JPH05110083A - Field effect transistor - Google Patents
Field effect transistorInfo
- Publication number
- JPH05110083A JPH05110083A JP26648291A JP26648291A JPH05110083A JP H05110083 A JPH05110083 A JP H05110083A JP 26648291 A JP26648291 A JP 26648291A JP 26648291 A JP26648291 A JP 26648291A JP H05110083 A JPH05110083 A JP H05110083A
- Authority
- JP
- Japan
- Prior art keywords
- region
- gate electrode
- gate
- drain
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005669 field effect Effects 0.000 title claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 abstract description 15
- 230000003247 decreasing effect Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/785—Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は電界効果トランジスタ
の構造に関する。This invention relates to the structure of field effect transistors.
【0002】[0002]
【従来の技術】現在、超LSI(Very Large
Scale Integra−tion)を構成する
基本素子として、MOS構造の電界効果トランジスタ
(Metal Oxide Semiconducto
r Field Ef−fect Transisto
r:MOSFETと称す)が広く用いられている。以
下、図面を参照し、従来のMOSFETの構造につき概
略的に説明する。尚、MOSFETの製造方法及び素子
構造の詳細に関しては、例えば文献1:超高速MOSデ
バイス 培風館 昭和61年2月10日 p117〜1
25を参照されたい。2. Description of the Related Art Currently, VLSI (Very Large)
As a basic element that constitutes the Scale Integration, a field effect transistor (Metal Oxide Semiconductor) having a MOS structure is used.
r Field Ef-fect Transisto
r: referred to as MOSFET) is widely used. Hereinafter, a structure of a conventional MOSFET will be schematically described with reference to the drawings. For details of the MOSFET manufacturing method and the element structure, see, for example, Document 1: Ultra-high-speed MOS device, Baifukan, February 10, 1986, p117-1.
See 25.
【0003】図10(A)及び(B)は従来のMOSF
ETの要部構成を概略的に示す断面図及び平面図であ
り、図10(A)は図10(B)のA−A線に沿って取
った断面を示す。図においては超LSIが備えるMOS
FET1素子に着目して、その要部構成を示した。FIGS. 10A and 10B show a conventional MOSF.
FIG. 10A is a cross-sectional view and a plan view schematically showing the configuration of a main part of the ET, and FIG. 10A shows a cross section taken along line AA of FIG. 10B. In the figure, the MOS included in the VLSI
Focusing on the FET1 element, the configuration of the main part thereof is shown.
【0004】図10(A)〜(B)にも示すように、F
ET10は基板12とゲート酸化膜16及びゲート電極
18と、ソース領域20及びドレイン領域22とを備え
る。基板12上には、超LSIが備えるFET10とこ
れ以外の素子とを電気的に分離するためのフィールド酸
化膜24を設け、フィールド酸化膜24に基板12の素
子形成領域14を露出する窓26を設ける。そして窓2
4を介し露出する素子形成領域14上に順次にゲート酸
化膜16及びゲート電極18を設ける。またソース領域
20及びドレイン領域22をゲート電極18の一方及び
他方の側部に隣接させて素子形成領域14に設ける。図
中、ソース領域20及びドレイン領域22に点を付して
示した。As shown in FIGS. 10A and 10B, F
The ET 10 includes a substrate 12, a gate oxide film 16, a gate electrode 18, a source region 20 and a drain region 22. A field oxide film 24 is provided on the substrate 12 for electrically separating the FET 10 included in the VLSI and the other elements, and a window 26 exposing the element formation region 14 of the substrate 12 is formed in the field oxide film 24. Set up. And window 2
A gate oxide film 16 and a gate electrode 18 are sequentially provided on the element formation region 14 exposed through the layer 4. Further, the source region 20 and the drain region 22 are provided in the element formation region 14 so as to be adjacent to one and the other side portions of the gate electrode 18. In the figure, the source region 20 and the drain region 22 are indicated by dots.
【0005】[0005]
【発明が解決しようとする課題】しかしながら上述した
従来のMOSFETは、LSIの集積度を高める際にい
くつかの問題点を生じる。以下、この点につき説明す
る。However, the above-mentioned conventional MOSFET has some problems in increasing the degree of integration of LSI. Hereinafter, this point will be described.
【0006】LSIの集積度を高めるためにはその構成
要素であるMOSFETを微細化しその占有面積を縮小
すればよいが、この際にスケーリング則に従ってMOS
FETのゲート幅W及びゲート長L(図10参照)を縮
小する必要がある。ゲート長Lの縮小は、ソースドレイ
ン間の電界強度を強めるのでドレイン電流の増加を促し
また動作速度を向上させるという利点をもたらす。しか
しドレイン電流はゲート幅Wに比例して増減するので、
ゲート幅Wの縮小はドレイン電流の低下をもたらし従っ
てゲート長Lの縮小によるドレイン電流の増加を打ち消
す。従ってゲート長Lの縮小によって必ずしも有効にド
レイン電流を増加させることはできなかった。In order to increase the degree of integration of the LSI, it is sufficient to miniaturize the MOSFET which is its constituent element and reduce its occupied area.
It is necessary to reduce the gate width W and the gate length L (see FIG. 10) of the FET. The reduction of the gate length L brings about an advantage that the electric field strength between the source and the drain is strengthened so that the drain current is increased and the operation speed is improved. However, since the drain current increases / decreases in proportion to the gate width W,
The reduction of the gate width W brings about the reduction of the drain current and therefore cancels the increase of the drain current due to the reduction of the gate length L. Therefore, it was not always possible to effectively increase the drain current by reducing the gate length L.
