1 during exposure, as will be described later. In addition, when the carbon film 5 was examined, elution and peeling were not observed at all.

【0027】次に図2(b)に示す如く、フォトレジス
トパタ−ン6をマスクとして、O2ガスを使用したRI
E法により、炭素膜5をパタ−ニングし、続いて、CF
4 ガスを使用したRIE法により、SiO2 膜4をパタ
−ニングする。最後に、図2(c)に示す如く、酸素プ
ラズマを用いた灰化処理により、フォトレジストパタ−
ン6並びに炭素膜5を同時に剥離する。
Next, as shown in FIG. 2B, RI using O 2 gas is used with the photoresist pattern 6 as a mask.
The carbon film 5 is patterned by the E method, and then CF
The SiO 2 film 4 is patterned by the RIE method using 4 gases. Finally, as shown in FIG. 2C, an ashing process using oxygen plasma is performed to perform photoresist patterning.
The carbon film 6 and the carbon film 5 are peeled off at the same time.

【0028】本実施例では、0.5μm□及び0.7μ
m□のコンタクトホールのパターンのマスクパタ−ンを
用いたが、フォトレジスト24に転写されたパターンの
寸法はそれぞれ0.48μm□及び0.70μm□であ
った。また、0.70μm□のコンタクトホールの寸法
の6インチウエハーでの面内ばらつきは±1.8%であ
った。
In this embodiment, 0.5 μm □ and 0.7 μm
A mask pattern of m.quadrature. contact hole pattern was used, and the dimensions of the pattern transferred to the photoresist 24 were 0.48 .mu.m.quadrature. and 0.70 .mu.m.quadrature., respectively. Further, the in-plane variation in the 6-inch wafer having the contact hole size of 0.70 μm was ± 1.8%.

【0029】比較のため、フォトレジストとSiO2
との間に炭素膜を設けないで、絶縁膜のパタ−ニングを
行なったところ、0.50μm□のパターンの解像度を
得ることができず、0.70μm□のコンタクトホール
の寸法の6インチウエハーでの面内ばらつきも±8.8
%と非常に大きなものであった。本実施例の方法でフォ
トレジスト6にマスクパタ−ンを忠実に転写できたのは
次のように考えられる。
For comparison, when the insulating film was patterned without providing a carbon film between the photoresist and the SiO 2 film, the pattern resolution of 0.50 μm □ could not be obtained. The in-plane variation on a 6-inch wafer with a contact hole size of 0.70 μm is ± 8.8.
It was a very large percentage. The reason why the mask pattern can be faithfully transferred to the photoresist 6 by the method of this embodiment is considered as follows.

【0030】即ち、フォトレジスト6を通過し、基板1
やAl配線3で反射した光は、炭素膜5中で十分弱めら
れ、この結果、この反射した光の強度が十分小さくな
り、この反射光による異常露光がほとんど生じないから
である。また、炭素膜5の反射率は小さいので、炭素膜
5の表面で反射した光により、フォトレジスト6が異常
感光されるという問題もほとんど起こらない。しかも、
上記の如く反射光の強度は弱いので、絶縁膜の厚さが場
所によって変化し反射光の位相がずれても、これによっ
てレジストパタ−ンの寸法が変化するという問題は生じ
ない。
That is, after passing through the photoresist 6, the substrate 1
This is because the light reflected by the Al wiring 3 and the Al wiring 3 is sufficiently weakened in the carbon film 5, and as a result, the intensity of the reflected light becomes sufficiently small, and the abnormal exposure due to the reflected light hardly occurs. Further, since the reflectance of the carbon film 5 is small, the problem that the photoresist 6 is abnormally exposed to the light reflected by the surface of the carbon film 5 hardly occurs. Moreover,
Since the intensity of the reflected light is weak as described above, even if the thickness of the insulating film changes depending on the location and the phase of the reflected light shifts, the problem of changing the dimension of the resist pattern does not occur.

【0031】かくして本実施例によれば、フォトレジス
ト6に転写されるパターンの歪みが低減され、解像度も
向上し、SiO2 膜2の膜厚によらず、安定で均一性の
よい正確なフォトレジストパタ−ンを形成でき、もって
SiO2 膜4のパターニングの高精度化、高信頼化を達
成できる。図3,図4は本発明の第2の実施例に係る絶
縁膜パタ−ンの形成工程断面図である。
Thus, according to the present embodiment, the distortion of the pattern transferred to the photoresist 6 is reduced, the resolution is improved, and stable and uniform accurate photo is obtained regardless of the thickness of the SiO 2 film 2. A resist pattern can be formed, so that the patterning of the SiO 2 film 4 can be made highly accurate and highly reliable. 3 and 4 are sectional views showing the steps of forming an insulating film pattern according to the second embodiment of the present invention.

