JPH0496728A - Refraction force measuring device for eye - Google Patents

Refraction force measuring device for eye

Info

Publication number
JPH0496728A
JPH0496728A JP2214811A JP21481190A JPH0496728A JP H0496728 A JPH0496728 A JP H0496728A JP 2214811 A JP2214811 A JP 2214811A JP 21481190 A JP21481190 A JP 21481190A JP H0496728 A JPH0496728 A JP H0496728A
Authority
JP
Japan
Prior art keywords
light
eye
examined
receiving element
shielding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2214811A
Other languages
Japanese (ja)
Inventor
Yasufumi Fukuma
康文 福間
Akihiro Arai
昭浩 荒井
Kouki Harumoto
考樹 春本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2214811A priority Critical patent/JPH0496728A/en
Publication of JPH0496728A publication Critical patent/JPH0496728A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To carry out the measurement for degree of astigmatism, astigmatic axis angle, etc., by installing a calculation processing part for calculating the degree of sphericity, degree of astigmatism, and astigmatic axis angle of an inspected eye on the basis of each light quantity distribution information in two directions on a light receiving element in the case where a light shielding member is arranged in a prescribed longitudinal direction and each different lateral direction. CONSTITUTION:The light projection system 1 and the light receiving system 2 of a measurement device are arranged oppositely to an inspected eye 3, and when the upper half of the light flux of a measurement light original image 4 reflected by the eye bottom is shielded by the edge part 15 of a light shielding member 12, the reflected light flux which is light-shield is projected on a light receiving surface 9a by an objective lens 8, and the illuminance of the projected image gradually increases or reduces in the direction perpendicular to the edge ridge line. The illuminance signal at a kern point in the direction perpendicular to the edge ridge line which passes through the center of the projection image among the signals supplied from a light receiving element 9 is taken out, and the light quantity distribution is calculated by a calculator 13. Besides, the light receiving element 9 in the direction parallel to the edge ridge line which passes through the center of the taken-up image and the illuminance signals at the respective points are taken out, and the light quantity distribution is calculated similarly by the calculator 13. Accordingly, the measurement of the refraction force of the eye and the measurement of astigmatizm can be realized, and the results of the measurements can be obtained instantly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は眼屈折力測定装置、特に小児から乳幼児に対し
ても有用である眼屈折力測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an eye refractive power measuring device, and particularly to an eye refractive power measuring device that is useful for children and infants.

[従来の技術] 従来、眼屈折力測定装置としては、被検者の応答を基に
眼屈折力を測定する所謂自覚式検眼器、被検眼を他覚的
に測定する所謂オートレフラクトメータ等の装置が知ら
れている。
[Prior Art] Conventionally, eye refractive power measurement devices include a so-called subjective ophthalmoscope that measures eye refractive power based on the response of a test subject, and a so-called autorefractometer that measures the eye to be examined objectively. The device is known.

然し乍ら、この種の装置で乳幼児の測定を行なう場合、
乳幼児の協力を得られない為自覚式検眼器では測定かで
きず、又一般のオートレフラクトメータでは被検眼の位
置を固定しなくてはならないが、乳幼児の場合被検眼の
位置の固定が難しく、測定は極めて困難であるという欠
点を有していた。
However, when measuring infants with this type of device,
Since the infant's cooperation cannot be obtained, a subjective ophthalmoscope can only perform measurements.Also, with a general autorefractometer, the position of the eye to be examined must be fixed, but in the case of infants, it is difficult to fix the position of the eye to be examined. It had the disadvantage that measurement was extremely difficult.

これらの欠点を解消する為、ストロボ光で被検眼眼底を
照明し、被検眼の瞳孔での光束の状態をカメラで撮影し
、その結果から被検眼の眼屈折力を測定するいわゆる7
オトレフラクシヨン方式の測定方法が提案されている。
In order to eliminate these shortcomings, the so-called 7 method involves illuminating the fundus of the eye to be examined with a strobe light, photographing the state of the light flux at the pupil of the eye with a camera, and measuring the ocular refractive power of the eye to be examined from the results.
A measurement method based on otrefraction has been proposed.

このフォトレフラクション方式の測定に於いては、被検
眼の光軸が少しずれても充分に測定をすることができ、
被検眼を固定することが困難である乳幼児の眼屈折力の
測定には有用であるとされているものである。
In this photorefraction method of measurement, sufficient measurements can be made even if the optical axis of the eye to be examined is slightly shifted.
This method is said to be useful for measuring the eye refractive power of infants and young children in whom it is difficult to fix the subject's eye.

U発明が解決しようとするBuコ 然し乍ら、斯かるフォトレフラクション方式の眼屈折力
測定装置では、カメラの光軸に対し、斜め方向からスト
ロボ光源により照明し、その時の瞳孔像を単に撮影する
だけであり、光源の位置により測定できないデイオプタ
ー値があり、又測定可能な範囲が狭いという問題を有し
ている。
However, in the photorefraction type eye refractive power measurement device, the optical axis of the camera is illuminated with a strobe light source from an oblique direction, and the pupil image at that time is simply photographed. However, there are problems in that some diopter values cannot be measured depending on the position of the light source, and the measurable range is narrow.

更に従来この種の装置では乱視度、乱視軸角度等乱視に
ついての測定に関しては考慮されていなかった。
Furthermore, conventional devices of this type have not taken into account measurements of astigmatism, such as the degree of astigmatism and the angle of the astigmatism axis.

ところで本出願人は、先の出願特願平1−24491号
に於いて、被検眼眼底に光源像を投影し、眼底で反射さ
れる光源からの光束をエッヂ状の遮光部材で遮ぎり、遮
ぎっな光束を受光素子で受け、その光束の光量分布状態
を基に眼屈折力を測定する眼屈折力測定装置を提案し、
前述した問題を解決した。
By the way, in the earlier application, Japanese Patent Application No. 1-24491, the present applicant projected a light source image onto the fundus of the eye to be examined, and blocked the light flux from the light source reflected on the fundus with an edge-shaped light shielding member. We proposed an eye refractive power measurement device that receives a dense light beam with a light receiving element and measures the eye refractive power based on the light intensity distribution of the light beam.
Solved the problem mentioned above.

本発明は、この先の出願に係る発明を基本とし、乱視度
、乱視軸角等についても測定し得る眼屈折力測定装置を
提供しようとするもである。
The present invention is based on the invention related to the earlier application, and aims to provide an eye refractive power measuring device capable of measuring astigmatism degree, astigmatic axis angle, etc.