【0007】この発明の目的は、上述した従来の問題点
を解決し、微細化に伴うドレイン電流の減少を防止でき
る構造の電界効果トランジスタを提供することにある。An object of the present invention is to solve the above-mentioned conventional problems and to provide a field effect transistor having a structure capable of preventing a decrease in drain current due to miniaturization.
【0008】[0008]
【課題を解決するための手段】この目的の達成を図るた
め、この発明の電界効果トランジスタは、半導体材料か
ら成る下地と、下地の素子形成領域上に順次に設けたゲ
ート酸化膜及びゲート電極と、ゲート電極を挟むように
配置して素子形成領域に設けたソース領域及びドレイン
領域とを備えて成る電界効果トランジスタにおいて、素
子形成領域の少なくともゲート電極直下の領域にソース
領域及びドレイン領域を結ぶ方向に延在させて溝を設け
たことを特徴とする。In order to achieve this object, a field effect transistor of the present invention comprises an underlayer made of a semiconductor material, and a gate oxide film and a gate electrode sequentially provided on an element formation region of the underlayer. In a field effect transistor including a source region and a drain region provided in the element formation region so as to sandwich the gate electrode, a direction connecting the source region and the drain region to at least the region immediately below the gate electrode in the element formation region. It is characterized in that a groove is provided by extending it.
【0009】[0009]
【作用】このような構造によれば、溝はソース領域及び
ドレイン領域を結ぶ方向に延在するので、素子形成領域
の溝を設けた部分ではドレイン電流が流れる方向と交差
する方向における素子形成領域の表層部分の長さPが溝
を設けない場合よりも長くなり、従って実質的なゲート
幅が増加する。しかも平面的に見たときの素子形成領域
の面積を一定としたままであっても溝の配設個数及び又
は深さを増加させると長さPが増加するので、平面的に
見たときの素子形成領域の面積を増加させずに実質的な
ゲート幅を増加させることができる。換言すれば、電界
効果トランジスタを微細化した場合に、平面的に見てゲ
ート幅が縮小しても、実質的なゲート幅を大きく取るこ
とによりドレイン電流の減少を抑制することができる。According to such a structure, the groove extends in the direction connecting the source region and the drain region. Therefore, in the portion of the element forming region where the groove is provided, the element forming region in the direction intersecting with the drain current flowing direction is formed. The length P of the surface layer portion is longer than that in the case where no groove is provided, and thus the substantial gate width is increased. Moreover, even if the area of the element formation region in the plan view is kept constant, the length P increases as the number of grooves provided and / or the depth increases. The substantial gate width can be increased without increasing the area of the element formation region. In other words, when the field-effect transistor is miniaturized, even if the gate width is reduced in plan view, the substantial reduction in the drain width can be suppressed by taking the substantial gate width.
【0010】[0010]
【実施例】以下、図面を参照し、この発明の実施例につ
き説明する。尚、図面はこの発明が理解できる程度に概
略的に示してあるにすぎず、従ってこの発明を図示例に
限定するものではない。Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the drawings are merely schematic representations so that the present invention can be understood, and therefore the present invention is not limited to the illustrated examples.
【0011】図1はこの発明の実施例の要部構成を概略
的に示す切欠斜視図である。この実施例のFET28は
LSIに搭載されるMOSFETであり、図1において
はその要部構成を示した。FIG. 1 is a cutaway perspective view schematically showing the structure of a main part of an embodiment of the present invention. The FET 28 of this embodiment is a MOSFET mounted on an LSI, and FIG. 1 shows the main configuration thereof.
【0012】この実施例のFET28は下地30と、ゲ
ート酸化膜32及びゲート電極34と、ソース領域36
及びドレイン領域38と、溝39とを備える。The FET 28 of this embodiment has a base 30, a gate oxide film 32 and a gate electrode 34, and a source region 36.
And a drain region 38 and a groove 39.
【0013】下地30は第一導電型の半導体材料から成
る下地例えばp型Si基板であり、この下地30上に、
LSIに搭載されるFET28とこれ以外の電気回路素
子とを分離するためのフィールド酸化膜40を設ける。
フィールド酸化膜40は下地30の素子形成領域42を
露出する窓を備え、この素子形成領域42上に順次にゲ
ート酸化膜32及びゲート電極34を設ける。そしてソ
ース領域36及びドレイン領域38をゲート電極34を
挟むように配置して素子形成領域42に設ける。ソース
領域36及びドレイン領域38は、第一導電型とは反対
の第二導電型の不純物例えばn型不純物を素子形成領域
42に添加して形成した領域である。The base 30 is a base made of a semiconductor material of the first conductivity type, for example, a p-type Si substrate.
A field oxide film 40 is provided to separate the FET 28 mounted on the LSI from other electric circuit elements.
The field oxide film 40 has a window exposing the element formation region 42 of the base 30, and the gate oxide film 32 and the gate electrode 34 are sequentially provided on the element formation region 42. Then, the source region 36 and the drain region 38 are arranged so as to sandwich the gate electrode 34, and are provided in the element formation region 42. The source region 36 and the drain region 38 are regions formed by adding an impurity of a second conductivity type opposite to the first conductivity type, for example, an n-type impurity, to the element formation region 42.
