JPH049553A - Cryogenic freezer and its operating method - Google Patents
Cryogenic freezer and its operating methodInfo
- Publication number
- JPH049553A JPH049553A JP10879690A JP10879690A JPH049553A JP H049553 A JPH049553 A JP H049553A JP 10879690 A JP10879690 A JP 10879690A JP 10879690 A JP10879690 A JP 10879690A JP H049553 A JPH049553 A JP H049553A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- compressor
- valve
- pressure
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011017 operating method Methods 0.000 title 1
- 239000003507 refrigerant Substances 0.000 claims abstract description 104
- 230000007246 mechanism Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract 5
- 238000013016 damping Methods 0.000 abstract 1
- 230000008014 freezing Effects 0.000 abstract 1
- 238000007710 freezing Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 11
- 238000005057 refrigeration Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 239000010721 machine oil Substances 0.000 description 2
- 239000010726 refrigerant oil Substances 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、圧縮機を用いた低温冷凍機に係り、特に複数
種の非共沸混合冷媒を用いて、低温を得るための冷凍機
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low temperature refrigerator using a compressor, and more particularly to a refrigerator for obtaining a low temperature using a plurality of types of non-azeotropic mixed refrigerants. .
公知の単段の冷凍システムにおいては、冷媒蒸気が圧縮
機により圧縮され、この圧縮冷媒は空気又は冷却水と熱
交換されることにより凝縮し、この凝縮液は膨張弁によ
り低圧調整されて断熱膨張し、冷凍効果を発生し、最終
的には圧縮機に帰還する。また、公知の多元カスケード
サイクルでは、単一成分の冷媒を用い、冷凍サイクルを
多段に組み合わすことにより目的の低温を得ることがで
きる。これに対して、混合冷凍サイクルでは、混合冷媒
を段階的に高沸点順に液化分離させ、順次低洟点冷媒を
凝縮させ、断熱膨張させることにより低温を得ることが
できる。In a known single-stage refrigeration system, refrigerant vapor is compressed by a compressor, this compressed refrigerant is condensed by exchanging heat with air or cooling water, and this condensate is adjusted to a low pressure by an expansion valve to undergo adiabatic expansion. This generates a refrigeration effect and eventually returns to the compressor. Furthermore, in the known multi-component cascade cycle, a desired low temperature can be obtained by using a single component refrigerant and combining refrigeration cycles in multiple stages. On the other hand, in a mixed refrigeration cycle, a low temperature can be obtained by liquefying and separating a mixed refrigerant stepwise in the order of high boiling points, sequentially condensing a low-point refrigerant, and adiabatically expanding the refrigerant.
上記の混合冷媒冷凍サイクルを、従来の基本的な絡路図
である第3図を用いて説明する。第3図においては、混
合冷媒を圧縮機1により断熱圧縮し、この断熱冷媒を凝
縮器2にて冷却水等により冷却し、部分的に凝縮させ、
第1分離器4にて凝縮冷媒と未凝縮冷媒とに分離させる
。The above mixed refrigerant refrigeration cycle will be explained using FIG. 3, which is a conventional basic circuit diagram. In FIG. 3, a mixed refrigerant is adiabatically compressed by a compressor 1, and this adiabatic refrigerant is cooled by cooling water or the like in a condenser 2 and partially condensed.
The first separator 4 separates the refrigerant into condensed refrigerant and uncondensed refrigerant.
分離された凝縮冷媒は第1減圧器9にて断熱膨張させる
ことにより低温を発生させ、低温部からのもどり冷媒と
合流させ、第1熱交換器6に流通させ、第1分離器4に
て分離した未凝縮冷媒を更に冷却し、部分的に凝縮させ
る。これを順次くり返すことにより、順次低い沸点の冷
媒を凝縮させ、これを断熱膨張させることにより、より
低温の冷媒ガスを発生させることができる。The separated condensed refrigerant is adiabatically expanded in the first decompressor 9 to generate a low temperature, is combined with the refrigerant returned from the low temperature section, is passed through the first heat exchanger 6, and is passed through the first separator 4. The separated uncondensed refrigerant is further cooled and partially condensed. By repeating this process one after another, refrigerants with lower boiling points are condensed and adiabatically expanded, thereby generating refrigerant gas at a lower temperature.