[課題を解決するための手段J 本発明は、光源像を被検眼眼底に投影する為の投影系と
、被検眼眼底からの反射光束の一部を遮光する為のエッ
ヂ状の遮光部材を有し、遮光部材を介して被検眼眼底か
らの反射光束を被検眼瞳孔と略共役な位置に配置した受
光素子上に導く為の受光系と、前記遮光部材を被検眼に
対し所定経線方向に配置した時の受光素子上の少なくと
も2方向での各光量分布情報と前記遮光部材を前記経線
方向と異なる経線方向に配置した時の受光素子上の少な
くとも2方向での各光量分布情報を基に被検眼の球面度
数、乱視度数、乱視軸を演算する為の演算処理部とを備
えたことを特徴とするものであり、更に光源像を被検眼
眼底に投影する為の投影系と、被検lll!眼底からの
反射光束の一部を少なくとも2経線方向に於いて遮光す
るエッヂ状遮光部材を有し、遮光部材を介して被検眼眼
底からの反射光束を被検眼瞳孔と略共役な位置に配置し
た受光素子上に導く為の受光系と、1経線方向の前記遮
光部材を透過した光束により形成される受光素子上の少
なくとも2方向での各光量分布情報と他経線方向の前記
遮光部材を透過した光束により形成される受光素子上の
少なくとも2方向での各光量分布情報を基に被検眼の球
面度数、乱視度数、乱視軸を演算する為の演算処理部と
を備えたことを特徴とするものである。
[Means for Solving the Problems J] The present invention includes a projection system for projecting a light source image onto the fundus of the eye to be examined, and an edge-shaped light shielding member for blocking part of the reflected light flux from the fundus of the eye to be examined. a light-receiving system for guiding the reflected light flux from the fundus of the eye to be examined via a light-shielding member onto a light-receiving element disposed at a position substantially conjugate with the pupil of the eye to be examined; and the light-shielding member is arranged in a predetermined meridian direction with respect to the eye to be examined. information on the light intensity distribution in at least two directions on the light-receiving element when the light-receiving element is placed, and information on the light-amount distribution in at least two directions on the light-receiving element when the light shielding member is disposed in a meridian direction different from the meridian direction. It is characterized by comprising a calculation processing unit for calculating the spherical power, astigmatic power, and astigmatic axis of optometry, and further includes a projection system for projecting a light source image onto the fundus of the examinee's eye, and the examinee's eye fundus. ! It has an edge-like light shielding member that blocks part of the light flux reflected from the fundus in at least two meridian directions, and the light flux reflected from the fundus of the eye to be examined is placed at a position substantially conjugate with the pupil of the eye to be examined via the light shielding member. a light-receiving system for guiding the light onto the light-receiving element; information on the light quantity distribution in at least two directions on the light-receiving element formed by the light flux that has passed through the light-shielding member in one meridian direction; An arithmetic processing unit for calculating the spherical power, astigmatic power, and astigmatic axis of the eye to be examined based on information on the light amount distribution in at least two directions on the light receiving element formed by the light beam. It is.

U作  用コ エッヂ状の遮光部材によって被検眼眼底からの反射光束
の一部を遮光することで、受光素子上に投影された瞳像
には、眼屈折力に応じた光1分布と、反射光束の一部を
遮光したことには無関係な乱視による光量分布とが合算
した光量分布を有する。乱視に起因する光量分布は経線
角度に対して規制的に変化するので、少なくとも2経線
方向に対応して遮光部材の配置を変え受光素子上の少な
くとも2方向の光量分布情報を求めることで被検眼の球
面度数、乱視度数、乱視軸を演算することができる。
U action By blocking a part of the reflected light flux from the fundus of the examined eye with the edge-shaped light shielding member, the pupil image projected onto the light receiving element has a light distribution according to the eye refractive power and a reflected light flux. It has a light amount distribution that is the sum of the light amount distribution due to astigmatism, which is unrelated to the fact that a part of the image is blocked. The light intensity distribution caused by astigmatism changes in a regulated manner with respect to the meridian angle, so by changing the arrangement of the light shielding member corresponding to at least two meridian directions and obtaining information on the light intensity distribution in at least two directions on the light receiving element, the eye to be examined can be adjusted. The spherical power, astigmatic power, and astigmatic axis can be calculated.

[実 施 例] 以下、図面を#照しつつ本発明の一実施例を説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

先の出願(特願平1−24491号)に係る眼屈折力測
定装置は、眼底で反射される光源からの光束をエッヂ状
の遮光部材で遮ぎり、遮ぎった光束を受光素子で受光し
眼屈折力を測定するものであるが、遮ぎっな光束を受光
素子で受けた場合、遮ぎった影響により受光素子上の光
量分布状態はエッヂ稜線と直角方向(経線方向、y方向
)で眼屈折力に対応したものとなる。ところで乱視は、
各経線での眼屈折力(デイオプター値)が異なることに
よって生じるものであり、乱視の状態は球面度S、乱視
度C2乱視軸角度Aで特定される。従って被検眼が完全
な球で乱視がなければ、エッヂ稜線と平行な方向(入方
向)では光量分布は一定であり、エッヂと平行な方向で
光量分布の変化か現れれば、この光量分布は乱視の影響
によるものである。
The eye refractive power measurement device according to the earlier application (Japanese Patent Application No. 1-24491) uses an edge-shaped light shielding member to block the light beam from the light source that is reflected on the fundus of the eye, and receives the blocked light beam with a light-receiving element. This is used to measure refractive power, but when an obstructed light beam is received by a light receiving element, the light intensity distribution state on the light receiving element due to the effect of the interception is the eye refractive power in the direction perpendicular to the edge ridge line (meridian direction, y direction). It corresponds to By the way, astigmatism is
This is caused by the difference in eye refractive power (deopter value) at each meridian, and the state of astigmatism is specified by the degree of sphericity S, the degree of astigmatism C2, and the astigmatism axis angle A. Therefore, if the eye to be examined is a perfect sphere and there is no astigmatism, the light intensity distribution will be constant in the direction parallel to the edge ridgeline (incoming direction), and if a change in the light intensity distribution appears in the direction parallel to the edge, this light intensity distribution will be astigmatic. This is due to the influence of

以下、第1図〜第3図に於いて具体例を説明する。Specific examples will be explained below with reference to FIGS. 1 to 3.

1は測定光源像を被検眼3の眼底7に投影する為の投影
系であり、2は眼底7により反射された光束10を受光
する為の受光系であり、投影系1及び受光系2は被検眼
3に対向して配置される。
1 is a projection system for projecting a measurement light source image onto the fundus 7 of the eye 3 to be examined; 2 is a light receiving system for receiving the light beam 10 reflected by the fundus 7; the projection system 1 and the light receiving system 2 are It is arranged facing the eye 3 to be examined.

前記投影系1は、投影系の光軸と直交し且後述する遮光
部材12のエッヂと直交する所要長さのスリット状発光
部4aを有し、且該遮光部材12と同期して回転する測
定光源4及び該測定光源4からの光束11を被検眼3に
向けて反射させる為のハーフミラ−5から成り、該投影
系1は測定光源4からの光束11を瞳孔6を通して眼底
7上に測定光源4の像を形成する様に投影する6前記受
光系2は、対物レンズ8及び受光素子9から成り、眼底
7からの光束10はハーフミラ−5を透過して受光素子
9上に導かれる。
The projection system 1 has a slit-shaped light emitting section 4a having a required length that is perpendicular to the optical axis of the projection system and perpendicular to the edge of a light shielding member 12, which will be described later, and a measuring device that rotates in synchronization with the light shielding member 12. The projection system 1 consists of a light source 4 and a half mirror 5 for reflecting the light beam 11 from the measurement light source 4 toward the eye 3 to be examined. The light-receiving system 2 is composed of an objective lens 8 and a light-receiving element 9, and a light beam 10 from the fundus 7 passes through a half mirror 5 and is guided onto the light-receiving element 9.