【0014】そして素子形成領域42の少なくともゲー
ト電極34直下の領域に、ソース領域36及びドレイン
領域38を結ぶ方向に延在させて溝39を設ける。この
実施例では、複数の溝39をゲート電極34の長さ方向
に平行に延在させ、ゲート電極34直下のみならずソー
ス領域36及びドレイン領域38にも設ける。ソース領
域36及びドレイン領域38にも溝39を設けることに
より、ソース領域36及びドレイン領域38をそれぞれ
対応する電極と接続した際にこれら領域と電極との接触
面積を大きく取ることができ、従ってこれら領域と電極
とのコンタクト抵抗を低減できる。Then, a groove 39 is provided in at least a region immediately below the gate electrode 34 in the element forming region 42 so as to extend in a direction connecting the source region 36 and the drain region 38. In this embodiment, a plurality of trenches 39 extend parallel to the length direction of the gate electrode 34 and are provided not only directly under the gate electrode 34 but also in the source region 36 and the drain region 38. By providing the groove 39 in the source region 36 and the drain region 38 as well, when the source region 36 and the drain region 38 are connected to the corresponding electrodes, respectively, the contact area between these regions and the electrode can be made large, and therefore these regions can be made larger. The contact resistance between the region and the electrode can be reduced.
【0015】次にこの実施例のFET28の製造方法に
つき一例を挙げて説明する。図2〜図9はこの実施例の
製造工程の説明図である。図3(A)〜(B)と図2、
図4〜図9それぞれの(A)とはFETの製造途上にお
いてゲート電極直下に対応する領域の素子形成領域及び
その近傍部分の様子を、ゲート電極幅方向に沿って取っ
た断面で概略的に示す断面図、また図2及び図4〜図9
それぞれの(B)はFETの製造途上において素子形成
領域及びその近傍部分の様子を概略的に示す平面図であ
る。しかも図2、図4〜図9の(A)及び(B)は同一
工程段階における断面図及び平面図である。Next, a method of manufacturing the FET 28 of this embodiment will be described with an example. 2 to 9 are explanatory views of the manufacturing process of this embodiment. 3 (A)-(B) and FIG.
4A to 9A are schematic cross-sectional views taken along the gate electrode width direction of the element formation region in the region corresponding to immediately below the gate electrode and its vicinity in the course of manufacturing the FET. Sectional views shown in FIGS. 2 and 4 to 9
Each of (B) is a plan view schematically showing a state of an element formation region and a portion in the vicinity thereof during manufacturing of the FET. Moreover, FIGS. 2 and 4A to 9B are a sectional view and a plan view at the same process stage.
【0016】この実施例のFET28を製造するに当た
り、下地30として第一導電型の下地例えばp型Si基
板を用意する。次いで図2(A)及び(B)にも示すよ
うに、下地30上にパッド酸化膜44を形成する。パッ
ド酸化膜44は、例えば熱酸化法により形成したSiO
2 膜であり、フィールド酸化膜40形成時の応力緩和を
目的として形成される。次いでパッド酸化膜44上に、
マスク形成用膜46を積層する。マスク形成用膜46は
酸化されにくい材料から成り例えばCVD(Chemi
cal Vapor Deposition)法により
形成したSi3 N4 膜である。次いでマスク形成用膜4
6上に、これのパターニングに用いるレジストパターン
48を形成する。レジストパターン48を素子形成領域
42に対応する領域に、好ましくは素子形成領域42よ
りも少し広くして形成する。In manufacturing the FET 28 of this embodiment, a base of the first conductivity type such as a p-type Si substrate is prepared as the base 30. Next, as shown in FIGS. 2A and 2B, a pad oxide film 44 is formed on the base 30. The pad oxide film 44 is, for example, SiO formed by a thermal oxidation method.
It is a two- layered film and is formed for the purpose of stress relaxation during formation of the field oxide film 40. Then, on the pad oxide film 44,
A mask forming film 46 is laminated. The mask forming film 46 is made of a material that is not easily oxidized, and is formed by, for example, CVD (Chemi).
It is a Si 3 N 4 film formed by a cal vapor deposition method. Next, the mask forming film 4
A resist pattern 48 used for patterning this is formed on the substrate 6. The resist pattern 48 is formed in a region corresponding to the element formation region 42, preferably slightly wider than the element formation region 42.
【0017】次に図3(A)にも示すように、レジスト
パターン48をマスクとしてマスク形成用膜46をパタ
ーニングし、パターニングしたマスク形成用膜46から
成るマスク50を得る。この際、パッド酸化膜44をパ
ターニングせずにマスク形成用膜46のみを選択的にパ
ターニングする。次いでチャネルストッパ用の不純物例
えばBイオンを素子形成領域42の周辺部の下地30に
選択的に添加する。図中、このイオンを添加した領域を
ばつ印を付して概略的に示した。Next, as shown in FIG. 3A, the mask forming film 46 is patterned using the resist pattern 48 as a mask to obtain a mask 50 made of the patterned mask forming film 46. At this time, only the mask forming film 46 is selectively patterned without patterning the pad oxide film 44. Then, impurities for channel stopper, for example, B ions are selectively added to the base 30 in the peripheral portion of the element forming region 42. In the figure, the region to which this ion is added is schematically indicated by a cross mark.
