JPH0496B2 - - Google Patents
Info
- Publication number
- JPH0496B2 JPH0496B2 JP6373483A JP6373483A JPH0496B2 JP H0496 B2 JPH0496 B2 JP H0496B2 JP 6373483 A JP6373483 A JP 6373483A JP 6373483 A JP6373483 A JP 6373483A JP H0496 B2 JPH0496 B2 JP H0496B2
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- processing container
- processing
- container
- generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims description 2
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 230000036470 plasma concentration Effects 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/14—Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J2219/0894—Processes carried out in the presence of a plasma
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/19—Details relating to the geometry of the reactor
- B01J2219/194—Details relating to the geometry of the reactor round
- B01J2219/1941—Details relating to the geometry of the reactor round circular or disk-shaped
- B01J2219/1942—Details relating to the geometry of the reactor round circular or disk-shaped spherical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/18—Vacuum control means
- H01J2237/182—Obtaining or maintaining desired pressure
- H01J2237/1825—Evacuating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/336—Changing physical properties of treated surfaces
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Description
【発明の詳細な説明】
技術分野
本発明は樹脂、例えば、ポリプロピレン
(PP)、ポリエチレン(PE)等の表面を改質する
ために、これらの樹脂の表面にプラズマ処理を施
すプラズマ分岐処理方法に関する。Detailed Description of the Invention Technical Field The present invention relates to a plasma branching treatment method for subjecting the surface of resins such as polypropylene (PP) and polyethylene (PE) to plasma treatment in order to modify their surfaces. .
技術の背景
近年、例えば、自動車の部品等は、軽量でかつ
意匠性に優れる樹脂に移行する傾向にあるが、比
較的安価なPP、PE等を、例えば車両外板として
使用する場合、樹脂表面と塗膜との密着性が悪
く、層間離剥という不具合が発生することが知ら
れている。この不具合を解消する手段の一つとし
て、PP、PE等の被塗装物表面をグロー、コロナ
放電あるいは高周波放電に曝し、表面を酸化(極
性基の導入)あるいはエツチング(アンカ効果向
上)するプラズマ処理技術が知られている。Background of the Technology In recent years, for example, there has been a tendency for automobile parts to be made of resins that are lightweight and have excellent designs. However, when relatively inexpensive PP, PE, etc. It is known that the adhesion between the paint film and the paint film is poor, resulting in problems such as delamination. One way to eliminate this problem is to perform plasma treatment, which involves exposing the surface of the object to be coated, such as PP or PE, to glow, corona discharge, or high-frequency discharge to oxidize (introduce polar groups) or etch (improve the anchoring effect) the surface. The technology is known.
ところで、自動車に使用するバンパ等の樹脂部
品をプラズマ処理する場合には、以下の理由によ
り、大型の処理容器が必要となる。 By the way, when plasma-treating resin parts such as bumpers used in automobiles, a large processing container is required for the following reasons.
(1) バンパ等の樹脂部品は大物で複雑形状のた
め。(1) Resin parts such as bumpers are large and have complex shapes.
(2) 処理容器内を真空に維持する必要なため、バ
ツチ処理生産方式が採用されることから、多数
本を同時に処理する必要がある。(2) Since it is necessary to maintain a vacuum inside the processing container, a batch processing production method is adopted, so it is necessary to process many pieces at the same time.
又、一方、処理容器が大型化するに従い容器内
の各部位のプラズマ濃度を均一にするのが困難と
なり、その結果処理容器内に設置する被処理物の
処理性は不均一化するという問題点が発生した。
このような問題が発生する従来のプラズマ処理装
置の一例を第3図a,bに示す。これらの図で、
A部に設置した被処理物(図示せず)とB部に設
置した被処理物(図示せず)との間で、処理後の
被処理物表面の接触角度測定による評価を行なつ
たところ、A部に設置したものはB部に設置した
ものより処理性が劣り、また同一被処理物内でも
処理性に不均一がみられた。これは、B部に設置
した被処理物によつてプラズマ照射が遮蔽され、
A部のプラズマの寿命が損なわれるためであると
考えられる。 On the other hand, as the processing container becomes larger, it becomes difficult to make the plasma concentration uniform in each part of the container, and as a result, there is a problem that the processing properties of the objects to be processed placed in the processing container become uneven. There has occurred.