該受光素子9は、エリアCOD、撮像管或は2以上の受
光素子の集合体であり、受光素子9の受光面9aは対物
レンズ8に関して被検眼3の瞳孔6と共役位置に配置さ
れる。
The light-receiving element 9 is an area COD, an image pickup tube, or an assembly of two or more light-receiving elements, and the light-receiving surface 9a of the light-receiving element 9 is arranged at a conjugate position with the pupil 6 of the eye 3 to be examined with respect to the objective lens 8.

前記受光系2の光路内には、被検眼3の眼屈折力が基準
デイオプター値の場合に測定光源像が形成される位置に
、対物レンズ8の光軸0を境界として光束10の片側を
遮光する為のエッヂ状の遮光部材12を光軸と垂直な平
面内に配置する。
In the optical path of the light-receiving system 2, one side of the light beam 10 with the optical axis 0 of the objective lens 8 as a boundary is shaded at a position where a measurement light source image is formed when the eye refractive power of the eye 3 to be examined is the reference diopter value. An edge-shaped light shielding member 12 is arranged in a plane perpendicular to the optical axis.

遮光部材12は、エッヂ部15のエッヂ稜線15aが受
光系2の光軸と合致し且ローラ20等により該光軸を中
心に回転可能に支持され、前記した様に測定光源4と同
期して回転する様になっている。
The light shielding member 12 has an edge ridgeline 15a of an edge portion 15 aligned with the optical axis of the light receiving system 2, and is supported rotatably around the optical axis by rollers 20 and the like, and is rotated in synchronization with the measurement light source 4 as described above. It seems to rotate.

又、前記受光素子9には演算器13が接続され、該演算
器3は受光素子9の受光状態を各稜線でのデータをメモ
リーにし、更に演算し、その結果を表示器14に出力す
る様になっている。
Further, a computing unit 13 is connected to the light receiving element 9, and the computing unit 3 stores data of the light receiving state of the light receiving element 9 at each ridge line in memory, performs further calculations, and outputs the result to a display 14. It has become.

以下作用を説明する。The action will be explained below.

乱視の測定は例えば2経線及び該2経線の各々に対して
直交する方向の光量分布を測定することで求められる。
Astigmatism can be measured, for example, by measuring two meridians and the light intensity distribution in a direction perpendicular to each of the two meridians.

遮光部材12のエッヂ部15により、眼底で反射される
測定光現像4の光束(以下反射光束)の上半分を遮光す
る。遮光された反射光束は対物レンズ8により受光面9
a上に投影され、この投影像はエッヂ稜線と直角方向(
y軸方向)に明度が漸次増加、又は減少する。(増加又
は減少する方向は、被検眼の眼屈折力が基準デイオプタ
ー値に対して大きいか、小さいかで異なる)。
The edge portion 15 of the light shielding member 12 blocks the upper half of the light flux (hereinafter referred to as reflected light flux) of the measuring light developing 4 reflected at the fundus. The blocked reflected light beam is sent to the light receiving surface 9 by the objective lens 8.
a, and this projected image is perpendicular to the edge ridgeline (
The brightness gradually increases or decreases in the y-axis direction). (The direction of increase or decrease differs depending on whether the eye refractive power of the eye to be examined is larger or smaller than the reference diopter value).

受光素子9からの信号のうち、投影像の中心を通り、エ
ッヂ稜線と直角方向(y軸方向)の各点の明度信号を取
出して光量分布を演算器13で演算する。
Among the signals from the light-receiving element 9, brightness signals at each point passing through the center of the projected image and perpendicular to the edge ridge line (y-axis direction) are extracted, and the light amount distribution is calculated by the calculator 13.

又、投影像の中心を通り、エッヂ稜線と平行方向くX軸
方向)の受光素子9、各点の明度信号を取出して光量分
布を演算器13で同様に演算する。
Further, the brightness signals of each point of the light receiving element 9 passing through the center of the projected image (in the direction parallel to the edge ridge line (X-axis direction)) are taken out, and the light amount distribution is calculated in the same way by the calculator 13.

以下、本!I1発明の原理について説明する。Below is the book! I1 The principle of the invention will be explained.

(1)先ず、点光源によって被検眼を照明するとして考
える。すると、一般には眼底上ではボゲた楕円形状の光
斑が形成され、この光斑の各点からの光が被検眼瞳から
出射される。ここで、瞳上の1点から出射する光束を考
えると、この瞳での点と眼底上での光斑の中心とを結ぶ
光線(以下、中心光線という)を中心とする楕円錐状の
光束となる(第4図参照)。
(1) First, consider that the eye to be examined is illuminated by a point light source. Then, a blurred elliptical light spot is generally formed on the fundus of the eye, and light from each point of this light spot is emitted from the pupil of the eye to be examined. Here, if we consider the light flux emitted from a single point on the pupil, we can form an elliptical cone-shaped light flux centered on the ray (hereinafter referred to as the central ray) that connects this point on the pupil and the center of the light spot on the fundus. (See Figure 4).

被検眼に乱視がある場合、前述の中心光線が被検眼の屈
折力によってどの様に変化するかを第5図〜第7図に従
って説明する。
When the subject's eye has astigmatism, how the above-mentioned central ray changes depending on the refractive power of the subject's eye will be explained with reference to FIGS. 5 to 7.

第5図に於いて、被検眼の瞳の中心を原点として乱視軸
方向をX軸として被検眼瞳上でのX。
In FIG. 5, X on the pupil of the subject's eye with the center of the pupil of the subject's eye as the origin and the astigmatism axis direction as the X axis.

y座標系を定め、瞳からしだけ離れた位置に配置される
光源(エッヂ部15の位置と合致)上での座標系をX、
Y座標系と定める0図中、(A>面は被検眼のy軸を含
む面内での眼底と共役な第1焦点面であり瞳からhの距
離にあるとし、(B)面は被検眼のX軸を含む面内での
眼底と共役な第2焦点面であり、瞳から12の距離にあ
るとする。
The y-coordinate system is determined, and the coordinate system on the light source located at a distance from the pupil (coinciding with the position of the edge portion 15) is X,
In Figure 0, which is defined as the Y coordinate system, the (A> plane is the first focal plane that is conjugate with the fundus in the plane that includes the y-axis of the subject's eye and is located at a distance of h from the pupil, and the (B) plane is the subject's eye. It is assumed that the second focal plane is conjugate with the fundus in a plane including the X-axis of the optometry, and is located at a distance of 12 from the pupil.