【0018】次に図3(B)にも示すように、レジスト
パターン48を除去し、然る後マスク50を用いて選択
的に下地30を酸化し下地30上にフィールド酸化膜4
0を形成する。マスク50は酸化されにくいので下地3
0のマスク50で覆われていない領域上に選択的に、フ
ィールド酸化膜40が形成される。Next, as shown in FIG. 3B, the resist pattern 48 is removed, and then the underlayer 30 is selectively oxidized by using the mask 50 to form the field oxide film 4 on the underlayer 30.
Form 0. Since the mask 50 is hard to be oxidized, the base 3
The field oxide film 40 is selectively formed on the region not covered with the mask 50 of 0.
【0019】次に図4(A)〜(B)にも示すように、
マスク50及びパッド酸化膜44を除去し、フィールド
酸化膜40に窓52を形成する。窓52を介し素子形成
領域42の下地30を露出させる。Next, as shown in FIGS. 4 (A) and 4 (B),
The mask 50 and the pad oxide film 44 are removed, and a window 52 is formed in the field oxide film 40. The base 30 in the element formation region 42 is exposed through the window 52.
【0020】次に図5(A)〜(B)にも示すように、
窓52を介し露出する素子形成領域42上に溝形成用の
マスク54を形成する。マスク54はゲート長さ方向に
延在するストライプ状の複数の窓56を有する。素子形
成領域42の溝形成部分を窓56を介し露出し残りの部
分をマスク54で覆う。然る後例えば従来周知のドライ
エッチング法により、素子形成領域42の溝形成部分を
選択的にエッチング除去し、素子形成領域42に溝39
を形成する。溝39を形成した後、マスク54を除去す
る。Next, as shown in FIGS. 5 (A) and 5 (B),
A mask 54 for forming a groove is formed on the element forming region 42 exposed through the window 52. The mask 54 has a plurality of stripe-shaped windows 56 extending in the gate length direction. The groove forming portion of the element forming region 42 is exposed through the window 56 and the remaining portion is covered with the mask 54. After that, for example, by a conventionally known dry etching method, the groove forming portion of the element forming region 42 is selectively removed by etching, and the groove 39 is formed in the element forming region 42.
To form. After forming the groove 39, the mask 54 is removed.
【0021】図示例では、溝39の配設個数を3個及び
深さを平面的に見た場合のゲート幅の1/4の長さとし
たが、これら配設個数及び深さは設計に応じて任意好適
に変更することができる。溝39の深さ及び又は配設個
数を増減させることにより、実効的なゲート幅を増減さ
せることができる。実効的なゲート幅を増加させるには
素子形成領域42の少なくともゲート電極直下に対応す
る領域(チャネル領域)に溝39を設けてあればよい
が、図示例では溝39を素子形成領域42のソース領域
からドレイン領域まで延在させて設けた。ソース領域及
び又はドレイン領域に溝39を設けることにより、ソー
ス領域及び又はドレイン領域と、対応する電極との間の
コンタクト抵抗を低減できる。In the illustrated example, the number of the grooves 39 provided is three and the length is 1/4 of the gate width in a plan view, but the number of the grooves 39 and the depth are determined according to the design. It can be changed arbitrarily. The effective gate width can be increased or decreased by increasing or decreasing the depth and / or number of the grooves 39. In order to increase the effective gate width, it suffices to provide the groove 39 in at least the region (channel region) directly under the gate electrode of the element formation region 42, but in the illustrated example, the groove 39 is formed as the source of the element formation region 42. It is provided so as to extend from the region to the drain region. By providing the groove 39 in the source region and / or the drain region, the contact resistance between the source region and / or the drain region and the corresponding electrode can be reduced.
【0022】次に図6(A)〜(B)にも示すように、
溝39を設けた素子形成領域42にゲート酸化膜形成用
の酸化膜58を形成する。酸化膜58は例えば、素子形
成領域42を900℃程度に加熱して熱酸化することに
より形成した膜厚3〜20nm程度のSiO2 膜であ
る。次いで素子形成領域42のチャネル部分に対ししき
い値電圧を制御するための不純物を例えばイオン注入法
により添加する。この際、溝39の底部のみならず側壁
部分にも不純物を添加するため、下地30の主平面(こ
の例ではSi基板の基板面)に対して垂直な方向からの
みならず主平面に対して斜めの複数の方向から、溝39
側壁部分へ、不純物を入射させるのがよい。図中、この
不純物を注入した領域を白抜き丸印を付して概略的に示
した。Next, as shown in FIGS. 6A and 6B,
An oxide film 58 for forming a gate oxide film is formed in the element forming region 42 having the groove 39. The oxide film 58 is, for example, a SiO 2 film having a film thickness of about 3 to 20 nm formed by heating the element formation region 42 to about 900 ° C. and thermally oxidizing it. Next, an impurity for controlling the threshold voltage is added to the channel portion of the element forming region 42 by, for example, an ion implantation method. At this time, since impurities are added not only to the bottom portion of the groove 39 but also to the side wall portion, not only from the direction perpendicular to the main plane of the base 30 (in this example, the substrate surface of the Si substrate) but also to the main plane. Groove 39 from a plurality of diagonal directions
Impurities are preferably incident on the side wall portion. In the figure, the region into which this impurity has been implanted is schematically indicated by a white circle.