【0032】まず、図3(a)に示す如く、Si基板1
1の表面を選択的に酸化し、厚さ1μmのSiO2 膜1
2を形成する。次いでこのSiO2 膜12が形成された
基板11上に厚さ800nmのSiO2 膜13,厚さ1
μmのポリシリコン膜(光反射性膜)14を順次形成す
る。ここで、ポリシリコン膜14の表面にはSiO2
12に対応した段差が生じた。次に図3(b)に示す如
く、ポリシリコン膜14上に厚さ300nm程度のSi
2 膜15(被加工膜)を堆積する。次に図3(c)に
示す如く、SiO2 膜15上に厚さ80nmの炭素膜1
6を堆積する。
First, as shown in FIG. 3A, the Si substrate 1
No. 1 surface is selectively oxidized to form a 1 μm thick SiO 2 film 1
Form 2. Then, on the substrate 11 on which the SiO 2 film 12 is formed, a SiO 2 film 13 having a thickness of 800 nm and a thickness of 1 are formed.
A μm polysilicon film (light-reflecting film) 14 is sequentially formed. Here, a step corresponding to the SiO 2 film 12 was formed on the surface of the polysilicon film 14. Next, as shown in FIG. 3B, a Si film having a thickness of about 300 nm is formed on the polysilicon film 14.
An O 2 film 15 (working film) is deposited. Next, as shown in FIG. 3C, a carbon film 1 having a thickness of 80 nm is formed on the SiO 2 film 15.
6 is deposited.

【0033】次に図4(a)に示す如く、炭素膜16上
に厚さ1.5μmのポジ型のフォトレジスト(感光性樹
脂層,住友化学製PFI15AA)17を塗布し、配線
のマスクパタ−ン(不図示)を用いてこのフォトレジス
ト17を露光する。このとき、露光波長は365nmと
する。
Next, as shown in FIG. 4A, a positive photoresist (photosensitive resin layer, PFI15AA manufactured by Sumitomo Chemical Co., Ltd.) 17 having a thickness of 1.5 μm is applied on the carbon film 16 to form a wiring mask pattern. This photoresist 17 is exposed using a photoresist (not shown). At this time, the exposure wavelength is 365 nm.

【0034】次に図4(b)に示す如く、現像液を用い
てフォトレジスト17を現像して、パタ−ン幅0.8μ
mのフォトレジストパタ−ン17を形成する。後述する
ように、このフォトレジストパタ−ン17を調べたとこ
ろ、露光時におけるポリシリコン膜14で反射した光に
よる影響はほとんどなく、マスクパタ−ンに忠実なもの
であった。
Next, as shown in FIG. 4B, the photoresist 17 is developed with a developing solution to have a pattern width of 0.8 .mu.m.
m photoresist pattern 17 is formed. As will be described later, when the photoresist pattern 17 was examined, it was found that the light reflected by the polysilicon film 14 at the time of exposure had almost no effect and was faithful to the mask pattern.

【0035】最後に、フォトレジストパタ−ン17をマ
スクにして炭素膜16及びSiO2膜15を順次エッチ
ングした後、炭素膜16,フォトレジストパタ−ン17
をアッシング除去する。
Finally, the carbon film 16 and the SiO 2 film 15 are sequentially etched using the photoresist pattern 17 as a mask, and then the carbon film 16 and the photoresist pattern 17 are formed.
Is removed by ashing.

【0036】図5(a),図5(b)はそれぞれ本実施
例の方法によって形成されたフォトレジストパタ−ンの
上面図と従来の方法を用いた場合のそれとが示されてい
る。図中、斜線部がフォトレジストパタ−ンを表してい
る。
5 (a) and 5 (b) respectively show a top view of the photoresist pattern formed by the method of this embodiment and that when the conventional method is used. In the figure, the shaded area represents the photoresist pattern.

【0037】図5(a)に示すように本実施例の方法で
は、フォトレジストパタ−ン17には全く断線部が観察
されず、マスクパタ−ンを忠実にフォトレジスト17に
転写できることが分かる。
As shown in FIG. 5 (a), in the method of this embodiment, no broken portion is observed in the photoresist pattern 17, and it is understood that the mask pattern can be faithfully transferred to the photoresist 17.

【0038】これに対して、図5(b)に示すように従
来の方法によりフォトレジスト17aのパタ−ニングを
行なった場合、フォトレジストパタ−ン17aには、特
に段差が著しい場所で多くの断線部18が観察された。
これは従来の方法ではポリシリコン膜14の表面で露光
光が反射するので、フォトレジスト17aに歪んだパタ
−ンが転写されるからである。なお、図中、15aは層
間絶縁膜である。このようにフォトレジスト17にマス
クパタ−ンを忠実に転写できたのは次のように考えられ
る。
On the other hand, when the photoresist 17a is patterned by the conventional method as shown in FIG. 5 (b), the photoresist pattern 17a has a large number of steps, especially at a step. The disconnection portion 18 was observed.
This is because the exposure light is reflected on the surface of the polysilicon film 14 in the conventional method, so that the distorted pattern is transferred to the photoresist 17a. In the figure, 15a is an interlayer insulating film. The reason why the mask pattern can be faithfully transferred to the photoresist 17 in this manner is considered as follows.

【0039】即ち、フォトレジスト17を通過し、ポリ
シリコン14で反射した光は炭素膜16中で十分弱めら
れるので、ポリシリコン14でこの反射した光の強度が
十分小さくなり、この反射光によるフォトレジスト17
の異常露光はほとんど生じない。また、絶縁膜の厚さが
場所によって変化し反射光の位相がずれても、これによ
ってレジストパタ−ンの寸法が変化するという問題は生
じない。
That is, since the light passing through the photoresist 17 and reflected by the polysilicon 14 is sufficiently weakened in the carbon film 16, the intensity of the reflected light by the polysilicon 14 becomes sufficiently small, and the photo by the reflected light is reduced. Resist 17
Abnormal exposure hardly occurs. Further, even if the thickness of the insulating film changes depending on the location and the phase of the reflected light is shifted, the problem of changing the dimension of the resist pattern does not occur.