前述のような混合冷媒冷凍システムにおいては、冷凍機
の起動時の機内各部の圧力と、定常状態の機内各部の圧
力とに大きな差が生ずる。In the mixed refrigerant refrigeration system as described above, there is a large difference between the pressure in each part of the refrigerator when the refrigerator is started and the pressure in each part of the refrigerator in a steady state.
定常状態においては、各低温部が所定の低温状態に保た
れ、冷媒の部分的凝縮も行なわれているため、機内の圧
力は低く保たれている。一方、起動時は冷媒温度が常温
に近く、凝縮量も少ないため、特に圧縮機吐出圧力は非
常に高圧となる。このため、圧縮機に大きな負担がかか
り、圧縮機の運転を停止せざるを得なくなる場合がある
。また逆に、起動時の圧縮機吐出圧力を小さくおさえて
おくと、冷凍サイクル形成の進行により機内の圧力が低
下し、所定の冷媒の凝縮を行なうことができなくなる。In the steady state, each low temperature section is maintained at a predetermined low temperature state, and the refrigerant is partially condensed, so the pressure inside the machine is kept low. On the other hand, at startup, the refrigerant temperature is close to room temperature and the amount of condensation is small, so the compressor discharge pressure in particular becomes extremely high. For this reason, a heavy load is placed on the compressor, and the operation of the compressor may have to be stopped. Conversely, if the compressor discharge pressure at startup is kept low, the internal pressure will drop as the refrigeration cycle progresses, making it impossible to condense the desired refrigerant.
より低温の冷媒を得るためには、起動時の圧縮機吐出圧
を低くおさえ、かつ、定常時には所定の吐出圧力を保つ
必要がある。In order to obtain refrigerant at a lower temperature, it is necessary to keep the compressor discharge pressure low at startup and maintain a predetermined discharge pressure during steady state.
この問題を解決するための従来の方法を第4図を用いて
説明する。尚、第4図および前述の第3図においては、
同一機器は同一番号にて示している。A conventional method for solving this problem will be explained using FIG. 4. In addition, in Fig. 4 and the above-mentioned Fig. 3,
Identical equipment is indicated by the same number.
第4図において、基本的な混合冷媒の冷凍サイクルにつ
いては第3図を用いて前述した通りである。冷媒吐出配
管3と冷媒吸込配管12とを連通するバイパス配管20
を設け、このバイパス配管に流量調整弁18又は圧力調
整弁(図示せず)を取り付ける。流!調整弁18は、圧
縮機の吐出圧により作動し、バイパス配管20の冷媒流
量を調節し、圧縮機の吐出圧を設定値を越えないように
作動する。In FIG. 4, the basic mixed refrigerant refrigeration cycle is as described above using FIG. 3. Bypass piping 20 that communicates refrigerant discharge piping 3 and refrigerant suction piping 12
A flow rate regulating valve 18 or a pressure regulating valve (not shown) is attached to this bypass piping. Flow! The regulating valve 18 operates according to the discharge pressure of the compressor, adjusts the flow rate of refrigerant in the bypass pipe 20, and operates so that the discharge pressure of the compressor does not exceed a set value.
この装置においては、流量調整弁18の作動により、圧
縮機の吐出圧力又は冷媒循環量が急激に変化するため、
第1気液分離器4の気液分離機能が正常に働らかなくな
る場合がある。この場合、液冷媒および機械油がガス冷
媒と共に第1熱交換器6に流入し、冷却され、第2気液
分離器5に入る。第1気液分離器で分離されるべき液冷
媒および機械油は、第2減圧器10又は第2熱交換器7
のもどり流路で凍結し、M塞事故を起こすという欠点が
あった。In this device, the discharge pressure of the compressor or the amount of refrigerant circulation changes rapidly due to the operation of the flow rate adjustment valve 18.