【0023】次に図7(A)〜(B)にも示すように、
酸化膜58上にゲート電極形成用の膜例えばポリシリコ
ン膜60を積層し、然る後ポリシリコン膜60上にレジ
ストマスク62を形成する。マスク62はポリシリコン
膜60のゲート電極形成部分を覆い残りの部分を露出す
る。Next, as shown in FIGS. 7A and 7B,
A film for forming a gate electrode, for example, a polysilicon film 60 is laminated on the oxide film 58, and then a resist mask 62 is formed on the polysilicon film 60. The mask 62 covers the gate electrode formation portion of the polysilicon film 60 and exposes the remaining portion.
【0024】次に図8(A)〜(B)にも示すように、
ポリシリコン膜60のゲート電極形成部分を残存させ残
りの部分をエッチング除去して、残存するポリシリコン
膜60から成るゲート電極34を得ると共にフィールド
酸化膜40を露出させる。次いで酸化膜58のゲート電
極直下の部分を残存させ残りの部分をエッチング除去し
て、残存する酸化膜58から成るゲート酸化膜32を得
ると共に素子形成領域42のソース及びドレイン領域の
溝39を露出させる。次いでマスク62を除去する。Next, as shown in FIGS. 8A and 8B,
The gate electrode forming portion of the polysilicon film 60 is left and the remaining portion is removed by etching to obtain the gate electrode 34 made of the remaining polysilicon film 60 and expose the field oxide film 40. Next, the portion of the oxide film 58 immediately below the gate electrode is left and the remaining portion is removed by etching to obtain the gate oxide film 32 of the remaining oxide film 58 and expose the trenches 39 of the source and drain regions of the element formation region 42. Let Then, the mask 62 is removed.
【0025】次に図9(A)〜(B)にも示すように、
窓52を介し露出する素子形成領域42のソース領域3
6及びドレイン領域38に選択的に不純物例えばAsイ
オンを添加し、図1にも示すようにFET28の基本構
造を完成する。不純物を添加する際には例えば、ゲート
電極34及びフィールド酸化膜40をマスクとし、イオ
ン注入法により不純物を添加する。しかも溝39の底部
のみならず側壁部分にも不純物を添加するため、下地3
0の主平面(この例ではSi基板の基板面)に対して垂
直な方向からのみならず主平面に対して斜めの複数の方
向から、溝39側壁部分へ、不純物を入射させるのがよ
い。図9(B)中、不純物を添加したソース領域36及
びドレイン領域38を点を付して示した。Next, as shown in FIGS. 9A and 9B,
The source region 3 of the element formation region 42 exposed through the window 52
6 and the drain region 38 are selectively doped with impurities such as As ions to complete the basic structure of the FET 28 as shown in FIG. When adding impurities, for example, using the gate electrode 34 and the field oxide film 40 as a mask, the impurities are added by the ion implantation method. Moreover, since impurities are added not only to the bottom of the groove 39 but also to the side wall, the base 3
Impurities are preferably incident on the side wall portion of the groove 39 not only from a direction perpendicular to the main plane of 0 (the substrate surface of the Si substrate in this example) but also from a plurality of directions oblique to the main plane. In FIG. 9B, the source region 36 and the drain region 38 to which impurities have been added are indicated by dots.
【0026】次に図示せずも、従来公知の方法により、
ゲート電極34、ソース領域36及びドレイン領域38
上に中間絶縁膜を積層し、次いで中間絶縁膜にソース領
域36及びドレイン領域38を露出するコンタクト穴を
形成する。次いでコンタクト穴を介しソース領域36及
びドレイン領域38と接続する配線電極を中間絶縁膜上
に形成し、FET28の配線を完了する。Next, though not shown, according to a conventionally known method,
Gate electrode 34, source region 36, and drain region 38
An intermediate insulating film is laminated thereon, and then contact holes exposing the source region 36 and the drain region 38 are formed in the intermediate insulating film. Next, a wiring electrode connected to the source region 36 and the drain region 38 via the contact hole is formed on the intermediate insulating film, and the wiring of the FET 28 is completed.
【0027】この例では、ゲート長L(図9(B)参
照)を計測する方向と平行な方向に溝39を延在させ、
溝39の配設個数を3個及び深さを、平面的に見た場合
のゲート幅W1(図9(B)参照)の1/4の長さとし
たので、FET28の実効的なゲート幅W2はW2=W
1+(W1/4)・6=2.5・W1となる。従って平
面的に見た場合のゲート幅W1が従来と同じ大きさであ
っても、この実施例では実効的なゲート幅W2は平面的
に見た場合のゲート幅W1の2.5倍であるのでドレイ
ン電流量を従来の場合の2.5倍に増やせその結果FE
Tの動作速度を従来よりも速くすることができる。観点
を変えれば、ドレイン電流量を従来と同じとして比較し
た場合、この実施例では平面的に見た場合のゲート幅W
1を従来の1/2.5倍に縮小でき、これはLSIの集
積化に大きく寄与するものである。In this example, the groove 39 is extended in a direction parallel to the direction in which the gate length L (see FIG. 9B) is measured,
Since the number of grooves 39 provided is three and the depth thereof is ¼ of the gate width W1 (see FIG. 9B) when viewed in plan, the effective gate width W2 of the FET 28 is W2. Is W2 = W
1+ (W1 / 4) · 6 = 2.5 · W1. Therefore, even if the gate width W1 when viewed two-dimensionally is the same as the conventional size, the effective gate width W2 in this embodiment is 2.5 times the gate width W1 when viewed two-dimensionally. Therefore, the drain current amount can be increased to 2.5 times that of the conventional case, resulting in FE
The operating speed of T can be made faster than before. From a different point of view, when the drain current amount is the same as the conventional one and compared, the gate width W in the plan view in this embodiment is W.