【0040】かくして本実施例によれば、SiO2 膜1
5とフォトレジスト17との間に炭素膜16を設けるこ
とにより、フォトレジスト17に転写されるマスクパタ
−ンの歪みが低減され、解像度が向上し、更に、下地の
SiO2 膜15の膜厚や炭素膜16の膜厚が不均一で
も、安定で均一性の良い正確なフォトレジストパタ−ン
を形成できる。したがって、フォトレジスト17のパタ
−ニングの高精度化・高信頼性化を実現でき、下地のS
iO2 膜やポリシリコン膜の高精度な加工を可能ならし
め、製造歩留まりの向上を図れる。
Thus, according to this embodiment, the SiO 2 film 1
By providing the carbon film 16 between the photoresist 5 and the photoresist 17, the distortion of the mask pattern transferred to the photoresist 17 is reduced, the resolution is improved, and the film thickness of the underlying SiO 2 film 15 and Even if the film thickness of the carbon film 16 is not uniform, a stable photoresist pattern with good uniformity can be formed. Therefore, the patterning of the photoresist 17 can be made highly accurate and highly reliable, and the S
It enables highly accurate processing of the iO 2 film and the polysilicon film, and improves the manufacturing yield.

【0041】ところで、上記2つの実施例では、炭素膜
の膜厚が80nmの場合について説明したが、本発明者
等は、炭素膜の膜厚が80nm以上であれば、反射光の
強度を十分小さくできることを確認した。
By the way, in the above-mentioned two embodiments, the case where the thickness of the carbon film is 80 nm has been described. However, the present inventors have found that the intensity of the reflected light is sufficient if the thickness of the carbon film is 80 nm or more. I confirmed that it can be made smaller.

【0042】図6〜図17はそのことを示す図である。
図6,図7は炭素膜の膜厚dC が0nm(炭素膜無し)
の場合のSiO2 膜の膜厚と反射率(レジストにおけ
る、入射光の強度に対する反射光の強度の百分率)との
関係を示す特性図で、それぞれポリシリコン膜,Al膜
上にSiO2 膜を形成した場合のものである。同様に図
8,図9は炭素膜の膜厚が20nmの場合のSiO2
の膜厚と反射率との関係を示す特性図、図10,図11
は炭素膜の膜厚が40nmの場合のSiO2 膜の膜厚と
反射率との関係を示す特性図、図12,図13は炭素膜
の膜厚が60nmの場合のSiO2 膜の膜厚と反射率と
の関係を示す特性図、図14,図15は炭素膜の膜厚が
80nmの場合のSiO2 膜の膜厚と反射率との関係を
示す特性図、図16,図17は炭素膜の膜厚が100n
mの場合のSiO2 膜の膜厚と反射率との関係を示す特
性図である。
6 to 17 are diagrams showing this.
6 and 7 show that the carbon film thickness d C is 0 nm (no carbon film)
(In the resist, the percentage of the intensity of the reflected light to the intensity of incident light) the film thickness and the reflectance of the SiO 2 film in the case of a characteristic diagram showing the relationship between the respective polysilicon film, a SiO 2 film on the Al film It is when formed. Similarly, FIGS. 8 and 9 are characteristic diagrams showing the relationship between the thickness of the SiO 2 film and the reflectance when the thickness of the carbon film is 20 nm, and FIGS.
Is a characteristic diagram showing the relationship between the SiO 2 film thickness and the reflectance when the carbon film thickness is 40 nm, and FIGS. 12 and 13 are SiO 2 film thickness when the carbon film thickness is 60 nm. And FIG. 15 are characteristic diagrams showing the relation between the reflectance and the reflectance. FIGS. 14 and 15 are characteristic diagrams showing the relation between the thickness of the SiO 2 film and the reflectance when the thickness of the carbon film is 80 nm. Carbon film thickness is 100n
FIG. 7 is a characteristic diagram showing the relationship between the film thickness of the SiO 2 film and the reflectance in the case of m.

【0043】なお、反射率γは、露光光の波長λ=36
5nmとし、下記の表1に示した光学定数を用い、多重
反射を考慮にいれた次式で得られる。なお、表1に示し
た光学定数は、分光エリプソンメ−タにより測定を行な
って得たものである。
The reflectance γ is the wavelength λ of the exposure light λ = 36.
The thickness is 5 nm and the optical constants shown in Table 1 below are used. The optical constants shown in Table 1 are those obtained by measurement with a spectroscopic Ellipson meter.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【数1】 [Equation 1]

【0046】ここで、dB はSiO2 膜の膜厚,dc
炭素膜の膜厚,λは露光光の波長,NA は光反射性膜
(ポリシリコン膜,Al膜)の光学定数,Nc は炭素膜
の光学定数,NB はSiO2 膜の光学定数,NR はフォ
トレジストの光学定数,rR =(NR −Nc )/(NR
c ),rc =(Nc −NB)/(Nc +NB ),rB
(NB −NA )/(NB +NA )である。ただし、光学
定数Nは、N=n−ik(n:屈折率,k:消衰係数)
で表わされる。
Here, d B is the film thickness of the SiO 2 film, d c is the film thickness of the carbon film, λ is the wavelength of the exposure light, and N A is the optical constant of the light-reflecting film (polysilicon film, Al film). , N c is the optical constant of the carbon film, N B is the optical constant of the SiO 2 film, N R is the optical constant of the photoresist, and r R = (N R −N c ) / (N R +
N c ), r c = (N c −N B ) / (N c + N B ), r B =
(N B -N A) a / (N B + N A) . However, the optical constant N is N = n-ik (n: refractive index, k: extinction coefficient)
It is represented by.