An example of a conventional plasma processing apparatus in which such a problem occurs is shown in FIGS. 3a and 3b. In these figures,
An evaluation was performed by measuring the contact angle of the surface of the processed object after treatment between the processed object (not shown) installed in section A and the processed object (not shown) installed in section B. The treatment performance of the one installed in section A was inferior to that of the one installed in section B, and non-uniformity was observed in the treatment performance even within the same object to be treated. This is because the plasma irradiation is shielded by the object placed in section B.
This is thought to be because the life of the plasma in part A is impaired.
これらの問題点を解消するため、第4図a,b
に示すように、処理容器にプラズマ導入口を複数
設置したところ、処理容器内における被処理物の
処理を均一に施すことができた。以上のことによ
り、大型スケールの処理容器内における各部位の
プラズマ濃度を均一化するには、処理容器に複数
個のプラズマ導入口を設置するのが好ましい方法
である。しかし、導入口1個につきそれぞれ一組
のプラズマ発生系装置を設置することは、設備投
資あるいは省電力面で問題がある。なお、第3図
および第4図における各符号は、後述する第1図
および第2図の各同一符号と同一の部品を示して
いる。 In order to solve these problems, Fig. 4 a and b
As shown in Figure 2, when a plurality of plasma inlets were installed in the processing container, the objects to be processed within the processing container could be uniformly processed. As described above, in order to equalize the plasma concentration at each location within a large-scale processing container, it is preferable to install a plurality of plasma inlets in the processing container. However, installing one set of plasma generation system devices for each inlet poses problems in terms of equipment investment and power saving. Note that each reference numeral in FIG. 3 and FIG. 4 indicates the same component as each same reference numeral in FIG. 1 and FIG. 2, which will be described later.
発明の目的
本発明は、これらの点に鑑み、大物で複雑形状
の樹脂部品を複数個同時に処理するに当り、処理
容器外でプラズマを発生させる前に、マグネトロ
ンでマイクロ波を発生させ、このマイクロ波を複
数に分配してそれぞれの径路でプラズマを発生さ
せ、該プラズマを処理容器内に導入することによ
つて処理の均一化と、設備投資の低減及び省電力
を図るプラズマ処理方法を提供するものである。Purpose of the Invention In view of these points, the present invention generates microwaves with a magnetron before generating plasma outside the processing container when processing a plurality of large, complex-shaped resin parts at the same time. To provide a plasma processing method that achieves uniform processing, reduction of equipment investment, and power saving by distributing waves into a plurality of waves to generate plasma in each path and introducing the plasma into a processing container. It is something.
発明の構成
処理容器外部でマイクロ波放電プラズマを発生
させた後、容器内にプラズマを導入し、該容器内
に設置した被処理物表面にプラズマを照射して処
理する方法において、マグネトロンにより発振さ
れたマイクロ波を分配器により複数に分配し、該
分配されたマイクロ波を、該分配数に対応して設
けたプラズマ発生炉とプラズマ発生管から成るプ
ラズマ発生機構にそれぞれ導き、これらの各プラ
ズマ発生機構にて発生したプラズマを処理容器に
設けた複数のプラズマ導入口を介してそれぞれ処
理容器内に導入するようにした。Structure of the Invention In a method of generating microwave discharge plasma outside a processing container, introducing the plasma into the container, and irradiating the surface of a workpiece placed in the container with the plasma, the plasma is oscillated by a magnetron. The distributed microwaves are distributed to a plurality of parts by a distributor, and the distributed microwaves are guided to a plasma generation mechanism consisting of a plasma generation furnace and a plasma generation tube provided corresponding to the number of distributions, and each of these plasma generation The plasma generated by the mechanism was introduced into the processing container through a plurality of plasma introduction ports provided in the processing container.