ここで、点光源(XI 、Yr )から発し、瞳中心を
通る中心光線(実線)と、この光線が眼底で反射し、瞳
上の点(xp 、 yp )を通過する中心光線(点線
)を考える6第4図に示す様にy軸を含む断面での中心
光線を考えると、y、の位置に拘らず第1焦点面上では
一定の位置v1を通る光線となる。この光線の第2焦点
面上での到達高さを v2、エッヂ部15面での到達高
さをYcとする。又、第7図で示す様に、X軸を含む断
面での中心光束を考えると、Xpの位置に拘らず第2焦
点面上では一定の位置U2を通過する光線となる。この
光線の第一焦点面上での到達高さを ul、エッヂ部1
5面での到達高さをXcとする。 ここで、第6図に於
いて、実線と点線の光線と座標軸か作る3角形の相似条
件より、 (Yr  Yc )/yp = (L  1+ )/I
+・・・(1) が得られ、第7図より同様に、 (Xl−Xc )/xp = (L−12>/L・・・
(2) が得られる。
Here, the central ray (solid line) that is emitted from a point light source (XI, Yr) and passes through the center of the pupil, and the central ray (dotted line) that is reflected at the fundus and passes through the point (xp, yp) on the pupil. Thinking 6 If we consider the central ray in a cross section including the y-axis as shown in FIG. 4, the ray passes through a constant position v1 on the first focal plane regardless of the position of y. Let v2 be the reaching height of this light beam on the second focal plane, and let Yc be the reaching height at the edge portion 15 surface. Further, as shown in FIG. 7, considering the central light beam in a cross section including the X-axis, the light beam passes through a constant position U2 on the second focal plane regardless of the position of Xp. The arrival height of this ray on the first focal plane is ul, edge part 1
Let the height reached on the 5th surface be Xc. Here, in Figure 6, from the similarity condition of the triangle formed by the solid and dotted rays and the coordinate axes, (Yr Yc)/yp = (L 1+)/I
+...(1) is obtained, and similarly from Fig. 7, (Xl-Xc)/xp = (L-12>/L...
(2) is obtained.

この式(1)(2)より、点光源の座標位置(X+Y+
)と、瞳上の座標位置(xp 、 yp )を与えれば
、その瞳上の点からの中心光線がエツジ部15面上に到
達する位置の座標(Xc、Yc)は、 Xc =X+ +(1−L/12) XpYc =Y、
+(I  L/ l r ) 3’p  ”・(3)で
得られる。
From these equations (1) and (2), the coordinate position of the point light source (X+Y+
) and the coordinate position (xp, yp) on the pupil, the coordinates (Xc, Yc) of the position where the central ray from the point on the pupil reaches the edge portion 15 surface are as follows: Xc = X+ + ( 1-L/12) XpYc = Y,
+(IL/lr)3'p''・(3).

従って、点光源(x+ 、Yr )から発した光束が眼
底7で反射して瞳上の点(XP 、 yp )から出る
光束は、エツジ部15面上では(3)式により求められ
る点(Xc 、 Yc )を中心として楕円状に分布し
た光束となる。
Therefore, the light flux emitted from the point light source (x+, Yr) is reflected by the fundus 7 and exits from the point (XP, yp) on the pupil, on the edge portion 15 surface, at the point (Xc) determined by equation (3). , Yc), which is distributed in an elliptical manner.

(2)前述では、瞳上の一点からの中心光線を考えたが
、次に、瞳上での所定経線上各点からの中心光線の集合
である光束(以下、光線帯という)を考察する。
(2) In the above, we considered the central ray from one point on the pupil, but next we will consider the luminous flux (hereinafter referred to as a ray band), which is a collection of central rays from each point on a predetermined meridian on the pupil. .

この所定経線方向として瞳上で、X軸からθだけ傾いた
経線方向を考えると、第8図に示す様に、斜線で示す面
である光線帯は瞳からエッヂ部15に至る光路内で回転
しながらエッヂ部15面に到達し、この光線帯のエッヂ
部15面上での断面は所定傾きを有する直線状となり、
この直線上に、前述した中心光線を中心とした楕円状に
分布した光束が並ぶことになる。
If we consider a meridian direction tilted by θ from the X axis on the pupil as the predetermined meridian direction, the ray band, which is the diagonally shaded surface, rotates within the optical path from the pupil to the edge portion 15, as shown in FIG. The beam reaches the edge part 15 surface, and the cross section of this ray band on the edge part 15 surface becomes a straight line with a predetermined inclination.
On this straight line, the light beams distributed in an elliptical shape centered on the above-mentioned central ray are lined up.

(3)次に、点光源(XI 、Yr )が所定方向(こ
こではエッヂ稜線15aに垂直な方向)に沿って移動す
る時のエツジ部15上での光束の状態を第9図に示す。
(3) Next, FIG. 9 shows the state of the light flux on the edge portion 15 when the point light source (XI, Yr) moves along a predetermined direction (here, a direction perpendicular to the edge ridge line 15a).

第9図に於いてθ6はエッヂ部15の傾き角度を示し、
αは前述したエッヂ部面上での光線帯の断面直線を示す
もので、前述した様に光軸上の点光源により生じる中心
光線を中心とした楕円光束がこの直線上に並ぶ、ここで
瞳の成る一点に注目し、点光源がエッヂ稜線15aに垂
直なY′方向に沿って移動すると、中心光線を中心とし
て形成される楕円形状の光束は、Y′方向に沿って、α
の範囲で移動することになり、エッヂ部15にけられる
範囲が(Xc 、Yc)により異なることが分る。
In FIG. 9, θ6 indicates the inclination angle of the edge portion 15,
α indicates the cross-sectional straight line of the ray band on the edge surface mentioned above, and as mentioned above, the elliptical light flux centered on the central ray generated by the point light source on the optical axis is lined up on this straight line, and here the pupil When the point light source moves along the Y' direction perpendicular to the edge ridge line 15a, the elliptical light flux formed around the central ray will be α along the Y' direction.
It can be seen that the range cut by the edge portion 15 differs depending on (Xc, Yc).

これらの光束の集合体が被検眼瞳と共役な位置に配置し
た受光素子9上の光量分布を決定することになる。
A collection of these light beams determines the light amount distribution on the light receiving element 9 placed at a position conjugate with the pupil of the eye to be examined.

(4)以上説明した点を基に、受光素子9上の被検眼瞳
像の光量分布について考察する。
(4) Based on the points explained above, the light amount distribution of the pupil image of the subject's eye on the light receiving element 9 will be considered.

以下、各々の点光源によって生じた眼底7上の光斑が、
瞳を照明した時の照度をEとし、点光源の位置による差
異が無いと仮定する。又、エッヂ稜線15aの方向をθ
9とし、線状光源は該エッヂ稜線15aに対し直交する
方向に配置されているとする。
Below, the light spots on the fundus 7 caused by each point light source are as follows:
Assume that the illuminance when illuminating the pupil is E, and that there is no difference depending on the position of the point light source. Also, the direction of the edge ridge line 15a is θ
9, and the linear light source is arranged in a direction perpendicular to the edge ridge line 15a.

先ず、前述した座標系X−Yを、06回転させた座標系
X’−Y’を考える。すると、この座標系X’−Y’で
、前述の、(3)式を表すと、により、 Xc  =Xr  CO5θA +Y+  slnθ^
+ (L  L/ + 2 ) Xp  CO3θあ+
(1−L/11  ) yP   S団θ9 ・・・(
6八)Yc  =−X+  S!nθA +Y+  C
O3θ^(1−L/12 )XP  S団θ^ +(1−L/I+ ) 3’p CO3θ6・・・(6
B)となる。尚、この座標系x’−y’では、線状光源
はY′に平行であり、その座標は X+  =  X+  CO8θA 十Y+  sln
θ^Yr’=−X、s団θA+YICO5θ9・・・(
7)である。
First, consider a coordinate system X'-Y' obtained by rotating the aforementioned coordinate system X-Y by 06. Then, if the above-mentioned equation (3) is expressed in this coordinate system X'-Y', then, Xc = Xr CO5θA +Y+ slnθ^
+ (L L/ + 2) Xp CO3θa+
(1-L/11) yP S group θ9...(
68) Yc =-X+ S! nθA +Y+C
O3θ^ (1-L/12)XP S group θ^ + (1-L/I+) 3'p CO3θ6...(6
B). In addition, in this coordinate system x'-y', the linear light source is parallel to Y', and its coordinates are X+ = X+ CO8θA + Y+ sln
θ^Yr'=-X, s group θA+YICO5θ9...(
7).