The gas-liquid separation function of the first gas-liquid separator 4 may not function properly. In this case, the liquid refrigerant and machine oil flow into the first heat exchanger 6 together with the gas refrigerant, are cooled, and enter the second gas-liquid separator 5. The liquid refrigerant and machine oil to be separated in the first gas-liquid separator are transferred to the second pressure reducer 10 or the second heat exchanger 7.
It had the disadvantage that it would freeze in the return flow path, causing an M blockage accident.
そこで、本発明は、上述のような欠点のない、かつ、簡
単な手段により、起動時には機内の圧力上昇を低くおさ
え、運転定常時には機内の所定圧力を保持することので
きる冷凍機及びその運転方法を提供することを目的とす
る。SUMMARY OF THE INVENTION Therefore, the present invention provides a refrigerating machine and a method for operating the same, which do not have the above-mentioned drawbacks and can suppress the pressure rise inside the machine to a low level during startup and maintain a predetermined pressure inside the machine during steady operation using simple means. The purpose is to provide
本発明は、冷媒タンクと開閉弁と冷媒流量絞り機構とを
用い、冷凍機始動時には圧縮機の吐出圧力を低くおさえ
圧縮機の過負荷運転を防止し、そして冷媒凝縮が進行し
た状態になり冷凍機内の圧力が低下した後にも充分な冷
媒量を循環させることにより、より低温域で大きな冷凍
能力を出すことを可能にしたものである。The present invention uses a refrigerant tank, an on-off valve, and a refrigerant flow rate restricting mechanism to keep the discharge pressure of the compressor low when starting the refrigerator, thereby preventing overload operation of the compressor, and when refrigerant condensation progresses. By circulating a sufficient amount of refrigerant even after the pressure inside the machine has decreased, it is possible to achieve greater refrigerating capacity at lower temperatures.
すなわち、本発明は、圧縮機、凝縮器、蒸発器、該圧縮
機吐出側の送り冷媒と該蒸発器からのもどり冷媒とが流
通する複数の熱交換器、及び複数の分離器と減圧器とを
具備しており、冷媒には複数の非共沸混合冷媒を用い、
該分離器を経た冷媒の凝縮冷媒を該減圧器を介して該熱
交換器で該蒸発器からのもどり冷媒と合流せしめ、該冷
媒中の未凝縮冷媒を冷却し、順次沸点の低い冷媒を凝縮
せしめる手段と、最終段もしくは中間の減圧器を介して
冷媒を該蒸発器に流通する手段とにより、低温を得る冷
凍機において、前記圧縮機吐出側の冷媒吐出配管から、
前記圧縮機吸込側の冷媒吸込配管に連通ずるバイパス通
路を設け、該バイパス通路には、該冷媒吐出配管側より
、第1タンク、第1開閉弁、第2タンク、第2開閉弁お
よび流量絞ぼり機構を直列に配備したことを特徴とする
冷凍機にある。That is, the present invention includes a compressor, a condenser, an evaporator, a plurality of heat exchangers through which refrigerant sent from the compressor discharge side and a return refrigerant from the evaporator flow, and a plurality of separators and a pressure reducer. It uses multiple non-azeotropic mixed refrigerants as refrigerants,
The condensed refrigerant that has passed through the separator is passed through the pressure reducer and combined with the refrigerant returned from the evaporator in the heat exchanger, the uncondensed refrigerant in the refrigerant is cooled, and the refrigerant with a lower boiling point is sequentially condensed. In a refrigerator that obtains a low temperature by means for causing refrigerant to flow to the evaporator via a final stage or intermediate pressure reducer, from the refrigerant discharge piping on the discharge side of the compressor,
A bypass passage communicating with the refrigerant suction pipe on the compressor suction side is provided, and the bypass passage includes a first tank, a first on-off valve, a second tank, a second on-off valve, and a flow rate restrictor from the refrigerant discharge pipe side. This refrigerator is characterized by having a streamer mechanism arranged in series.
また、本冷凍機においては、起動時には該第1開閉弁お
よび第2開閉弁を開けて運転し、所定時間経過後まず、
該第2開閉弁を閉じ、次に該第1開閉弁を閉じ、その次
に該第2開閉弁を開ける運転を行なうことを特徴とする
冷凍機の運転方法にある。In addition, in this refrigerator, the first on-off valve and the second on-off valve are opened during startup, and after a predetermined period of time has elapsed, the first on-off valve and the second on-off valve are opened.