実施例
第1図および第2図は本発明の方法を実施する
マイクロ波放電プラズマ処理装置の実施例を示す
ものである。第1図および第2図において、1は
例えばSUS304で構成された円筒状胴部と鏡蓋か
らなる処理容器、2は例えば2450MHzのマイクロ
波を発するマグネトロン(発振管)を内蔵したマ
イクロ波発振器、3はアルミニウムで構成されマ
イクロ波を1:1に分配する分配器、4a,4b
は反射電波を発振管へ戻さないためのアイソレー
ター、5a,bは入、反射電力を監視するパワー
モニターの検出部、6a,bは反射電力を最小に
するための整合器、7a,bはマイクロ波をプラ
ズマ発生炉8a,bへ伝送する導波管、9a,b
は発生炉8内に装着されその一部をマイクロ波に
曝され内部を処理ガスが通過する石英ガラスで構
成されたプラズマ発生管、10a,bはプラズマ
発生管9a,bのパイレツクスガラス製の輸送管
11a,bを気密に接合するテフロン製のフロロ
コネクター、12a,bは輸送管11a,bとシ
ヤワー管14a,bに気密に接合するテフロン製
のコロロコネクター、13a,bは処理容器1へ
のプラズマ導入口である。15a,b,16a,
bはシヤワー管14a,bと同様のシヤワー管で
あり、それぞれ発生炉17a,b,18a,bに
シヤワー管14a,14bの場合と同様にプラズ
マ導入口22a,b,23a,bを介して接続し
ている。19a,b,20a,b,21a,bは
排気ポートで配管(図示なし)を介して真空ポン
プ(図示なし)に接続されており、それぞれプラ
ズマ導入口23a,b,23a,b,22a,b
に対向する位置に配されている。Embodiment FIGS. 1 and 2 show an embodiment of a microwave discharge plasma processing apparatus for carrying out the method of the present invention. In FIGS. 1 and 2, 1 is a processing container made of, for example, SUS304 and has a cylindrical body and a mirror cover; 2 is a microwave oscillator with a built-in magnetron (oscillation tube) that emits, for example, a 2450 MHz microwave; 3 is a distributor made of aluminum and distributes microwaves 1:1; 4a, 4b;
is an isolator to prevent reflected radio waves from returning to the oscillation tube, 5a and b are power monitor detectors that monitor the reflected power, 6a and b are matching devices to minimize the reflected power, and 7a and b are micro Waveguides 9a, b for transmitting waves to the plasma generating furnaces 8a, b
10a and 10b are plasma generation tubes made of quartz glass installed in the generation furnace 8 and partially exposed to microwaves and through which processing gas passes, and 10a and 10b are plasma generation tubes 9a and 9b made of Pyrex glass. Fluoro connectors made of Teflon are used to airtightly connect the transport pipes 11a and 11b, 12a and b are Teflon fluoro connectors that are hermetically joined to the transport pipes 11a and b and the shower pipes 14a and b, and 13a and b are connected to the processing container 1. This is the plasma introduction port. 15a, b, 16a,
b is a shower tube similar to the shower tubes 14a, b, and is connected to the generation furnaces 17a, b, 18a, b, respectively, via plasma inlets 22a, b, 23a, b in the same way as the shower tubes 14a, 14b. are doing. 19a, b, 20a, b, 21a, b are exhaust ports connected to a vacuum pump (not shown) via piping (not shown), and plasma inlet ports 23a, b, 23a, b, 22a, b, respectively.
It is placed in a position opposite to.