1 can be reduced to 1 / 2.5 times that of the conventional one, which greatly contributes to LSI integration.
【0028】またCMOS(Complementar
y MOS)構造のLSIでは、nチャネル及びpチャ
ネルMOSFETのそれぞれのドレイン電流量を、動作
速度が最大に成るようにそれぞれ個別に最適化すること
が重要である。この実施例ではこの発明をnチャネルM
OSFETに適用した例につき説明したが、この発明を
CMOS構造のLSIが備えるnチャネル及びpチャネ
ルMOSFETの双方に適用すれば、溝の深さ及び配設
個数を任意好適に設計することにより、動作速度を最大
とするようにnチャネル及びpチャネルMOSFETそ
れぞれのドレイン電流量を最適化することが容易とな
る。In addition, CMOS (Complementar)
In an LSI having a (yMOS) structure, it is important to individually optimize the drain current amount of each of the n-channel and p-channel MOSFETs so that the operating speed is maximized. In this embodiment, the present invention is applied to n channel M
Although the example applied to the OSFET has been described, if the present invention is applied to both the n-channel and p-channel MOSFETs included in the CMOS LSI, the operation can be performed by arbitrarily and appropriately designing the groove depth and the number of grooves. It becomes easy to optimize the drain current amount of each of the n-channel and p-channel MOSFETs so as to maximize the speed.
【0029】この発明は上述した実施例にのみ限定され
るものではなく、従って各構成成分の形状、配設位置、
形成材料、形成方法、数値的条件、延在方向、数値的条
件及びそのほかを任意好適に変更することができる。The present invention is not limited to the above-mentioned embodiment, and therefore, the shape of each component, the arrangement position,
The forming material, the forming method, the numerical conditions, the extending direction, the numerical conditions and the like can be arbitrarily changed.
【0030】[0030]
【発明の効果】上述した説明からも明らかなように、こ
の発明の電界効果トランジスタによれば、溝はソース領
域及びドレイン領域を結ぶ方向に延在するので、素子形
成領域の溝を設けた部分ではドレイン電流が流れる方向
と交差する方向における素子形成領域の表層部分の長さ
Pが溝を設けない場合よりも長くなり、従って実効的な
ゲート幅が増加する。従ってこの発明によれば、平面的
に見た場合のゲート幅が従来と同じ大きさであっても、
実効的なゲート幅を平面的に見た場合のゲート幅よりも
大きくすることができるのでドレイン電流量を従来より
も増加させこれにより動作速度を従来よりも速くするこ
とができる。As is apparent from the above description, according to the field-effect transistor of the present invention, the groove extends in the direction connecting the source region and the drain region, so that the portion where the groove is provided in the element forming region is provided. Then, the length P of the surface layer portion of the element forming region in the direction intersecting with the direction in which the drain current flows becomes longer than that in the case where no groove is provided, and therefore the effective gate width increases. Therefore, according to the present invention, even if the gate width when viewed two-dimensionally is the same size as the conventional one,
Since the effective gate width can be made larger than the gate width when viewed two-dimensionally, the drain current amount can be increased as compared with the conventional case, and the operation speed can be made faster than the conventional case.
【0031】また平面的に見たときの素子形成領域の面
積を一定としたままであっても溝の配設個数及び又は深
さを増加させると長さPが増加するので、平面的に見た
ときの素子形成領域の面積を増加させずに実効的なゲー
ト幅を増加させることができる。従ってこの発明によれ
ば、ドレイン電流量を従来と同じとして比較した場合、
平面的に見た場合のゲート幅を縮小することができるの
で従来よりも素子構造を微細化できる。Further, even if the area of the element forming region in a plan view is kept constant, the length P increases as the number of grooves provided and / or the depth increases. In this case, the effective gate width can be increased without increasing the area of the element formation region. Therefore, according to the present invention, when the drain current amount is the same as the conventional one,
Since the gate width when viewed two-dimensionally can be reduced, the device structure can be made finer than before.
【図1】この発明の実施例の基本構造を概略的に示す要
部切欠斜視図である。FIG. 1 is a cutaway perspective view of a main part schematically showing the basic structure of an embodiment of the present invention.
【図2】(A)及び(B)は同一工程段階における製造
途上の様子を概略的に示す要部断面図及び要部平面図で
ある。FIGS. 2A and 2B are a cross-sectional view and a plan view of a main part, which schematically show a state during manufacturing in the same process step.
【図3】(A)及び(B)は異なる工程段階における製
造途上の様子を概略的に示す要部断面図である。FIG. 3A and FIG. 3B are cross-sectional views of relevant parts schematically showing a state in the process of manufacturing in different process steps.
【図4】(A)及び(B)は同一工程段階における製造
途上の様子を概略的に示す要部断面図及び要部平面図で
ある。4A and 4B are a cross-sectional view and a plan view of a main part schematically showing a state in the process of manufacturing in the same process step.
【図5】(A)及び(B)は同一工程段階における製造
途上の様子を概略的に示す要部断面図及び要部平面図で
ある。5 (A) and 5 (B) are a cross-sectional view and a plan view of a main part schematically showing a state in the process of manufacturing in the same process step.