The method of operating a refrigerator is characterized in that the second on-off valve is closed, then the first on-off valve is closed, and then the second on-off valve is opened.
本発明によれば、始動時の圧縮機吐出圧を低くおさえ、
かつ定常時には所定の吐出圧力を保つごとができ、不具
合なく目的の低温の冷媒を得ることができる。According to the present invention, the compressor discharge pressure at startup is kept low,
In addition, a predetermined discharge pressure can be maintained during steady state, and the desired low-temperature refrigerant can be obtained without any problems.
圧縮機吐出側冷媒配管と圧縮機吸込側冷媒配管とを連通
ずるバイパス配管を設け、その途中に吐出側より第1タ
ンク、第1開閉弁、第2タンク、第2開閉弁および冷媒
流量絞ぼり機構を直列に配備する。始動時は、第1開閉
弁と第2開閉弁共に開け、冷媒をバイパスさせる。また
、冷媒流量絞ぼり機構により、第1タンクと第2タンク
内圧は吐出圧力とほぼ同圧となり、所定量の冷媒を貯蔵
する。始動後しばらくすると、冷媒の凝縮が順次進行し
、冷凍機内の圧力も低下して来る。そこで、まずバイパ
ス回路の下流側に取り付けである第2開閉弁を閉じる。A bypass pipe is provided to communicate the compressor discharge side refrigerant pipe and the compressor suction side refrigerant pipe, and in the middle thereof, from the discharge side, a first tank, a first on-off valve, a second tank, a second on-off valve, and a refrigerant flow restrictor are installed. Deploy mechanisms in series. At startup, both the first on-off valve and the second on-off valve are opened to bypass the refrigerant. Further, due to the refrigerant flow rate restricting mechanism, the internal pressures of the first tank and the second tank become approximately the same pressure as the discharge pressure, and a predetermined amount of refrigerant is stored. After a while after startup, the refrigerant gradually condenses and the pressure inside the refrigerator begins to decrease. Therefore, first, the second on-off valve installed on the downstream side of the bypass circuit is closed.
このことにより、圧縮機吐出の冷媒はバイパス回路を通
ることなく、全量が熱交換器内を循環する。As a result, the entire amount of the refrigerant discharged from the compressor circulates within the heat exchanger without passing through the bypass circuit.
これによる圧縮機の吐出圧上昇および圧力振動は第1タ
ンクおよび第2タンクの緩衝効果によりほとんど生じな
い。Due to the buffering effects of the first tank and the second tank, the discharge pressure increase and pressure vibration of the compressor due to this are hardly caused.
次に第1タンクと第2タンクとの間にある第1開閉弁を
閉じ、第2タンク内にある冷媒を封じ込める。その後、
第2開閉弁を開け、第2タンク内に貯蔵した冷媒を冷媒
流量絞り機構を通して循環系に移す。Next, the first on-off valve located between the first tank and the second tank is closed to seal off the refrigerant in the second tank. after that,
The second on-off valve is opened and the refrigerant stored in the second tank is transferred to the circulation system through the refrigerant flow restricting mechanism.
以上の動作において、圧縮機の吐出圧の変化には急激な
上昇変化も脈動変化も生ぜず、気液分離器での機能を常
時正常に働かせることができる。In the above operation, neither a sudden upward change nor a pulsating change occurs in the change in the discharge pressure of the compressor, and the function of the gas-liquid separator can always function normally.
以下本発明を実施例を用いて説明する。ただし、本発明
はこの実施例に限定されるものではない。The present invention will be explained below using examples. However, the present invention is not limited to this example.