発生管9a,bはチユーブ(図示なし)を介し
てガスボンベ(図示なし)へ接続されている。ア
イソレータ4a,b、パワーモニタ5a,b、整
合器6a,b、導波管7a,b、プラズマ発生炉
8a,bは主としてアルミニウムで構成されてい
る。なお、各シヤワー管14a,b,15a,
b,16a,bは処理容器1内で軸方向に配置さ
れ、かつそれぞれ約60°隔てて配置されている。
これらのシヤワー管は多数のプラズマ噴射口(図
示なし)を有し、処理容器1内に均一にプラズマ
を噴射するようになつている。 The generation tubes 9a, b are connected to a gas cylinder (not shown) via a tube (not shown). The isolators 4a, b, power monitors 5a, b, matching boxes 6a, b, waveguides 7a, b, and plasma generating furnaces 8a, b are mainly made of aluminum. In addition, each shower pipe 14a, b, 15a,
b, 16a, and b are arranged in the axial direction within the processing container 1, and are spaced apart from each other by about 60°.
These shower tubes have a large number of plasma injection ports (not shown) and are designed to uniformly inject plasma into the processing container 1.
被処理物(図示なし)を処理容器1内へ投入
後、真空ポンプ(図示なし)にて容器1内を所定
の真空圧に減圧し、ボンベ(図示なし)内の処理
ガスをチユーブ、発生管9a,b等を介して容器
1内に供給して所定の真空圧に設定する。マイク
ロ波発振器2内のマグネトロンにより2450MHzの
マイクロ波を発振させる。発生したマイクロ波は
分離分配器3により2分割されそれぞれアイソレ
ーター4a,b、パワーモニタ検出部5a,b、
整合器6a,b、導波管7a,bを介して発生炉
8a,bへ伝送される。反射電力を最小にするた
めあらかじめ整合器6a,bを各々調整してお
く。この時入、反射電力はパワーモニター検出部
5a,bで各々計測され、反射電力はアイソレー
ター4a,bで系外へ分離(消費)される。発生
炉8a,bへ伝送されたマイクロ波はその強い磁
界により発生管9a,b中を流れている処理ガス
をプラズマ化する。プラズマ化された処理ガスは
プラズマ導入口13a,bから処理容器1内に導
入されシヤワー管14a,bによりシヤワー拡散
される。プラズマ導入口22a,b,23a,b
からも同様にして分配されたマイクロ波にて発生
したプラズマが処理容器1内へ導入されかつシヤ
ワー拡散される。シヤワー拡散されたプラズマは
被処理物(図示なし)に接触(処理)後、排気ポ
ート19a,b,20a,b,21a,bを介し
て系外へ排気される。 After putting the object to be processed (not shown) into the processing container 1, the inside of the container 1 is reduced to a predetermined vacuum pressure using a vacuum pump (not shown), and the processing gas in the cylinder (not shown) is pumped into the tube or generation tube. It is supplied into the container 1 via 9a, b, etc. and set to a predetermined vacuum pressure. The magnetron in the microwave oscillator 2 oscillates a 2450MHz microwave. The generated microwave is divided into two parts by a separation/distributor 3, and isolators 4a, b, power monitor detectors 5a, b,
It is transmitted to the generating furnaces 8a, b via matching boxes 6a, b and waveguides 7a, b. In order to minimize the reflected power, the matching devices 6a and 6b are adjusted in advance. At this time, the reflected power is measured by the power monitor detection sections 5a and 5b, and the reflected power is separated (consumed) to the outside of the system by the isolators 4a and 4b. The microwaves transmitted to the generators 8a and 8b turn the processing gas flowing through the generator tubes 9a and 9b into plasma due to their strong magnetic fields. The plasma processing gas is introduced into the processing chamber 1 through the plasma introduction ports 13a and 13b, and is shower-diffused by the shower pipes 14a and 14b. Plasma introduction ports 22a, b, 23a, b
Similarly, plasma generated by distributed microwaves is introduced into the processing chamber 1 and diffused by shower. After the shower-diffused plasma contacts (processes) an object to be processed (not shown), it is exhausted to the outside of the system via exhaust ports 19a, b, 20a, b, 21a, b.