【図6】(A)及び(B)は同一工程段階における製造
途上の様子を概略的に示す要部断面図及び要部平面図で
ある。6 (A) and 6 (B) are a cross-sectional view and a plan view of a main part, which schematically show a state in the middle of manufacturing in the same process step.
【図7】(A)及び(B)は同一工程段階における製造
途上の様子を概略的に示す要部断面図及び要部平面図で
ある。7 (A) and 7 (B) are a cross-sectional view and a plan view of a main part, which schematically show a state in the process of manufacturing in the same process step.
【図8】(A)及び(B)は同一工程段階における製造
途上の様子を概略的に示す要部断面図及び要部平面図で
ある。8A and 8B are a cross-sectional view and a plan view of a main part, which schematically show a state in the process of manufacturing in the same process step.
【図9】(A)及び(B)は同一工程段階における製造
途上の様子を概略的に示す要部断面図及び要部平面図で
ある。9A and 9B are a main-portion cross-sectional view and a main-portion plan view that schematically show the manufacturing process in the same process step.
【図10】(A)及び(B)は従来のMOSFETの構
成を概略的に示す要部断面図及び要部平面図である。10A and 10B are a main-portion cross-sectional view and a main-portion plan view schematically showing the configuration of a conventional MOSFET.
28:FET 30:下地 32:ゲート酸化膜 34:ゲート電極 36:ソース領域 38:ドレイン領域 39:溝 42:素子形成領域 28: FET 30: Underlayer 32: Gate oxide film 34: Gate electrode 36: Source region 38: Drain region 39: Groove 42: Element formation region
Claims (1)
子形成領域上に順次に設けたゲート酸化膜及びゲート電
極と、該ゲート電極を挟むように配置して前記素子形成
領域に設けたソース領域及びドレイン領域とを備えて成
る電界効果トランジスタにおいて、 前記素子形成領域の少なくともゲート電極直下の領域に
ソース領域及びドレイン領域を結ぶ方向に延在させて溝
を設けたことを特徴とする電界効果トランジスタ。1. An underlayer made of a semiconductor material, a gate oxide film and a gate electrode sequentially provided on an element formation region of the underlayer, and a source provided in the element formation region so as to sandwich the gate electrode. A field effect transistor comprising a region and a drain region, characterized in that a groove is provided in at least a region immediately below the gate electrode of the element formation region so as to extend in a direction connecting the source region and the drain region. Transistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26648291A JPH05110083A (en) | 1991-10-15 | 1991-10-15 | Field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26648291A JPH05110083A (en) | 1991-10-15 | 1991-10-15 | Field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05110083A true JPH05110083A (en) | 1993-04-30 |
Family
ID=17431550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26648291A Withdrawn JPH05110083A (en) | 1991-10-15 | 1991-10-15 | Field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05110083A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6069390A (en) * | 1998-01-15 | 2000-05-30 | International Business Machines Corporation | Semiconductor integrated circuits with mesas |
WO2003054962A1 (en) * | 2001-12-13 | 2003-07-03 | Tokyo Electron Limited | Complementary mis device |
JP2006049826A (en) * | 2004-07-01 | 2006-02-16 | Seiko Instruments Inc | Lateral semiconductor device utilizing trench structure and its manufacturing method |
JP2006100824A (en) * | 2004-09-29 | 2006-04-13 | Agere Systems Inc | Metal oxide semiconductor device having trench diffusion region and its forming method |
JP2006521020A (en) * | 2003-03-20 | 2006-09-14 | 松下電器産業株式会社 | Semiconductor device and manufacturing method thereof |
JP2010503200A (en) | 2006-08-28 | 2010-01-28 | マイクロン テクノロジー, インク. | Semiconductor device, semiconductor component and semiconductor structure, and method for forming semiconductor device, semiconductor component and semiconductor structure |
JP2011151320A (en) * | 2010-01-25 | 2011-08-04 | Renesas Electronics Corp | Semiconductor device and method for production thereof |
US8053820B2 (en) * | 2008-02-26 | 2011-11-08 | Seiko Instruments Inc. | Semiconductor device and method of manufacturing the same |
JP2013030786A (en) * | 2004-07-01 | 2013-02-07 | Seiko Instruments Inc | Semiconductor device |
JP2013080955A (en) * | 2012-12-26 | 2013-05-02 | Seiko Instruments Inc | Semiconductor device |
JP2013153176A (en) * | 2013-02-26 | 2013-08-08 | Tohoku Univ | Complementary mis device manufacturing method |
US8742483B2 (en) | 2006-05-17 | 2014-06-03 | Micron Technology, Inc. | DRAM arrays |
US9263455B2 (en) | 2013-07-23 | 2016-02-16 | Micron Technology, Inc. | Methods of forming an array of conductive lines and methods of forming an array of recessed access gate lines |
CN111725314A (en) * | 2019-03-19 | 2020-09-29 | 三星电子株式会社 | Multidirectional channel transistor and semiconductor device including multidirectional channel transistor |
-
1991
- 1991-10-15 JP JP26648291A patent/JPH05110083A/en not_active Withdrawn
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6069390A (en) * | 1998-01-15 | 2000-05-30 | International Business Machines Corporation | Semiconductor integrated circuits with mesas |
US7202534B2 (en) | 2001-12-13 | 2007-04-10 | Tadahiro Ohmi | Complementary MIS device |
WO2003054962A1 (en) * | 2001-12-13 | 2003-07-03 | Tokyo Electron Limited | Complementary mis device |
US7566936B2 (en) | 2001-12-13 | 2009-07-28 | Tokyo Electron Limited | Complementary MIS device |