【0047】これらの図から、下地のポリシリコン膜,
Al膜や、SiO2膜の膜厚dB に関係なく、炭素膜の
膜厚dc が80nm以上の場合に、反射率が10%以下
になることが分かる。
From these figures, the underlying polysilicon film,
It can be seen that the reflectance is 10% or less when the thickness d c of the carbon film is 80 nm or more regardless of the thickness d B of the Al film or the SiO 2 film.

【0048】また、これらの図から反射率が、SiO2
膜の膜厚dB によって周期的に変化しているのが分か
る。これはポリシリコン膜の表面やAl膜の表面での反
射光と入射光との干渉や、SiO2 膜の表面での反射光
と入射光との干渉や、炭素膜の表面での反射光とポリシ
リコン膜の表面やAl膜の表面での反射光との干渉など
が原因である。また、その周期は入射光の波長をSiO
2 膜の屈折率で割った値の2分の1で、約120nmで
ある。このような反射率の周期的な変化も炭素膜の膜厚
c が80nm以上では非常に小さくなっていることが
分かる。
From these figures, the reflectance is SiO 2
It can be seen that the film thickness d B changes periodically. This is because the reflected light on the surface of the polysilicon film or the Al film interferes with the incident light, the interference between the reflected light on the surface of the SiO 2 film and the incident light, or the reflected light on the surface of the carbon film. The cause is interference with reflected light on the surface of the polysilicon film or the surface of the Al film. In addition, the period is the wavelength of the incident light is SiO
It is one half of the value divided by the refractive index of the two films, which is about 120 nm. It can be seen that such a periodic change in reflectance is also extremely small when the thickness d c of the carbon film is 80 nm or more.

【0049】また、本発明者等は、炭素膜の光吸収の膜
厚依存性について調べてみた。図18はその結果であ
り、光吸収率I/I0 と炭素膜の膜厚との関係を示す特
性図である。ここで、Iは透過光強度,I0 は入射光強
度である。光吸収率I/I0 は、炭素膜の膜厚をd,炭
素膜の消衰係数をk,光の波長をλとすると、 I/I0 =exp(−4πkd/λ) となる。図18は、k=0.79,λ=365nmの場
合に相当する。
The present inventors also examined the film thickness dependence of the light absorption of the carbon film. FIG. 18 shows the result, and is a characteristic diagram showing the relationship between the light absorptance I / I 0 and the thickness of the carbon film. Here, I is the transmitted light intensity and I 0 is the incident light intensity. The light absorptance I / I 0 is I / I 0 = exp (−4πkd / λ) where d is the thickness of the carbon film, k is the extinction coefficient of the carbon film, and λ is the wavelength of light. FIG. 18 corresponds to the case where k = 0.79 and λ = 365 nm.

【0050】図18は光吸収率I/I0 の炭素膜膜厚依
存性を示しているが、上式から、光吸収率I/I0 は、
消衰係数kや波長λにも依存することが分かる。したが
って、図6〜図17について、炭素膜の膜厚が80nm
以上の場合に、反射率が10%以下になると説明した
が、炭素膜の膜厚が80nm未満でも反射率を10%以
下にできることになる。
FIG. 18 shows the dependence of the light absorption rate I / I 0 on the thickness of the carbon film. From the above equation, the light absorption rate I / I 0 is
It can be seen that it also depends on the extinction coefficient k and the wavelength λ. Therefore, regarding FIGS. 6 to 17, the thickness of the carbon film is 80 nm.
Although it has been described that the reflectance is 10% or less in the above cases, the reflectance can be 10% or less even when the thickness of the carbon film is less than 80 nm.

【0051】即ち、d=80,k=0.79,λ=36
5を上式のkd/λに代入すると、その値は0.173
となるので、kd/λ≧0.173の関係を満たせば、
ポリシリコン膜やAl膜等の下地の光反射性膜や、Si
2 膜等の透光性膜や、炭素膜の光学定数や、露光光の
波長が変わっても、光反射性膜からの反射光の強度は同
じ程度に抑えられる。したがって、上記実施例と同様に
良好なパタ−ニングを行なえる。逆に、λが200nm
以上でkが略0の場合、つまり、ダイヤモンド膜は、炭
素膜といえども上述した関係を満たさないので使用でき
ない。
That is, d = 80, k = 0.79, λ = 36
Substituting 5 for kd / λ in the above equation yields a value of 0.173.
Therefore, if the relationship of kd / λ ≧ 0.173 is satisfied,
An underlying light-reflective film such as a polysilicon film or an Al film, or Si
Even if the optical constants of the translucent film such as the O 2 film or the carbon film and the wavelength of the exposure light are changed, the intensity of the reflected light from the light reflective film can be suppressed to the same level. Therefore, good patterning can be performed as in the above embodiment. Conversely, λ is 200 nm
In the above, when k is substantially 0, that is, the diamond film cannot be used even if it is a carbon film because it does not satisfy the above relationship.