発明の効果
マイクロ波を分配し複数の箇所からプラズマを
導入照射することにより、処理容器内のプラズマ
濃度を均一にできるために大型複雑形状をした複
数の被処理物を均一処理でき、また発振器の数を
減少できるため設備投資額、電力費を半減でき
る。Effects of the invention By distributing microwaves and introducing and irradiating plasma from multiple locations, the plasma concentration in the processing container can be made uniform, making it possible to uniformly process multiple objects with large and complex shapes. Because the number of units can be reduced, capital investment and electricity costs can be halved.
第1図および第2図は本発明のプラズマ分岐処
理方法を実施するための装置の実施例を示すもの
で、第1図は断面図、第2図は側面図、第3図a
(断面図)および第3図b(側面図)は従来のプラ
ズマ処理装置の一例を示す図、第4図a(断面図)
および第4図b(側面図)は従来のプラズマ処理
装置の他の例を示す図である。
1……処理容器、2……マイクロ波発振器、3
……分配器、4a,b……アイソレータ、5a,
b……パワーモニタ検出部、6a,b……整合
器、7a,b……導波管、8a,b……プラズマ
発生炉、9a,b……プラズマ発生管、10a,
b,12a,b……フロロコネクタ、13a,
b,22a,b,23a,b……プラズマ導入
口、14a,b,15a,b,16a,b……シ
ヤワー管、19a,b,20a,b,21a,b
……排気口。
1 and 2 show an embodiment of an apparatus for carrying out the plasma branching treatment method of the present invention, in which FIG. 1 is a sectional view, FIG. 2 is a side view, and FIG.
(cross-sectional view) and FIG. 3b (side view) are views showing an example of a conventional plasma processing apparatus, and FIG. 4a (cross-sectional view)
4b (side view) is a diagram showing another example of a conventional plasma processing apparatus. 1...Processing container, 2...Microwave oscillator, 3
...Distributor, 4a, b...Isolator, 5a,
b... Power monitor detection unit, 6a, b... Matching box, 7a, b... Waveguide, 8a, b... Plasma generation furnace, 9a, b... Plasma generation tube, 10a,
b, 12a, b... Fluoro connector, 13a,
b, 22a, b, 23a, b...Plasma inlet, 14a, b, 15a, b, 16a, b...Shower tube, 19a, b, 20a, b, 21a, b
……exhaust port.
Claims (1)
生させた後、容器内にプラズマを導入し、該容器
内に設置した被処理物表面にプラズマを照射して
処理する方法において、マグネトロンにより発振
されたマイクロ波を分配器により複数に分配し、
該分配されたマイクロ波を、該分配数に対応して
設けたプラズマ発生炉とプラズマ発生管から成る
プラズマ発生機構にそれぞれ導き、これらの各プ
ラズマ発生機構にて発生したプラズマを処理容器
に設けた複数のプラズマ導入口を介してそれぞれ
処理容器内に導入するようにしたプラズマ処理方
法。1 In a method in which a microwave discharge plasma is generated outside a processing container, the plasma is introduced into the container, and the surface of a workpiece placed in the container is irradiated with the plasma. Distributes the waves into multiple parts using a distributor,
The distributed microwaves are each guided to a plasma generation mechanism consisting of a plasma generation furnace and a plasma generation tube provided in accordance with the number of distributions, and the plasma generated by each of these plasma generation mechanisms is provided in a processing container. A plasma processing method in which plasma is introduced into a processing container through a plurality of plasma introduction ports.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6373483A JPS59189130A (en) | 1983-04-13 | 1983-04-13 | Plasma treatment |
AU24671/84A AU549376B2 (en) | 1983-02-25 | 1984-02-16 | Plasma treatment |
DE3486470T DE3486470T2 (en) | 1983-02-25 | 1984-02-23 | Process for plasma treatment of plastic resin |
DE3486317T DE3486317T2 (en) | 1983-02-25 | 1984-02-23 | Device and method for plasma treatment of synthetic resin. |
EP84101926A EP0120307B1 (en) | 1983-02-25 | 1984-02-23 | Apparatus and method for plasma treatment of resin material |
EP91115536A EP0461683B1 (en) | 1983-02-25 | 1984-02-23 | Method for plasma treatment of resin material |
US06/825,941 US4678644A (en) | 1983-02-25 | 1986-01-30 | Apparatus and method for plasma treatment of resin material |