JP4922753B2 (en) * | 2003-03-20 | 2012-04-25 | パナソニック株式会社 | Semiconductor device and manufacturing method thereof |
US8486788B2 (en) | 2003-03-20 | 2013-07-16 | Panasonic Corporation | Semiconductor device and method for fabricating the same |
US7986002B2 (en) | 2003-03-20 | 2011-07-26 | Panasonic Corporation | FINFET-type semiconductor device and method for fabricating the same |
JP2006521020A (en) * | 2003-03-20 | 2006-09-14 | 松下電器産業株式会社 | Semiconductor device and manufacturing method thereof |
JP2006049826A (en) * | 2004-07-01 | 2006-02-16 | Seiko Instruments Inc | Lateral semiconductor device utilizing trench structure and its manufacturing method |
JP2013030786A (en) * | 2004-07-01 | 2013-02-07 | Seiko Instruments Inc | Semiconductor device |
JP2006100824A (en) * | 2004-09-29 | 2006-04-13 | Agere Systems Inc | Metal oxide semiconductor device having trench diffusion region and its forming method |
JP2013042169A (en) * | 2004-09-29 | 2013-02-28 | Agere Systems Inc | Metal oxide semiconductor device having trench diffusion region and formation method of the same |
US8921909B2 (en) | 2006-05-17 | 2014-12-30 | Micron Technology, Inc. | Semiconductor constructions, DRAM arrays, and methods of forming semiconductor constructions |
US8742483B2 (en) | 2006-05-17 | 2014-06-03 | Micron Technology, Inc. | DRAM arrays |
JP2010503200A (en) | 2006-08-28 | 2010-01-28 | マイクロン テクノロジー, インク. | Semiconductor device, semiconductor component and semiconductor structure, and method for forming semiconductor device, semiconductor component and semiconductor structure |
US8791506B2 (en) | 2006-08-28 | 2014-07-29 | Micron Technology, Inc. | Semiconductor devices, assemblies and constructions |
US8053820B2 (en) * | 2008-02-26 | 2011-11-08 | Seiko Instruments Inc. | Semiconductor device and method of manufacturing the same |
US8598026B2 (en) * | 2008-02-26 | 2013-12-03 | Seiko Instruments Inc. | Semiconductor device and method of manufacturing the same |
US20120007174A1 (en) * | 2008-02-26 | 2012-01-12 | Masayuki Hashitani | Semiconductor device and method of manufacturing the same |
JP2011151320A (en) * | 2010-01-25 | 2011-08-04 | Renesas Electronics Corp | Semiconductor device and method for production thereof |
JP2013080955A (en) * | 2012-12-26 | 2013-05-02 | Seiko Instruments Inc | Semiconductor device |
JP2013153176A (en) * | 2013-02-26 | 2013-08-08 | Tohoku Univ | Complementary mis device manufacturing method |
US9263455B2 (en) | 2013-07-23 | 2016-02-16 | Micron Technology, Inc. | Methods of forming an array of conductive lines and methods of forming an array of recessed access gate lines |
US10163908B2 (en) | 2013-07-23 | 2018-12-25 | Micron Technology, Inc. | Array of conductive lines individually extending transversally across and elevationally over a mid-portion of individual active area regions |
CN111725314A (en) * | 2019-03-19 | 2020-09-29 | 三星电子株式会社 | Multidirectional channel transistor and semiconductor device including multidirectional channel transistor |
US10930740B2 (en) | 2019-03-19 | 2021-02-23 | Samsung Electronics Co., Ltd. | Multi-direction channel transistor and semiconductor device including the multi-direction channel transistor |
CN111725314B (en) * | 2019-03-19 | 2024-02-23 | 三星电子株式会社 | Multidirectional channel transistor and semiconductor device including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4549340A (en) | Method of making CMOS semiconductor device using specially positioned, retained masks, and product formed thereby | |
JPH05110083A (en) | Field effect transistor | |
KR960000713B1 (en) | Semiconductor device | |
JPH08255846A (en) | Semiconductor device and manufacture thereof | |
JPH05206470A (en) | Insulated gate field effect transistor | |
JP3323381B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH04264776A (en) | Semiconductor device | |
KR900007903B1 (en) | Method of manufacturing semiconductor device | |
JPH098291A (en) | Semiconductor device | |
JP2970858B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JP4417445B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2773205B2 (en) | Semiconductor memory | |
JP3017838B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2540754B2 (en) | High voltage transistor | |
JPH11220124A (en) | Semiconductor device | |
JPH05110076A (en) | Field effect transistor | |
JPH05304264A (en) | Manufacture of semiconductor integrated circuit device | |
JPS5874070A (en) | Manufacture of semiconductor device | |
JPH07302902A (en) | Semiconductor device | |
JPH06112479A (en) | Multi-input field-effect transistor | |
JP2940954B2 (en) | Method for manufacturing semiconductor device | |
JPH0410564A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JP2661792B2 (en) | Method for manufacturing field effect transistor | |
JPS61251063A (en) | Complementary insulated gate field effect transistor integrated circuit | |
JPH05110077A (en) | Field effect transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990107 |