【0052】なお、上記実施例では、光反射性膜として
ポリシリコン膜やAl膜の場合について説明したが、他
の金属膜,合金膜,シリサイド膜,半導体膜等の場合で
あっても良い。また、透光性の被加工膜としてSiO2
の絶縁膜について説明したが、他の酸化物や窒化物等か
らなる透光性の絶縁膜であっても良い。図19には本発
明の第3の実施例に係る絶縁膜パタ−ンの形成工程断面
図が示されている。
In the above embodiments, the case where the light reflecting film is a polysilicon film or an Al film has been described, but other metal films, alloy films, silicide films, semiconductor films or the like may be used. In addition, as a translucent film to be processed, SiO 2 is used.
Although the insulating film has been described, it may be a translucent insulating film made of other oxide or nitride. FIG. 19 is a sectional view showing the steps of forming an insulating film pattern according to the third embodiment of the present invention.

【0053】まず、図19(a)に示す如く、プラズマ
CVD法を用いて、所望の素子(図示せず)が形成され
たSi基板21(光反射性膜)上にSiO2膜(被加工
膜)22を膜厚1μmで形成する。ここで、このSiO
2 膜22に±8%の膜厚のばらつきが生じていた。次に
図19(b)に示す如く、グラファイト板をターゲット
としたスパッタリング法を用いてSiO2膜22上に厚
さ100nmの炭素膜23を形成する。
First, as shown in FIG. 19A, a SiO 2 film (workpiece) is formed on a Si substrate 21 (light-reflecting film) on which a desired element (not shown) is formed by using a plasma CVD method. The film 22 is formed with a film thickness of 1 μm. Where this SiO
The two films 22 had a film thickness variation of ± 8%. Next, as shown in FIG. 19B, a carbon film 23 having a thickness of 100 nm is formed on the SiO 2 film 22 by a sputtering method using a graphite plate as a target.

【0054】次に図19(c)に示す如く、炭素膜23
上にポジ型のフォトレジスト(住友化学製PFI15A
A)24を塗布し、マスクパターン(図示せず)を用い
てフォトレジスト(感光性樹脂層)24を露光する。こ
のとき、露光波長λは365nmとする。次に図19
(d)に示す如く、フォトレジスト24を現像してフォ
トレジストパターン25を形成する。
Next, as shown in FIG. 19C, the carbon film 23
Positive photoresist on top (PFI15A manufactured by Sumitomo Chemical
A) 24 is applied and the photoresist (photosensitive resin layer) 24 is exposed using a mask pattern (not shown). At this time, the exposure wavelength λ is 365 nm. Next, in FIG.
As shown in (d), the photoresist 24 is developed to form a photoresist pattern 25.

【0055】最後に図19(e)に示す如く、フォトレ
ジストパターン25をマスクにして炭素膜23及び絶縁
膜22をパタ−ニングした後、フォトレジストパタ−ン
25及び炭素膜23をアッシング除去する。
Finally, as shown in FIG. 19E, the carbon film 23 and the insulating film 22 are patterned using the photoresist pattern 25 as a mask, and then the photoresist pattern 25 and the carbon film 23 are removed by ashing. ..

【0056】上記方法では、マスクパターンは、0.5
μm□及び0.7μm□のコンタクトホールのパターン
としたが、フォトレジスト24に転写されたパターンの
寸法はそれぞれ0.48μm□及び0.70μm□であ
った。また、0.70μm□のコンタクトホールの寸法
の6インチウエハーでの面内ばらつきは±1.8%であ
った。
In the above method, the mask pattern is 0.5
Although contact hole patterns of μm □ and 0.7 μm □ were used, the dimensions of the pattern transferred to the photoresist 24 were 0.48 μm □ and 0.70 μm □, respectively. Further, the in-plane variation in the 6-inch wafer having the contact hole size of 0.70 μm was ± 1.8%.

【0057】比較のため、フォトレジストとSiO2
との間に炭素膜を設けないで、絶縁膜のパタ−ニングを
行なったところ、0.50μm□のパターンの解像度を
得ることができず、0.70μm□のコンタクトホール
の寸法の6インチウエハーでの面内ばらつきも±8.8
%と非常に大きなものであった。このような結果が得ら
れたのは、次に示す理由による。
For comparison, when the insulating film was patterned without providing a carbon film between the photoresist and the SiO 2 film, a pattern resolution of 0.50 μm □ could not be obtained. The in-plane variation on a 6-inch wafer with a contact hole size of 0.70 μm is ± 8.8.
It was a very large percentage. The reason why such a result is obtained is as follows.

【0058】即ち、フォトレジスト24を通過した光は
炭素膜23中で弱められるので、基板21或いは基板2
1上の金属配線で反射した光の強度は十分小さくなる。
このため、絶縁膜22の膜厚が場所によって変化し、反
射光の位相がずれても、これよってレジストパタ−ンの
寸法が変化するという問題は生じない。
That is, since the light passing through the photoresist 24 is weakened in the carbon film 23, the substrate 21 or the substrate 2
The intensity of the light reflected by the metal wiring above 1 is sufficiently small.
Therefore, even if the film thickness of the insulating film 22 changes depending on the location and the phase of the reflected light deviates, the problem that the dimension of the resist pattern changes due to this does not occur.