実施例1
第1図は本発明の一実施例を示す経路図である。第1図
においては、混合冷媒を圧縮機lにより断熱圧縮し、こ
の圧縮冷媒を凝縮器2にて冷却水等により冷却し、部分
的に凝縮させ、この気液混合冷媒を第1分離器4にて混
合冷媒と未凝縮冷媒とに分離させる。分離された凝縮冷
媒は第1減圧器9にて断熱膨張させることにより低温を
発生させ、低温部からのもどり冷媒上合流させ、第1熱
交換器6を流通させ、第1分離器にて分離した未凝縮冷
媒を更に冷却し、部分的に凝縮させる。これを順次くり
返すことにより、順次沸点の低い冷媒を凝縮させ、凝縮
冷媒を断熱膨張させることにより、より低温の冷媒ガス
を発生させることができる。Embodiment 1 FIG. 1 is a route diagram showing an embodiment of the present invention. In FIG. 1, a mixed refrigerant is adiabatically compressed by a compressor 1, this compressed refrigerant is cooled with cooling water etc. in a condenser 2, and partially condensed, and this gas-liquid mixed refrigerant is transferred to a first separator 4. The refrigerant is separated into mixed refrigerant and uncondensed refrigerant. The separated condensed refrigerant is adiabatically expanded in the first pressure reducer 9 to generate a low temperature, is combined with the refrigerant returned from the low temperature section, is passed through the first heat exchanger 6, and is separated in the first separator. The uncondensed refrigerant is further cooled and partially condensed. By repeating this in sequence, refrigerants with lower boiling points are successively condensed, and the condensed refrigerant is adiabatically expanded, thereby generating refrigerant gas at a lower temperature.
また、圧縮機吐出側冷媒配管3より吸気側冷媒配管12
のバイパス流路に、第1タンク13、第1開閉弁15、
第2タンク14、第2開閉弁16、流量絞り機構17が
配備されている。始動時には、第1開閉弁15および第
2開閉弁16を開け、冷媒のバイパス流路を生じさせる
と同時に第1タンク13と第2タンク]4とを吐出側圧
力に保ち、冷媒を貯蔵させることにより圧縮機吐出圧を
低くおさえる。In addition, the intake side refrigerant pipe 12 is connected to the compressor discharge side refrigerant pipe 3.
A first tank 13, a first on-off valve 15,
A second tank 14, a second on-off valve 16, and a flow rate restricting mechanism 17 are provided. At the time of startup, the first on-off valve 15 and the second on-off valve 16 are opened to create a bypass flow path for the refrigerant, while at the same time keeping the first tank 13 and the second tank 4 at the discharge side pressure to store the refrigerant. This keeps the compressor discharge pressure low.
次に、第2朋閉弁16を閉じ、冷媒のバイパス流れを止
め、その次に、第1開閉弁15を閉じた後、第2開閉弁
16を開ける。第2タンク14の冷媒は、吐出圧と吸込
圧との圧力差により、流量絞り機構17を通して、ゆる
やかに圧縮機吸込側冷媒配管12に移り、圧縮機1によ
り、熱交換器系に循還する。このとき、圧縮機吐出圧力
の急上昇を防止するために、第1タンク13を圧力緩衝
タンクとして作用させる。Next, the second shut-off valve 16 is closed to stop the bypass flow of the refrigerant, and then the first shut-off valve 15 is closed, and then the second shut-off valve 16 is opened. Due to the pressure difference between the discharge pressure and the suction pressure, the refrigerant in the second tank 14 is gently transferred to the compressor suction side refrigerant pipe 12 through the flow rate restricting mechanism 17, and is circulated to the heat exchanger system by the compressor 1. . At this time, in order to prevent the compressor discharge pressure from increasing rapidly, the first tank 13 is made to function as a pressure buffer tank.
以上の様にして、開閉弁とタンク内圧の時間的変動は、
簡略的には第2図に示す通りとなる。As described above, the temporal fluctuations of the on-off valve and tank internal pressure are
It is as shown in FIG. 2 in a simplified manner.
本発明によれば、起動時の一時的な圧縮機吐出圧力を低
くおさえ、良好な圧縮機の起動を行なうことができ、定
常状態においても冷媒循環量を確保することができ、冷
凍能力を十分に発揮する運転を行なうことができる。According to the present invention, it is possible to suppress the temporary compressor discharge pressure at startup to a low level, to perform a good compressor startup, and to ensure the amount of refrigerant circulation even in a steady state, and to maintain sufficient refrigeration capacity. It is possible to drive to the best of your ability.