これらを基に、エッヂ部15を通過した光束により生じ
る瞳と共役な位置にある受光素子9上の光量分布を計算
する。
Based on these, the light amount distribution on the light receiving element 9 at a position conjugate with the pupil, which is generated by the light flux passing through the edge portion 15, is calculated.

第10図は、第9図を基に、瞳の一点上に着目し、この
−点からの光束のエッヂ部15上での光束の状態を示す
ものであり、この光束は、点光源の移動によりエツジ稜
線15aに垂直な方向Y′に沿って移動し、中心光線の
座標Yc′か変化し、光束かエッヂ部15で完全にけら
れた状態から、エッヂ部から遠く離れた位置迄移動する
ことになる。
FIG. 10 focuses on one point on the pupil based on FIG. 9, and shows the state of the light flux from this point on the edge portion 15, and this light flux is caused by the movement of the point light source. The beam moves along the direction Y' perpendicular to the edge ridge line 15a, the coordinate Yc' of the central ray changes, and the beam moves from a state where it is completely eclipsed by the edge part 15 to a position far away from the edge part. It turns out.

尚、後述の説明の為、楕円光束の傾きをθ^(被検眼の
乱視軸を示す)として、楕円光束がエツジ稜線15aに
接する状態を考え、この時のエッヂ稜線15aと中心光
線との距離をR〈θA)とする。
For the sake of explanation below, let us assume that the inclination of the elliptical beam is θ^ (indicating the astigmatic axis of the subject's eye), and consider the state in which the elliptical beam touches the edge ridge line 15a, and the distance between the edge ridge line 15a and the center ray at this time. Let be R<θA).

ここで、エッヂ部15を通過した光束により生じる受光
素子上の瞳像での光1分布f(Xp+y、)は上記(3
)で説明した光束の集合体であり、前記座標系X’−Y
’での下記積分式で示すことができる。
Here, the light 1 distribution f(Xp+y,) in the pupil image on the light receiving element generated by the light flux passing through the edge portion 15 is the above (3
), and the coordinate system X'-Y
' can be shown by the following integral formula.

ここで、φは楕円形状の光束の断面積、Δφはエッヂ部
15によりけられない光束の断面積、Eは定数であり、
積分は線光源4の範囲内で行うものである。
Here, φ is the cross-sectional area of the elliptical light beam, Δφ is the cross-sectional area of the light beam that is not eclipsed by the edge portion 15, and E is a constant.
Integration is performed within the range of the linear light source 4.

f(xt 、 3’s ) =E//[Δφ/φ] dY+ ’ dX+  ・・・
(8)ここで、X1′の動きに対しては、光束のCすら
れる割合は変化しないから、光源を矩形とすると、前記
(8)式は、 f(xt 、 yp ) 2EH,/”[Δφ/φ]dY+  ・・・(9)とな
る。
f(xt, 3's) =E//[Δφ/φ] dY+' dX+...
(8) Here, with respect to the movement of X1', the proportion of the luminous flux that is affected by C does not change, so if the light source is a rectangle, the above equation (8) becomes f(xt, yp) 2EH,/"[ Δφ/φ]dY+ (9).

前記(9)式の積分を範囲に分けて考察する。Let us consider the integral of equation (9) above by dividing it into ranges.

光束が、一部エッヂ部15でけられる範囲、即ち、−R
(θえ)≦Yc’≦R(θA)での積分値は、対称性に
より、 2EHOR(θA) となる。
The range where the luminous flux is partially eclipsed by the edge portion 15, i.e. -R
The integral value at (θe)≦Yc′≦R(θA) is 2EHOR(θA) due to symmetry.

光束か全くけられない範囲、即ち、 Yc’≧R(θA)での積分値は、式(6B)より、Y
r    (L  L/12 )XP  S団θ^+(
1−L/1+ ) yp cosθ、≧R(θA)Io
≦Y+’≦I0より、式(9)のこの範囲の値は、 2EHo  (Io   (I  L/12 )Xp 
 Slnθ6+ (1−L/II ) yp  C03
oA −R(θ、))・・・(11) 光束が完全にけられる範囲、即ち、 Yc′≦−R(θA)では、式(9)のこの範囲の値は
、ゼロである。
From formula (6B), the integral value in the range where the luminous flux is not eclipsed at all, that is, Yc'≧R(θA), is Y
r (LL/12)XP S group θ^+(
1-L/1+) yp cosθ, ≧R(θA)Io
From ≦Y+'≦I0, the value in this range of equation (9) is 2EHo (Io (I L/12 )Xp
Slnθ6+ (1-L/II) yp C03
oA −R(θ, )) (11) In the range where the luminous flux is completely eclipsed, that is, Yc′≦−R(θA), the value of equation (9) in this range is zero.

f (xp 、 y、 ) =O−(12)従って、 f (XP 、 yP)=式(10)十式(ii)−2
EHo  (Io −(1−L/12 )XP  si
nθ。
f (xp, y, ) = O - (12) Therefore, f (XP, yP) = Equation (10) 10 Equation (ii) - 2
EHo (Io-(1-L/12)XP si
nθ.

+(1−L/I+ ) 3’p CO3θ9) ・・・
(13)よって、式(13)より、f (Xp 、 y
p )は、Xp 、 ypの1次式であるから、光量分
布は、傾いた平面上分布を示すことになる。
+(1-L/I+) 3'p CO3θ9)...
(13) Therefore, from equation (13), f (Xp, y
Since p ) is a linear expression of Xp and yp, the light amount distribution shows an inclined plane distribution.

又、瞳の中心座標(0,O)の光量は、式(14)で表
される瞳光量全体の平均値に等しい。
Further, the light amount at the center coordinates (0, O) of the pupil is equal to the average value of the entire pupil light amount expressed by equation (14).

f (0,0) =(//f (xt 、  yp )dxp dyp 
>1/πP2・・・(14) f (0,O)で規格化した光量分布を、fS(xp 
l yp )とすると、 fs(xp 、yp ) t (xp 、 yp )/f (0,0)=(Io 
  (I  L/ L ) Xp  S!nθ^+ (
1−L/1+ ) 3’p  CO3θA l / I
 o −(15)となる。
f (0,0) = (//f (xt, yp)dxp dyp
>1/πP2...(14) The light intensity distribution normalized by f (0, O) is expressed as fS(xp
lyp), fs(xp, yp) t(xp, yp)/f(0,0)=(Io
(IL/L) Xp S! nθ^+ (
1-L/1+) 3'p CO3θA l/I
o - (15).

次に、式(15)のθ3は、エッヂ部15の方向(X’
軸)から測った乱視軸の方向を表しているが、今度はX
’−Y’座標を基準(装置座標)として考察する。
Next, θ3 in equation (15) is the direction of the edge portion 15 (X'
It represents the direction of the astigmatism axis measured from the
Consider the '-Y' coordinate as a reference (device coordinate).