AU82240/87A AU603397B2 (en) | 1983-02-25 | 1987-12-08 | Apparatus and method for plasma treatment of resin material |
AU82238/87A AU8223887A (en) | 1983-02-25 | 1987-12-08 | Apparatus and method for plasma treatment of resin material |
AU82239/87A AU8223987A (en) | 1983-02-25 | 1987-12-08 | Apparatus and method for plasma treatment of resin material |
AU82237/87A AU8223787A (en) | 1983-02-25 | 1987-12-08 | Apparatus and method for plasma treatment of resin material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6373483A JPS59189130A (en) | 1983-04-13 | 1983-04-13 | Plasma treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59189130A JPS59189130A (en) | 1984-10-26 |
JPH0496B2 true JPH0496B2 (en) | 1992-01-06 |
Family
ID=13237925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6373483A Granted JPS59189130A (en) | 1983-02-25 | 1983-04-13 | Plasma treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59189130A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6289737A (en) * | 1985-06-27 | 1987-04-24 | Nippon Medical Supply Corp | Production of plastic tubes |
JPH0623569Y2 (en) * | 1988-03-02 | 1994-06-22 | 新日本無線株式会社 | Plasma generation reactor |
FR2733384B1 (en) * | 1995-04-21 | 1997-07-04 | Univ Lille Sciences Tech | DEVICE FOR CREATING TWO OR MORE PLASMA DISCHARGES IN THE SAME WAVEGUIDE TUBE |
US20040135828A1 (en) * | 2003-01-15 | 2004-07-15 | Schmitt Stephen E. | Printer and method for printing an item with a high durability and/or resolution image |
-
1983
- 1983-04-13 JP JP6373483A patent/JPS59189130A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59189130A (en) | 1984-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101647101B (en) | Plasma process apparatus | |
US6396214B1 (en) | Device for producing a free cold plasma jet | |
TWI427669B (en) | Apparatus for treating large area substrate using hollow cathode plasma | |
HK1046774A1 (en) | Plasma reactor for treating substrates having large surfaces | |
EP1509332B2 (en) | Application of a coating forming material onto at least one substrate | |
ATE420454T1 (en) | PULSED PLASMA TREATMENT METHOD AND APPARATUS | |
JP2000058297A (en) | Plasma processing system | |
WO1994006263A1 (en) | High pressure magnetically assisted inductively coupled plasma | |
KR20140145621A (en) | Microwave plasma generating device and method for operating same | |
US4678644A (en) | Apparatus and method for plasma treatment of resin material | |
JPH10270430A (en) | Plasma treating device | |
JPH0496B2 (en) | ||
US9386677B1 (en) | Plasma concentration apparatus and method | |
US4690097A (en) | Apparatus and method for plasma treatment of resin material | |
JPH10247598A (en) | Plasma source, ion source using it, and plasma processor | |
JPH0774115A (en) | Plasma treatment system | |
JPH0495B2 (en) | ||
JPS6328874A (en) | Reactor | |
Madveika et al. | Investigation of silicon wafers' influence on the local microwave power values in a resonator-type plasmatron | |
EP0152511A1 (en) | Apparatus and method for plasma treatment of resin material | |
KR101781290B1 (en) | Large scale Surface Wave Plasma Device and Conductive Diamond Coating using the Device | |
US4786522A (en) | Method for plasma treatment of resin material | |
JPH0129141B2 (en) | ||
JPS59189129A (en) | Branched plasma treatment | |
JPS59189131A (en) | Plasma treatment apparatus |