【0059】かくして本実施例によれば、フォトレジス
ト24に転写されるパターンの歪みが低減され、解像度
も向上し、SiO2 膜22の膜厚によらず、安定で均一
性のよい正確なフォトレジストパタ−ンを形成でき、も
ってSiO2 膜22のパターニングの高精度化、高信頼
化を達成できる。
Thus, according to the present embodiment, the distortion of the pattern transferred to the photoresist 24 is reduced, the resolution is improved, and the stable and uniform photo resist is obtained regardless of the film thickness of the SiO 2 film 22. A resist pattern can be formed, so that the patterning of the SiO 2 film 22 can be highly accurate and highly reliable.

【0060】なお、本実施例では、透光性の被加工膜と
してSiO2 膜の場合について説明したが、他の、例え
ば、シリコン窒化膜、樹脂膜の場合でも同様の効果が得
られる。更に、被加工膜の下地もSi基板に限られるも
のではなく、Al、Ni、W、Cu等の金属膜や金属配
線あるいはAl−Si−Cu、Al−Si、MoSi
x、WSixなどの金属化合物膜や金属化合物配線など
他の光反射性膜であっても良い。
In the present embodiment, the case of the SiO 2 film as the translucent film to be processed has been described, but the same effect can be obtained in the case of other films such as a silicon nitride film and a resin film. Further, the base of the film to be processed is not limited to the Si substrate, but may be a metal film of Al, Ni, W, Cu or the like, metal wiring, or Al-Si-Cu, Al-Si, MoSi.
Other light reflecting films such as metal compound films such as x and WSix and metal compound wiring may be used.

【0061】なお、本発明は上述した実施例に限定され
るものではない。例えば、上記実施例では、炭素膜の成
膜をスパッタリング法により行なったが、他の成膜法、
例えば、真空加熱蒸着法等により行なっても良い。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the carbon film was formed by the sputtering method, but other film forming methods,
For example, it may be performed by a vacuum heating vapor deposition method or the like.

【0062】また、上実施例では、ポジ型のフォトレジ
ストを用いた場合について述べたが、他のレジスト材料
を用いても良く、また、ネガ型のフォトレジストを用い
ても良い。この場合、接続孔の開孔パタ−ンなど露光面
積が広いときに特に有効である。また、露光光として波
長が365nmの光を用いたが、波長が180nm〜5
30nmの範囲の露光光であれば上記実施例と同様な効
果が得られる。その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施できる。
In the above embodiment, the case where the positive type photoresist is used has been described, but other resist materials may be used, and the negative type photoresist may be used. In this case, it is particularly effective when the exposure area is large, such as the opening pattern of the connection holes. Further, light having a wavelength of 365 nm was used as the exposure light, but the wavelength was 180 nm to 5 nm.
If the exposure light is in the range of 30 nm, the same effect as in the above embodiment can be obtained. In addition, various modifications can be made without departing from the scope of the present invention.

【0063】[0063]

【発明の効果】以上詳述したように本発明によれば、透
光性の被加工膜とレジストとの間に炭素膜を設けてある
ので、レジストを通過した光は炭素膜中で弱められる。
この結果、露光光の反射光の強度が十分小さくなり、反
射光による感光性樹脂層の異常露光はほとんど生じな
い。
As described above in detail, according to the present invention, since the carbon film is provided between the translucent film to be processed and the resist, the light passing through the resist is weakened in the carbon film. ..
As a result, the intensity of the reflected light of the exposure light becomes sufficiently small, and the abnormal exposure of the photosensitive resin layer due to the reflected light hardly occurs.

【0064】したがって、感光性樹脂層に転写されるパ
ターンの歪みを抑制できるので、この感光性樹脂層のパ
タ−ンをマスクに用いれば、被加工膜を高精度でパタ−
ニングでき、もって、装置の信頼性や製造歩留まりの向
上が図れる。
Therefore, since the distortion of the pattern transferred to the photosensitive resin layer can be suppressed, if the pattern of this photosensitive resin layer is used as a mask, the film to be processed is patterned with high accuracy.
Therefore, the reliability of the device and the manufacturing yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る接続孔の形成工程
断面図。
FIG. 1 is a sectional view of a step of forming a connection hole according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係る接続孔の形成工程
断面図。
FIG. 2 is a sectional view of a step of forming a connection hole according to the first embodiment of the present invention.

【図3】本発明の第2の実施例に係る絶縁膜パタ−ンの
形成工程断面図。
FIG. 3 is a sectional view of a step of forming an insulating film pattern according to the second embodiment of the present invention.

【図4】本発明の第2の実施例に係る絶縁膜パタ−ンの
形成工程断面図。
FIG. 4 is a sectional view of a step of forming an insulating film pattern according to a second embodiment of the present invention.

【図5】第2の実施例の方法で形成さられた配線パタ−
ンの上面図を従来の方法の場合のそれと比較して示す
図。
FIG. 5 is a wiring pattern formed by the method of the second embodiment.
The figure which shows the top view of an engine compared with that in the case of the conventional method.