X′軸から角度θだけエツジ部15を回転させて瞳像を
撮像すると、その光量分布は、式(15)にてθ9を(
θ、−θ)と置換えたものに等しい、又、瞳座標をX’
−Y’軸方向にとり、それをXp’−yp′座標とする
と、 XP =Xp   CO8θA −yp   Sinθ
^y、 =x、   sinθA 十yp ’  CO
3θA ・(16)よって、式(15)より、 fs(xp  、 ’ip ’ ) =fIo +(at CO3θ十at Sinθ)xp
士(at sinθ+a、cosθ)3’p’l/I。
When a pupil image is captured by rotating the edge portion 15 by an angle θ from the
θ, −θ), and the pupil coordinate is
-Y' axis direction and set it as Xp'-yp' coordinate, XP = Xp CO8θA -yp Sinθ
^y, =x, sinθA yp' CO
3θA ・(16) Therefore, from equation (15), fs (xp, 'ip') = fIo + (at CO3θ + at Sinθ) xp
し(at sinθ+a, cosθ)3'p'l/I.

・・・(17) 但し、 al =L((1/12−1/II ) 5in2θA
)/2・・・(18^) a2=L (2/L−(1/I、−)−1/12 )+
 (1/It −1/12 )CO32θ6)/2・・
・(18B) as =l、(2/L  (1/li +1/12 )
−(1/1.−1/12 )CO32θ9)/2・・・
(18C) 従って、異なる2つ以上の角度θで瞳像を撮像し、各々
の光量分布fs(Xp  、 3’p ’ )の勾配の
XP13/P′座標軸方向の成分である次の量、 つfS(xp  、 yp ’ )/?xp=(a+c
osθ十a2S!nθ)/IO・、−(19)afs(
xp  、 yp ’ )/ayp=(al  sin
θ十as  CO8θ) / 1. −(20)を角θ
について求めると、未知数a1、a2、a3に対して4
つの方程式が得られるから、上記a I 、a 2、a
 sは決定できる。
...(17) However, al = L ((1/12-1/II) 5in2θA
)/2...(18^) a2=L (2/L-(1/I,-)-1/12)+
(1/It -1/12)CO32θ6)/2...
・(18B) as = l, (2/L (1/li +1/12)
-(1/1.-1/12)CO32θ9)/2...
(18C) Therefore, pupil images are captured at two or more different angles θ, and the following quantity, which is the component of the gradient of each light intensity distribution fs (Xp, 3'p') in the direction of the XP13/P' coordinate axis, fS(xp, yp')/? xp=(a+c
osθ10a2S! nθ)/IO・, −(19)afs(
xp, yp')/ayp=(al sin
θ0as CO8θ) / 1. −(20) as the angle θ
4 for the unknowns a1, a2, and a3.
Since three equations are obtained, the above a I , a 2, a
s can be determined.

前記球面度数S、乱視度数C1乱視軸Aは、S=1/1
. 、C=1/12−1/I、 、A=θ^として表さ
れるから、式(18A) (18B) (18C)%式
% として表され、al 、at 、asが求められると上
記式により、球面度数S、乱視度数C1乱視軸Aを算出
することができ、乱視眼の状態を測定することができる
The spherical power S, the astigmatic power C1, and the astigmatic axis A are S=1/1.
.. , C=1/12-1/I, , A=θ^, so it is expressed as formula (18A) (18B) (18C)% formula % When al , at , and as are determined, the above formula Accordingly, the spherical power S, the astigmatic power C1, and the astigmatic axis A can be calculated, and the state of the astigmatic eye can be measured.

又被検眼が、球面度数のみの場合、式(18A)%式% って、式(19) (20)より、光量の勾配は、常に
エッヂ稜線15aに垂直な方向にあることが分る。
When the eye to be examined has only spherical power, it can be seen from equations (18A), %, and equations (19) and (20) that the gradient of the light amount is always in the direction perpendicular to the edge ridge line 15a.

以上の説明では、瞳の中心と遮光部材12の回転軸とを
同一直線上にとったが、それに限定されるものではない
、又、結像光学系及び視軸も前記直線上にある必要はな
い。
In the above explanation, the center of the pupil and the rotation axis of the light shielding member 12 are on the same straight line, but the invention is not limited to this, and the imaging optical system and the visual axis do not need to be on the straight line either. do not have.

而して、前記演算器13は眼屈折力と共に球面度数S、
乱視度数C1乱視軸Aを演算し、その結果を表示H14
に表示する。
The arithmetic unit 13 calculates not only the eye refractive power but also the spherical power S,
Calculate astigmatism power C1 astigmatism axis A and display the result H14
to be displayed.

尚、エッヂの異なる2位置でのX軸方向、y軸方向の光
量分布を測定する構成は種々考えられる。
Note that various configurations are possible for measuring the light amount distribution in the X-axis direction and the y-axis direction at two positions with different edges.

第11図〜第13図は第2の実施例を示すものである。11 to 13 show a second embodiment.

遮光部材17に矩形形の孔を穿設し、核化の4辺をエッ
ヂ稜線15a、 75b、 15c、 15dとしたも
ので、光源16も該稜線15a、 15b、 15c、
 15dに対応したスリット状発光部16a、 16b
、 16c、 16dが設けられている。
A rectangular hole is bored in the light shielding member 17, and the four sides of the core are edge ridgelines 15a, 75b, 15c, and 15d, and the light source 16 also has the ridgelines 15a, 15b, 15c,
Slit-shaped light emitting parts 16a and 16b corresponding to 15d
, 16c, and 16d are provided.

発光部16a、 16b、 16c、 16dのうち同
−経線上のものを除き2つを選択し、1箇所ずつ点灯さ
せ、前記と同様にエッヂ稜線に対して、直角方向、平行
な方向について光量分布、光量分布の傾斜角度を求める
ことにより球面度数S、乱視度数C2乱視軸Aを演算す
ることかできる。
Select two of the light emitting parts 16a, 16b, 16c, and 16d, excluding those on the same meridian, turn them on one by one, and measure the light intensity distribution in the directions perpendicular and parallel to the edge ridge line in the same way as above. By determining the inclination angle of the light amount distribution, the spherical power S, the astigmatic power C2, and the astigmatic axis A can be calculated.

尚、発光部16a、 16b、 16c、 16dを全
て順次点灯させて測定を行い、更に同−経線上の測定結
果について平均化すれば、マツ毛の影響、水晶帯の濁等
により測定誤差をなくすることができ、測定精度の向上
を図れる。又、発光部にLED等を使用した場合に、1
6a、 16c、 16b、 16dの順で点灯を行え
ば、同一経線方向でのデータ取込みの時間差を少なくす
ることができる。
Furthermore, by sequentially lighting up all the light-emitting parts 16a, 16b, 16c, and 16d, and then averaging the measurement results along the same meridian, measurement errors due to the effects of pine hair, turbidity of the crystal zone, etc. can be eliminated. It is possible to improve measurement accuracy. Also, when using an LED etc. for the light emitting part, 1
If lights 6a, 16c, 16b, and 16d are turned on in this order, the time difference in data acquisition in the same meridian direction can be reduced.

又、第14図、第15図は第3の実施例を示しており、
該実施例では第2の実施例中で示した光源16と同様な
構成を有し、各光源部16a。
Further, FIGS. 14 and 15 show a third embodiment,
This embodiment has the same configuration as the light source 16 shown in the second embodiment, and each light source section 16a.

16b・・・が点滅しない様になっている光源16′と
第2の実施例中で示したものと同一の遮光部材17を有
すると共に該遮光部材17と対物レンズ8との間に各光
源部16a、 16b・・・からの光束を受光系2の光
軸より分離即ち該光軸より離反させる方向に分離させる
光束分離手段、例えば偏角プリズム19を設けている。
16b... has a light source 16' that does not blink, and a light shielding member 17 that is the same as that shown in the second embodiment, and each light source section is provided between the light shielding member 17 and the objective lens 8. A beam separating means, for example, a deflection prism 19, is provided to separate the beams from the light receiving system 2 from the optical axis, that is, to separate them in a direction away from the optical axis.

該偏角プリズム19は各光源部16a、 16b・・・
に対応するプリズム片19a19tl・・・を光軸を中
心に放射状に集合させたものである。
The deflection prism 19 includes each light source section 16a, 16b...
Prism pieces 19a19tl corresponding to the above are assembled radially around the optical axis.

該実施例では各光源部16a、 16b・・・からの光
束が、受光面9aの異なった位置に投影される為、受光
面9aの投影された各部分で前記したと同様な方法で光
景分布を求める様にすれば、複数の経線方向に関する光
量分布が同時に求められ、球面度S、乱視度数C1乱視
軸角度Aも又同時に求められる。
In this embodiment, since the light beams from the respective light source sections 16a, 16b, etc. are projected onto different positions on the light receiving surface 9a, the scene distribution is determined in the same manner as described above at each projected portion of the light receiving surface 9a. By determining the above, the light intensity distribution in a plurality of meridian directions can be determined at the same time, and the degree of sphericity S, the astigmatic power C1, and the astigmatic axis angle A can also be determined at the same time.

更に、第16図は第4の実施例を示している。Furthermore, FIG. 16 shows a fourth embodiment.

光源4を被検眼3に対して対向した位置に配置し、該光
源4、被検眼3の光軸を含む平面内で該光軸に交差する
光軸を有する受光系2x、2yを被検眼3側より順次配
設する。而して、被検眼3の光軸上にハーフミラ−5x
、5yを配設し、眼底7からの光束を受光系2x、2y
に向けて分割反射する。
A light source 4 is disposed at a position facing the eye 3 to be examined, and the light receiving systems 2x and 2y having optical axes that intersect with the optical axis in a plane including the light source 4 and the optical axis of the eye 3 to be examined are connected to the eye 3 to be examined. Arrange sequentially from the side. Therefore, a half mirror 5x is placed on the optical axis of the eye 3 to be examined.
, 5y are arranged, and the light flux from the fundus 7 is sent to the light receiving system 2x, 2y.
Split reflection towards.

ここで、受光系2x、2yの受光素子9x、9yの受光
面9xa、 9yaは前記実施例と同様対物レンズ8x
、8yに関して被検眼3の瞳孔6と共役位置とし、該2
つの受光系2x、2yの光路内に前記実施例と同様な位
置に遮光部材12x、 12yを遮光部材12Yは光軸
に関し遮光部材12Xより90°回転させた位置とする
Here, the light-receiving surfaces 9xa and 9ya of the light-receiving elements 9x and 9y of the light-receiving systems 2x and 2y are the objective lenses 8x and 9ya as in the previous embodiment.
, 8y is a conjugate position with the pupil 6 of the subject's eye 3, and the 2
The light shielding members 12x and 12y are placed in the optical paths of the two light receiving systems 2x and 2y at the same positions as in the embodiment described above, and the light shielding member 12Y is positioned at a position rotated by 90 degrees from the light shielding member 12X with respect to the optical axis.

斯かる構成とすれば、受光素子9x、9yの受光結果よ
り得られる光量分布は2経線方向に関する値となり、し
かも同時に測定することができる。
With such a configuration, the light amount distribution obtained from the light reception results of the light receiving elements 9x and 9y becomes a value related to two meridian directions, and can be measured simultaneously.

尚、第16図で示した実施例に於いて、受光系2x、2
yを全く同一の構成とし、ハーフミラ−で分割反射する
方向を被検眼3の光軸に関し、90°変え、受光系2x
、2yが被検眼3の光軸に対して放射状となる様な配置
としても、同様に2経線方向に関する光量分布傾斜角を
得ることが可能である。
In the embodiment shown in FIG. 16, the light receiving systems 2x, 2
y have exactly the same configuration, the direction of split reflection by the half mirror is changed by 90 degrees with respect to the optical axis of the eye to be examined 3, and the light receiving system 2x
, 2y are arranged radially with respect to the optical axis of the eye 3 to be examined, it is possible to similarly obtain the light amount distribution inclination angle in the two meridian directions.

尚、上記した第1、第2、第3、第4の実施例に於いて
乱視状態を特定する為には2経線に関する光量分布を求
めればよいが、3経線以上の経線に関する光景分布をそ
れぞれ求め平均化すれば、測定精度は更に向上する。
In addition, in the first, second, third, and fourth embodiments described above, in order to identify the astigmatism state, it is sufficient to obtain the light intensity distribution for two meridians, but the scene distribution for three or more meridians can be determined for each meridian. If the values are determined and averaged, the measurement accuracy will be further improved.

尚、上記実施例では投影系の光束分離手段としてハーフ
ミラ−を使用したが、ビームスプリッタ−5偏光プリズ
ム等種々の光束分離手段を用い得ることは勿論である。
In the above embodiment, a half mirror was used as the beam separating means of the projection system, but it goes without saying that various beam separating means such as a beam splitter 5 and a polarizing prism may be used.

又、上記実施例ではエッヂ稜線と直角な方向の光量分布
、平行な光量分布より必要な情報を取出したか、任意の
2方向であっても勿論乱視状態を特定する為の情報を得
ることができる。
Furthermore, in the above embodiment, the necessary information is extracted from the light intensity distribution in the direction perpendicular to the edge ridgeline and the light intensity distribution in parallel, or it is of course possible to obtain information for specifying the astigmatism state even in any two directions. can.