また、急激な圧力変動を防止し、気液分離器での作用を
常時正常に保つことができる。Further, rapid pressure fluctuations can be prevented and the operation of the gas-liquid separator can be maintained normally at all times.
第1図は、本発明の冷凍機の一例を示す経路図であり、
第2図は、第1図で示す冷凍機の開閉弁作動とタンク内
圧変化とを示す図であり、第3図は、非共沸混合冷媒を
用いた最も基本的を冷凍機の経路図であり、第4図は始
動時の圧縮機吐出圧を低くあさえるたtの従来の冷凍機
の一例を示す経路図である。
1 圧縮機、2 !!縮機、3 吐出側冷媒配管、4
第1気液分離器、5 第2気液分離器、6 第1熱交換
器、7 第2熱交換器、8 蒸発器 9 第1減圧器、
10 第2減圧器、11 第3減圧器、12 吸気側冷
媒配管、13 第1タンク、14 第2タンク、15第
1開閉弁、16 第2開閉弁、17 流量絞り機構、1
8 流量調整弁、19 圧力検知器特許出願人 株式
会社荏原製作所
代 理 人 吉 嶺 桂同
松 1) 大→Iff問FIG. 1 is a route diagram showing an example of the refrigerator of the present invention,
Figure 2 is a diagram showing the opening/closing valve operation and tank internal pressure changes of the refrigerator shown in Figure 1, and Figure 3 is a path diagram of the most basic refrigerator using a non-azeotropic mixed refrigerant. FIG. 4 is a route diagram showing an example of a conventional refrigerator in which the compressor discharge pressure at startup is kept low. 1 Compressor, 2! ! Compressor, 3 Discharge side refrigerant piping, 4
1st gas-liquid separator, 5 2nd gas-liquid separator, 6 1st heat exchanger, 7 2nd heat exchanger, 8 evaporator 9 1st pressure reducer,
10 Second pressure reducer, 11 Third pressure reducer, 12 Intake side refrigerant piping, 13 First tank, 14 Second tank, 15 First on-off valve, 16 Second on-off valve, 17 Flow rate throttling mechanism, 1
8. Flow rate adjustment valve, 19. Pressure detector Patent applicant: Ebara Corporation Representative: Keito Yoshimine
Matsu 1) Large → If question
Claims (1)
媒と該蒸発器からのもどり冷媒とが流通する複数の熱交
換器、及び複数の分離器と減圧器とを具備しており、冷
媒には複数の非共沸混合冷媒を用い、該分離器を経た冷
媒の凝縮冷媒を該減圧器を介して該熱交換器で該蒸発器
からのもどり冷媒と合流せしめ、該冷媒中の未凝縮冷媒
を冷却し、順次沸点の低い冷媒を凝縮せしめる手段と、
最終段もしくは中間の減圧器を介して冷媒を該蒸発器に
流通する手段とにより低温を得る冷凍機において、前記
圧縮機吐出側の冷媒吐出配管から前記圧縮機吸込側の冷
媒吸込配管に連通するバイパス通路を設け、該バイパス
通路には、該冷媒吐出配管側より、第1タンク、第1開
閉弁、第2タンク、第2開閉弁および流量絞ぼり機構を
直列に配備したことを特徴とする冷凍機。 2、請求項1記載の冷凍機において、起動時には該第1
開閉弁および第2開閉弁を開けて運転し、所定時間経過
後、まず、該第2開閉弁を閉じ、次に該第1開閉弁を閉
じ、その次に該第2開閉弁を開ける運転を行なうことを
特徴とする前記冷凍機の運転方法。[Claims] 1. A compressor, a condenser, an evaporator, a plurality of heat exchangers through which the refrigerant sent from the compressor discharge side and the refrigerant returned from the evaporator flow, and a plurality of separators and pressure reduction. A plurality of non-azeotropic mixed refrigerants are used as the refrigerant, and the refrigerant condensed from the refrigerant that has passed through the separator is transferred to the heat exchanger via the pressure reducer and the refrigerant returned from the evaporator. means for merging the refrigerant, cooling the uncondensed refrigerant in the refrigerant, and sequentially condensing the refrigerant with a lower boiling point;
In a refrigerator that obtains a low temperature by circulating refrigerant to the evaporator via a final stage or intermediate pressure reducer, the refrigerant discharge pipe on the compressor discharge side communicates with the refrigerant suction pipe on the compressor suction side. A bypass passage is provided, and a first tank, a first on-off valve, a second tank, a second on-off valve, and a flow rate restricting mechanism are arranged in series in the bypass passage from the refrigerant discharge piping side. refrigerator. 2. In the refrigerator according to claim 1, the first