【図6】炭素膜の膜厚が0nmの場合の、ポリシリコン
膜上に形成されたSiO2 膜の膜厚と反射率との関係を
示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the film thickness and the reflectance of a SiO 2 film formed on a polysilicon film when the carbon film has a film thickness of 0 nm.

【図7】炭素膜の膜厚が0nmの場合の、Al膜上に形
成されたSiO2 膜の膜厚と反射率との関係を示す特性
図。
FIG. 7 is a characteristic diagram showing the relationship between the film thickness of an SiO 2 film formed on an Al film and the reflectance when the film thickness of the carbon film is 0 nm.

【図8】炭素膜の膜厚が20nmの場合の、ポリシリコ
ン膜上に形成されたSiO2 膜の膜厚と反射率との関係
を示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between the film thickness of the SiO 2 film formed on the polysilicon film and the reflectance when the film thickness of the carbon film is 20 nm.

【図9】炭素膜の膜厚が20nmの場合の、Al膜上に
形成されたSiO2膜の膜厚と反射率との関係を示す特
性図。
FIG. 9 is a characteristic diagram showing the relationship between the film thickness of an SiO 2 film formed on an Al film and the reflectance when the film thickness of the carbon film is 20 nm.

【図10】炭素膜の膜厚が40nmの場合の、ポリシリ
コン膜上に形成されたSiO2 膜の膜厚と反射率との関
係を示す特性図。
FIG. 10 is a characteristic diagram showing the relationship between the reflectance and the thickness of the SiO 2 film formed on the polysilicon film when the thickness of the carbon film is 40 nm.

【図11】炭素膜の膜厚が40nmの場合の、Al膜上
に形成されたSiO2 膜の膜厚と反射率との関係を示す
特性図。
FIG. 11 is a characteristic diagram showing the relationship between the film thickness of the SiO 2 film formed on the Al film and the reflectance when the film thickness of the carbon film is 40 nm.

【図12】炭素膜の膜厚が60nmの場合の、ポリシリ
コン膜上に形成されたSiO2 膜の膜厚と反射率との関
係を示す特性図。
FIG. 12 is a characteristic diagram showing the relationship between the film thickness of an SiO 2 film formed on a polysilicon film and the reflectance when the carbon film has a film thickness of 60 nm.

【図13】炭素膜の膜厚が60nmの場合の、Al膜上
に形成されたSiO2 膜の膜厚と反射率との関係を示す
特性図。
FIG. 13 is a characteristic diagram showing the relationship between the film thickness of an SiO 2 film formed on an Al film and the reflectance when the carbon film has a film thickness of 60 nm.

【図14】炭素膜の膜厚が80nmの場合の、ポリシリ
コン膜上に形成されたSiO2 膜の膜厚と反射率との関
係を示す特性図。
FIG. 14 is a characteristic diagram showing the relationship between the film thickness of an SiO 2 film formed on a polysilicon film and the reflectance when the carbon film has a film thickness of 80 nm.

【図15】炭素膜の膜厚が80nmの場合の、Al膜上
に形成されたSiO2 膜の膜厚と反射率との関係を示す
特性図。
FIG. 15 is a characteristic diagram showing the relationship between the film thickness of an SiO 2 film formed on an Al film and the reflectance when the carbon film has a film thickness of 80 nm.

【図16】炭素膜の膜厚が100nmの場合の、ポリシ
リコン膜上に形成されたSiO2膜の膜厚と反射率との
関係を示す特性図。
FIG. 16 is a characteristic diagram showing the relationship between the film thickness of an SiO 2 film formed on a polysilicon film and the reflectance when the carbon film has a film thickness of 100 nm.

【図17】炭素膜の膜厚が100nmの場合の、Al膜
上に形成されたSiO2 膜の膜厚と反射率との関係を示
す特性図。
FIG. 17 is a characteristic diagram showing the relationship between the film thickness of an SiO 2 film formed on an Al film and the reflectance when the carbon film has a film thickness of 100 nm.

【図18】炭素膜の光吸収率と炭素膜の膜厚との関係を
示す特性図。
FIG. 18 is a characteristic diagram showing the relationship between the light absorption rate of the carbon film and the film thickness of the carbon film.

【図19】本発明の第3の実施例に係る絶縁膜パタ−ン
の形成工程断面図。
FIG. 19 is a sectional view of a step of forming an insulating film pattern according to the third embodiment of the present invention.

【図20】従来の接続孔の形成工程断面図。FIG. 20 is a sectional view of a conventional process of forming a connection hole.

【図21】従来の接続孔の形成工程断面図。FIG. 21 is a sectional view of a conventional connection hole forming process.

【図22】従来の絶縁膜のパタ−ニングの方法を示す工
程断面図。
FIG. 22 is a process cross-sectional view showing a conventional insulating film patterning method.

【図23】従来の絶縁膜のパタ−ニングの方法を示す工
程断面図。
FIG. 23 is a process sectional view showing a conventional method of patterning an insulating film.

【符号の説明】[Explanation of symbols]

1,11,21…基板、2,4,12,13,15,2
2…SiO2 膜、3…Al配線、5,16,23…炭素
膜、6,17,24…フォトレジスト、14…ポリシリ
コン膜、18…断線部、25…フォトレジストパタ−
ン。
1, 11, 21, substrate ... 2, 4, 12, 13, 15, 2
2 ... SiO 2 film, 3 ... Al wiring, 5, 16, 23 ... Carbon film, 6, 17, 24 ... Photoresist, 14 ... Polysilicon film, 18 ... Disconnection part, 25 ... Photoresist pattern
N.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀岡 啓治 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiji Horioka 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光反射性膜上に透光性の被加工膜を形成す
る工程と、 この被加工膜上に炭素膜を形成する工程と、 この炭素膜上に感光性樹脂層を形成する工程と、 この感光性樹脂層に所望のパタ−ンを露光し現像を行な
うことにより、前記感光性樹脂層をパタ−ン加工する工
程と、 この感光性樹脂層をマスクとして前記炭素膜をエッチン
グする工程と、 前記感光性樹脂層又は前記炭素膜をマスクとして前記被
加工膜をエッチングする工程とを含み、 前記炭素膜の膜厚dと、前記炭素膜の消衰係数kと、露
光光の波長λとの関係を、0.17≦kd/λに設定す
ることを特徴とする半導体装置の製造方法。
1. A step of forming a translucent film to be processed on a light reflecting film, a step of forming a carbon film on this film to be processed, and a photosensitive resin layer formed on this carbon film. A step of patterning the photosensitive resin layer by exposing and developing a desired pattern to the photosensitive resin layer, and etching the carbon film using the photosensitive resin layer as a mask. And a step of etching the film to be processed using the photosensitive resin layer or the carbon film as a mask, the film thickness d of the carbon film, the extinction coefficient k of the carbon film, and the exposure light A method of manufacturing a semiconductor device, characterized in that the relationship with a wavelength λ is set to 0.17 ≦ kd / λ.
JP3296074A 1990-11-27 1991-11-12 Manufacture of semiconductor device Pending JPH05114559A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3296074A JPH05114559A (en) 1990-11-27 1991-11-12 Manufacture of semiconductor device
KR1019910021213A KR950011563B1 (en) 1990-11-27 1991-11-26 Manufacturing method of semiconductor device
DE4138999A DE4138999C2 (en) 1990-11-27 1991-11-27 Exposure method for the manufacture of a semiconductor device
US08/263,415 US5437961A (en) 1990-11-27 1994-06-21 Method of manufacturing semiconductor device
US08/428,522 US5733713A (en) 1990-11-27 1995-04-21 Method of manufacturing semiconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP32088590 1990-11-27
JP2-320885 1991-08-26
JP21385191 1991-08-26
JP3-213851 1991-08-26
JP3296074A JPH05114559A (en) 1990-11-27 1991-11-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05114559A true JPH05114559A (en) 1993-05-07

Family

ID=27329552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3296074A Pending JPH05114559A (en) 1990-11-27 1991-11-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05114559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656128A (en) * 1993-03-26 1997-08-12 Fujitsu Limited Reduction of reflection by amorphous carbon
US6007732A (en) * 1993-03-26 1999-12-28 Fujitsu Limited Reduction of reflection by amorphous carbon
JP2006303496A (en) * 2006-04-14 2006-11-02 Fujitsu Ltd Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656128A (en) * 1993-03-26 1997-08-12 Fujitsu Limited Reduction of reflection by amorphous carbon
US6007732A (en) * 1993-03-26 1999-12-28 Fujitsu Limited Reduction of reflection by amorphous carbon
JP2006303496A (en) * 2006-04-14 2006-11-02 Fujitsu Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6043547A (en) Circuit structure with an anti-reflective layer
KR950011563B1 (en) Manufacturing method of semiconductor device
US4722878A (en) Photomask material
EP1813983B1 (en) Halftone phase shifting mask blank, halftone phase shifting mask, and pattern transfer method
US6037083A (en) Halftone phase shift mask blanks, halftone phase shift masks, and fine pattern forming method
JP3320685B2 (en) Fine pattern forming method
JP2983020B1 (en) Halftone type phase shift mask blank and halftone type phase shift mask
EP0838726B1 (en) Halftone phase shift mask, blank for the same, and methods of manufacturing these
JP3037941B2 (en) Halftone type phase shift mask and halftone type phase shift mask blank
JP3249948B2 (en) Phase shift mask blank and phase shift mask
GB2170649A (en) Sputtered silicon as an anti-reflective coating for metal layer lithography
JPS6074529A (en) Method of forming pattern of integrated circuit by photoetching
US5948598A (en) Anti-reflective silicon nitride film using in-situ deposition
JPS5851412B2 (en) Microfabrication method for semiconductor devices
TWI682234B (en) Phase-shift blankmask and phase-shift photomask
JP3478067B2 (en) Halftone phase shift mask and blank for halftone phase shift mask
JPH07201700A (en) Method of manufacturing semiconductor device
JPH05114559A (en) Manufacture of semiconductor device
JP3289606B2 (en) Blank for halftone type phase shift mask and halftone type phase shift mask
JP4641086B2 (en) Blank for halftone phase shift photomask, halftone phase shift photomask, and manufacturing method thereof
JPH05114558A (en) Manufacture of semiconductor device
KR0177869B1 (en) High Resolution Photolithography Method and Structure
EP0289174B1 (en) Antireflection coatings for use in photolithography
JP2993003B2 (en) Pattern formation method
JPH04144230A (en) Semiconductor device and its manufacture