U発明の効果コ 以上述べた如く本発明によれば、眼屈折力の測定と共に
、乱視についての測定を実現化すると共に受光系は受光
素子を用いているので測定結果は瞬時に得られるという
優れた効果を発揮する。
U Effects of the invention As described above, according to the present invention, it is possible to measure not only eye refractive power but also astigmatism, and since the light receiving system uses a light receiving element, measurement results can be obtained instantly. It has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す基本構成図、第2
図は第1図のA−A矢視図、第3図は第1図のB−B矢
視図、第4図は被検眼と点光源からの光束の状態とを示
す説明図、第5図、第6図、第7図はそれぞれ被検眼が
乱視であった場合の眼底からの反射光の状態を示す説明
図、第8図は反射光束の捩れを示す説明図、第9図は遮
光部材上での反射光束の状態を示す説明図、第10図は
エッヂ稜線と直交する線上での反射光束とエッヂ部材と
の関係を示す説明図、第11図は第2の実施例を示す基
本構成図、第12図は第11図のC−C矢視図、第13
図は第11図のD−D矢視図、第14図は第3の実施例
を示す基本構成図、第15図は第14図のEE矢視図、
第16図は第4の実施例を示す基本構成図である。 1は投影系、2.2x、 2yは受光系、3は被検眼、
4.16.16’は光源、5,5x、5yはハーフミラ
−8,8x、8yは対物レンズ、9.9x、9yは受光
素子、12、12X、 12y、 17は遮光部材、1
9は偏向プリズムを示す。 特  許  出  願  人 株式会社ドブコン
Fig. 1 is a basic configuration diagram showing the first embodiment of the present invention;
The figures are a view taken along the line A-A in FIG. 1, FIG. 3 is a view taken along the line B-B in FIG. Figures 6 and 7 are explanatory diagrams showing the state of reflected light from the fundus when the eye to be examined has astigmatism, respectively. Figure 8 is an explanatory diagram showing the twisting of the reflected light beam, and Figure 9 is a shading diagram. An explanatory diagram showing the state of the reflected light flux on the member, FIG. 10 is an explanatory diagram showing the relationship between the reflected light flux on a line perpendicular to the edge ridgeline and the edge member, and FIG. 11 is a basic diagram showing the second embodiment. The configuration diagram, Figure 12 is a view taken along the line C-C in Figure 11, and Figure 13.
The figure is a view taken along the line DD in FIG. 11, FIG. 14 is a basic configuration diagram showing the third embodiment, and FIG. 15 is a view taken along the line EE in FIG. 14.
FIG. 16 is a basic configuration diagram showing the fourth embodiment. 1 is the projection system, 2.2x, 2y is the light receiving system, 3 is the eye to be examined,
4.16.16' is a light source, 5, 5x, 5y are half mirrors, 8, 8x, 8y are objective lenses, 9.9x, 9y are light receiving elements, 12, 12X, 12y, 17 is a light shielding member, 1
9 indicates a deflection prism. Patent applicant Dobcon Co., Ltd.

Claims (1)

【特許請求の範囲】 1)光源像を被検眼眼底に投影する為の投影系と、被検
眼眼底からの反射光束の一部を遮光する為のエッヂ状の
遮光部材を有し、遮光部材を介して被検眼眼底からの反
射光束を被検眼瞳孔と略共役な位置に配置した受光素子
上に導く為の受光系と、前記遮光部材を被検眼に対し所
定経線方向に配置した時の受光素子上の少なくとも2方
向での各光量分布情報と前記遮光部材を前記経線方向と
異なる経線方向に配置した時の受光素子上の少なくとも
2方向での各光量分布情報を基に被検眼の球面度数、乱
視度数、乱視軸を演算する為の演算処理部とを備えたこ
とを特徴とする眼屈折力測定装置。 2)光源像を被検眼眼底に投影する為の投影系と、被検
眼眼底からの反射光束の一部を少なくとも2経線方向に
於いて遮光するエッヂ状遮光部材を有し、遮光部材を介
して被検眼眼底からの反射光束を被検眼瞳孔と略共役な
位置に配置した受光素子上に導く為の受光系と、1経線
方向の前記遮光部材を透過した光束により形成される受
光素子上の少なくとも2方向での各光量分布情報と他経
線方向の前記遮光部材を透過した光束により形成される
受光素子上の少なくとも2方向での各光量分布情報を基
に被検眼の球面度数、乱視度数、乱視軸を演算する為の
演算処理部とを備えたことを特徴とする眼屈折力測定装
置。
[Scope of Claims] 1) A projection system for projecting a light source image onto the fundus of the eye to be examined, and an edge-shaped light shielding member for blocking a part of the reflected light flux from the fundus of the eye to be examined; a light-receiving system for guiding the reflected light flux from the fundus of the eye to be examined onto a light-receiving element placed at a position substantially conjugate with the pupil of the eye to be examined; and a light-receiving element when the light shielding member is placed in a predetermined meridian direction with respect to the eye to be examined. The spherical dioptric power of the eye to be examined is determined based on each light amount distribution information in at least two directions above and each light amount distribution information in at least two directions on the light receiving element when the light shielding member is arranged in a meridian direction different from the meridian direction. An eye refractive power measuring device characterized by comprising a calculation processing unit for calculating an astigmatic power and an astigmatic axis. 2) It has a projection system for projecting a light source image onto the fundus of the subject's eye, and an edge-shaped light shielding member that blocks part of the reflected light flux from the fundus of the subject's eye in at least two meridian directions, and a light receiving system for guiding the reflected light flux from the fundus of the subject's eye onto a light receiving element disposed at a position substantially conjugate with the pupil of the subject's eye, and at least one on the light receiving element formed by the light flux transmitted through the light shielding member in one meridian direction. Based on each light amount distribution information in two directions and each light amount distribution information in at least two directions on the light receiving element formed by the light flux transmitted through the light shielding member in the other meridian direction, the spherical power, astigmatic power, and astigmatism of the eye to be examined are determined. An eye refractive power measuring device characterized by comprising a calculation processing section for calculating an axis.
JP2214811A 1990-08-14 1990-08-14 Refraction force measuring device for eye Pending JPH0496728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2214811A JPH0496728A (en) 1990-08-14 1990-08-14 Refraction force measuring device for eye

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2214811A JPH0496728A (en) 1990-08-14 1990-08-14 Refraction force measuring device for eye

Publications (1)

Publication Number Publication Date
JPH0496728A true JPH0496728A (en) 1992-03-30

Family

ID=16661916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2214811A Pending JPH0496728A (en) 1990-08-14 1990-08-14 Refraction force measuring device for eye

Country Status (1)

Country Link
JP (1) JPH0496728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340299A (en) * 2000-06-02 2001-12-11 Topcon Corp Optical measuring device for eye

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340299A (en) * 2000-06-02 2001-12-11 Topcon Corp Optical measuring device for eye

Similar Documents

Publication Publication Date Title
US5011276A (en) Apparatus for measuring refractive power of eye
JPS6216088B2 (en)
JPS61234837A (en) Apparatus for measuring eye refraction
JP5601614B2 (en) Eye refractive power measuring device
JP3042851B2 (en) Corneal shape measuring device
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JPH0365488B2 (en)
JP2001340299A (en) Optical measuring device for eye
JPH0417048B2 (en)
JPH0496728A (en) Refraction force measuring device for eye
US4828385A (en) Autolensmeter
JP2775297B2 (en) Eye refractive power measuring device
JPH0984760A (en) Positioning detection device for ophthalmic equipment
JPH06189905A (en) Ophthalmologic optical measuring device
JP2775285B2 (en) Eye refractive power measuring device
JPH0360629A (en) Cornea form measuring device
JPH02206425A (en) Glance detection apparatus
JP2817796B2 (en) Eye refractive power measuring device
JPH11346998A (en) Eye refractometer
JPH06245909A (en) Ophthalmorefractometer
JP3001247B2 (en) Eye refractive power measuring device
JP3106127B2 (en) Ophthalmic equipment
JPS62164449A (en) Operation microscope
JP3510312B2 (en) Eye refractive power measuring device
JP2002336200A (en) Ophthalmoscopic equipment