Operate with the on-off valve and the second on-off valve opened, and after a predetermined period of time, first close the second on-off valve, then close the first on-off valve, and then open the second on-off valve. The method for operating a refrigerator, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10879690A JPH0758143B2 (en) | 1990-04-26 | 1990-04-26 | Low temperature refrigerator and operating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10879690A JPH0758143B2 (en) | 1990-04-26 | 1990-04-26 | Low temperature refrigerator and operating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH049553A true JPH049553A (en) | 1992-01-14 |
JPH0758143B2 JPH0758143B2 (en) | 1995-06-21 |
Family
ID=14493706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10879690A Expired - Lifetime JPH0758143B2 (en) | 1990-04-26 | 1990-04-26 | Low temperature refrigerator and operating method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0758143B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6219965B1 (en) | 1994-07-23 | 2001-04-24 | Otsuka Kagaku Kabushiki Kaisha | Plant growth sheet structure, natural turf sheet structure, method of growing turf and method of laying turf sheet structure |
JP2009174739A (en) * | 2008-01-22 | 2009-08-06 | Shin Meiwa Ind Co Ltd | Mixed refrigerant cooling device |
-
1990
- 1990-04-26 JP JP10879690A patent/JPH0758143B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6219965B1 (en) | 1994-07-23 | 2001-04-24 | Otsuka Kagaku Kabushiki Kaisha | Plant growth sheet structure, natural turf sheet structure, method of growing turf and method of laying turf sheet structure |
JP2009174739A (en) * | 2008-01-22 | 2009-08-06 | Shin Meiwa Ind Co Ltd | Mixed refrigerant cooling device |
Also Published As
Publication number | Publication date |
---|---|
JPH0758143B2 (en) | 1995-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1207359B1 (en) | High pressure regulation in a transcritical vapor compression cycle | |
US5996356A (en) | Parallel type refrigerator | |
EP0506365A1 (en) | Excess refrigerant accumulator for multievaporator vapor compression refrigeration cycles | |
WO2004044503A2 (en) | Refrigeration system with bypass subcooling and component size de-optimization | |
MXPA05013683A (en) | Supercritical pressure regulation of vapor compression system. | |
JP2007503571A (en) | Adjustment of supercritical pressure of economizer refrigeration system | |
EP3290825B1 (en) | Refrigeration apparatus | |
JP2000146322A (en) | Refrigerating cycle | |
JPH03251662A (en) | Pefrigeration system | |
US3698202A (en) | Control system for low temperature refrigeration system | |
JP2002349938A (en) | Refrigeration unit and control method for its oil return | |
US7582223B2 (en) | Refrigerant composition for refrigeration systems | |
CN110411047B (en) | Refrigerating system | |
KR20110087778A (en) | An economizer and refrigerator with the same | |
JPH049553A (en) | Cryogenic freezer and its operating method | |
JP2003336918A (en) | Cooling device | |
JP7367222B2 (en) | Refrigeration cycle equipment | |
JPH07103588A (en) | Freezer-refrigerator | |
JP2711879B2 (en) | Low temperature refrigerator | |
JPH04313647A (en) | Heat pump type air conditioner | |
JPH0642829A (en) | Freezer for low temperature freezing | |
JPH07198215A (en) | Freezer | |
JP3596825B2 (en) | Low pressure control device for cryogenic refrigerator | |
EP0374688A2 (en) | Refrigerator system with dual evaporators for household refrigerators | |
JP2003336917A (en) | Cooling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |