JPH0484405A - Choke for improving power factor - Google Patents
Choke for improving power factorInfo
- Publication number
- JPH0484405A JPH0484405A JP90199919A JP19991990A JPH0484405A JP H0484405 A JPH0484405 A JP H0484405A JP 90199919 A JP90199919 A JP 90199919A JP 19991990 A JP19991990 A JP 19991990A JP H0484405 A JPH0484405 A JP H0484405A
- Authority
- JP
- Japan
- Prior art keywords
- core
- magnetic field
- magnetic
- current
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004907 flux Effects 0.000 claims abstract description 62
- 238000004804 winding Methods 0.000 claims abstract description 34
- 239000003990 capacitor Substances 0.000 claims description 16
- 230000006872 improvement Effects 0.000 claims description 7
- 235000013351 cheese Nutrition 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 13
- 238000013459 approach Methods 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 3
- 210000001364 upper extremity Anatomy 0.000 description 3
- 230000005347 demagnetization Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 244000240602 cacao Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Arc Welding Control (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、インバータのような電気機器の交流入力部
に用いられる力率改善用のチヨークに関するものでであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a power factor correction choke used in an AC input section of an electrical device such as an inverter.
[従来の技術及び課題]
従来より、たとえばインバータの交流入力部には、交流
電源からの電力を整流する整流回路と、整流された電力
を直流入力としてインバータに供給するコンデンサとが
接続され、さらに、力率改善のために5有鉄心チヨーク
が使用されており、このチョークは、大きなインダクタ
ンスが得られるように、第13図に示すコアのB/H特
性線図の直線部分a−bを使用していた。そのため、負
荷(通電量)の大小にかかわらず、そのインダクタンス
は変化しない、その場合、高負荷時の力率改善度を大き
くとると、低負荷時の力率改善度は低下する。[Prior Art and Problems] Conventionally, for example, an AC input section of an inverter is connected to a rectifier circuit that rectifies power from an AC power source and a capacitor that supplies the rectified power to the inverter as a DC input. , a 5-iron core choke is used to improve the power factor, and this choke uses the straight line portion a-b of the core B/H characteristic diagram shown in Figure 13 to obtain a large inductance. Was. Therefore, the inductance does not change regardless of the magnitude of the load (current flow amount).In this case, if the degree of power factor improvement at high loads is increased, the degree of power factor improvement at low loads decreases.
この発明は、従来の技術が持つ上記欠点を解消し、力率
改善の度合を高負荷時も低負荷時も増大させることを目
的としている。The present invention aims to eliminate the above-mentioned drawbacks of the conventional technology and to increase the degree of power factor improvement both at high loads and at low loads.
[課題を解決するための手段]
上記目的を達成するために、本件発明者は、研究を重ね
た結果、小電流時のインダクタンスを小さく、大電流時
のインダクタンスを大きくすれば、高負荷時も低負荷時
も力率が改善されることを見い出した。これが、この発
明の基礎となっている。[Means for Solving the Problems] In order to achieve the above object, the inventor of the present invention has conducted extensive research and found that by decreasing the inductance at low currents and increasing the inductance at high currents, the inductance can be improved even at high loads. It was found that the power factor was improved even under low loads. This is the basis of this invention.
このように小電流時のインダクタンスを小さく、大電流
時のインダクタンスを大きくするために、請求項1の発
明は、交流電源からの電力を整流回路で整流した直流入
力を電気機器に供給するコンデンサと、上記交流電源と
の間に接続されるチョークにおいて、コアに直流磁界を
付加する磁気バイアス手段を設けるとともに、上記コア
の少なくとも一部に、上記直流磁界で磁気飽和点に近づ
き、かつ、通電用の巻線が発生する磁界の大部分を上記
直流磁界と逆方向に通過させる磁束調節部を設けている
。In order to reduce the inductance when the current is small and increase the inductance when the current is large, the invention of claim 1 provides a capacitor that supplies electrical equipment with DC input obtained by rectifying power from an AC power source with a rectifier circuit. , in the choke connected between the AC power supply, a magnetic bias means for applying a DC magnetic field to the core is provided, and at least a part of the core is brought close to the magnetic saturation point by the DC magnetic field, and is energized. A magnetic flux adjustment section is provided that allows most of the magnetic field generated by the winding to pass through in a direction opposite to the DC magnetic field.
請求項2においては、上記磁束調節部を、たとえば1対
設け、上記巻線が発生する磁界を、一方の磁束調節部に
は上記直流磁界と同方向に、他方の磁束調節部には上記
直流磁界と逆方向にそれぞれかけるように設定する。In claim 2, for example, a pair of the magnetic flux adjusting sections are provided, and the magnetic field generated by the winding is directed to one magnetic flux adjusting section in the same direction as the DC magnetic field, and to the other magnetic flux adjusting section, the magnetic field is directed to the DC magnetic field. Set them so that they are applied in the opposite direction to the magnetic field.
チョークの具体的な構造としては、請求項3のように、
コアをEI型として、そのE型の中脚に通電用の巻線を
巻き、この中脚および両側脚の各先端部とI型コアとの
間にギャップを設け、上記両側脚の各外側面に、上記直
流磁界を発生する永久磁石を装着し、各永久磁石の外側
面に、一端部がIコアの端部に接触するヨークを装着し
、上記Iコアに、その磁束通路の一部を絞って上記磁束
調節部を形成した構造とすることができる。As claimed in claim 3, the specific structure of the choke is as follows:
The core is an EI type, a current-carrying winding is wound around the middle leg of the E shape, a gap is provided between the tips of the middle leg and both legs, and the I-shaped core, and each outer surface of the above-mentioned both legs is A permanent magnet that generates the DC magnetic field is attached to the yoke, and a yoke whose one end contacts the end of the I core is attached to the outer surface of each permanent magnet, and a part of the magnetic flux path is connected to the I core. It is possible to have a structure in which the magnetic flux adjusting section is formed by constricting the magnetic flux adjusting section.
また、請求項4のように、コアをやはりEI型として、
そのE型の中脚に通電用の巻線を巻き、この中脚の先端
部とIコアとの間にギャップを設け、I型コアを2分割
してその分割部に、上記直流磁界を発生する永久磁石を
挿入した構造とすることができる。Further, as in claim 4, the core is also of EI type,
A current-carrying winding is wound around the E-shaped middle leg, a gap is created between the tip of the middle leg and the I core, the I-shaped core is divided into two parts, and the above-mentioned DC magnetic field is generated in the divided part. It is possible to have a structure in which a permanent magnet is inserted.
さらに、請求項5のように、Iコアに永久磁石を挿入す
る代りに、E型コアの中脚を縦に2分割してその分割部
に、上記直流磁界を発生する永久磁石を挿入した構造と
することもできる。Furthermore, as in claim 5, instead of inserting a permanent magnet into the I core, the middle leg of the E-shaped core is vertically divided into two parts, and a permanent magnet that generates the DC magnetic field is inserted into the divided part. It is also possible to do this.
[作用]
請求項1〜4の発明によれば、コアの少なくとも一部に
、磁気バイアス手段による直流磁界で磁気飽和点に近づ
き、かつ、通電用の巻線が発生する磁界の大部分を上記
直流磁界と逆方向に通過させる磁束調節部が設けられて
いるので、通電用の巻線を流れる電流が小さい時には、
上記磁束調節部の磁束密度は、まだ磁気飽和点に近い状
態にあるので、インダクタンスが小さくなるのに対し、
上記電流が大きい時には、上記磁束調節部の磁束密度は
、B/H特性線図の勾配の大きい直線部分になるので、
インダクタンスが大きくなる。[Function] According to the invention of claims 1 to 4, at least a part of the core is brought close to the magnetic saturation point by the direct current magnetic field by the magnetic bias means, and most of the magnetic field generated by the energizing winding is There is a magnetic flux adjustment section that allows the magnetic flux to pass in the opposite direction to the DC magnetic field, so when the current flowing through the current-carrying winding is small,
The magnetic flux density of the above magnetic flux adjusting section is still close to the magnetic saturation point, so the inductance becomes small.
When the above-mentioned current is large, the magnetic flux density of the above-mentioned magnetic flux adjustment section becomes a straight line part with a large slope of the B/H characteristic diagram, so
Inductance increases.
コンデンサへのチャージ電流は、正弦波の電流波形のゼ
ロ点に近い下部を除いた上部のみとなるので、コンデン
サと交流電源との間にチョークが挿入されていない場合
には、その電流波形は、幅の狭い山形で、正弦波形とは
大きく相違するものになり、その結果、力率が低下する
。これに対し、この発明では、チョークのインダクタン
スが、小電流時には小さく、大電流時には大きいから、
上記幅の狭い電流波形が、その裾部分(小電流部)では
小さく抑制され、頂部(大電流部)では大きく抑制され
る結果、全体として、正弦波に近づくので、力率が向上
する。The charging current to the capacitor is only in the upper part of the sine wave current waveform, excluding the lower part near the zero point, so if a choke is not inserted between the capacitor and the AC power supply, the current waveform will be as follows: This results in a narrow chevron shape that differs greatly from a sinusoidal waveform, resulting in a lower power factor. On the other hand, in this invention, the inductance of the choke is small when the current is small and large when the current is large.
As a result of the narrow current waveform being suppressed to a small value at the bottom portion (small current portion) and largely suppressed at the top portion (large current portion), the current waveform approaches a sine wave as a whole, thereby improving the power factor.
ここで、請求項2のように、上記磁束調節部を1対設け
て、上記巻線が発生する磁界を、一方の磁束調節部には
上記直流磁界と同方向に、他方の磁束調節部には上記直
流磁界と逆方向にそれぞれかけるように設定しておけば
、磁気バイアスの方向を一定にしておいても、巻線に流
れる交流の極性の反転に応じて交互に、いずれか一方の
磁束調整部が、巻線の発生する磁界の大部分を上記直流
磁界と逆方向に通過させる磁束調節部として作用する。Here, as in claim 2, a pair of the magnetic flux adjusting sections is provided, and the magnetic field generated by the winding is directed to one magnetic flux adjusting section in the same direction as the DC magnetic field and to the other magnetic flux adjusting section. If the magnetic bias is set to be applied in the opposite direction to the above DC magnetic field, even if the direction of the magnetic bias is kept constant, the magnetic flux of either one will be applied alternately according to the reversal of the polarity of the AC flowing through the winding. The adjustment section acts as a magnetic flux adjustment section that allows most of the magnetic field generated by the winding to pass through in a direction opposite to the DC magnetic field.
また、請求項3のように、コアをEI型とし、E型コア
の前側脚の外側面に永久磁石を装着すれば、2つの永久
磁石によって、大きな磁気バイアスを容易にかけること
ができる。しかも、巻線電流による磁界は、主としてE
I型コアの中を通り、永久磁石を通りにくいから、永久
磁石を減磁させる力が小さい。Further, as in claim 3, if the core is an EI type and a permanent magnet is attached to the outer surface of the front leg of the E type core, a large magnetic bias can be easily applied by the two permanent magnets. Moreover, the magnetic field due to the winding current is mainly E
Since it passes through the I-type core and is difficult to pass through the permanent magnet, the force that demagnetizes the permanent magnet is small.
さらに、請求項4のように、コアをEI型として、その
I型コアを中央部で2分割した分割部に上記永久磁石を
挿入すれば、小型の永久磁石1つで磁気バイアスをかけ
ることが可能になる。また、巻線電流による磁界は、永
久磁石をその磁化方向に横切ることがないので、永久磁
石を減磁させる力が小さい。Furthermore, as in claim 4, if the core is an EI type and the permanent magnet is inserted into a divided portion in which the I type core is divided into two at the center, a magnetic bias can be applied with a single small permanent magnet. It becomes possible. Furthermore, since the magnetic field generated by the winding current does not cross the permanent magnet in its magnetization direction, the force for demagnetizing the permanent magnet is small.
他方、請求項5のように、コアをEI型として、そのE
型コアの中脚を縦に2分割し、その分割部に永久磁石を
挿入すれば、上記中脚の面積の大きい分割面で永久磁石
を挟み込むので、永久磁石が強固に保持されるとともに
、上記分割面が大きい分だけ永久磁石が大型になるので
、請求項4の永久磁石と比較して、磁束密度は低いが安
価な材料からなる永久磁石を用いることができる。また
、請求項4の場合と同一の理由で、永久磁石の減磁が少
ない。On the other hand, as in claim 5, if the core is of EI type, the E
If the middle leg of the mold core is vertically divided into two and a permanent magnet is inserted into the split part, the permanent magnet is sandwiched between the split surfaces with a large area of the middle leg, so the permanent magnet is held firmly and the Since the permanent magnet becomes larger in proportion to the larger dividing surface, it is possible to use a permanent magnet made of a material that has a lower magnetic flux density but is cheaper than the permanent magnet of the fourth aspect. Further, for the same reason as in the case of claim 4, there is less demagnetization of the permanent magnet.
[実施例] 以下、この発明の実施例を図面にしたがって説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
第1a図において、10は電気機器の一種であるインバ
ータであり、交流電源11からの電力を整流する整流回
路12と、平滑用のコンデンサ13とを介して直流入力
を受ける、いわゆるコンデンサーインプット型である。In FIG. 1a, 10 is an inverter, which is a type of electrical equipment, and is a so-called capacitor input type inverter that receives DC input via a rectifier circuit 12 that rectifies power from an AC power source 11 and a smoothing capacitor 13. be.
このインバータ10は、コンデンサ13からの直流入力
を交流出力に変換して、負荷14に供給する。This inverter 10 converts the DC input from the capacitor 13 into an AC output and supplies it to the load 14 .
上記交流電源11と整流回路12との間には、この発明
のチヨーク21が介挿されている。このチョーク21は
、第1b図に示すように、整流回路12とコンデンサ1
3との間に接続してもよい。A chain yoke 21 of the present invention is inserted between the AC power source 11 and the rectifier circuit 12. This choke 21 is connected to the rectifier circuit 12 and the capacitor 1, as shown in FIG. 1b.
It may be connected between 3 and 3.
上記チョーク21は、第2図に示すように、E型コア2
2、I型コア23、左右1対のL型ヨーク24、上記E
型コア22の中脚25に巻かれた通電用の巻[26、お
よびE型コア22の前側脚27.27の各外側面27a
に装着された永久磁石28.28からなる磁気バイアス
手段を備えており、上記り型ヨーク24は、その一端部
24aがI型コア23の端部23aに接触した状態で、
永久磁石28の外側面28aに装着されている。The choke 21 has an E-type core 2 as shown in FIG.
2. I-shaped core 23, left and right pair of L-shaped yokes 24, above E
The current-carrying winding [26] wound around the middle leg 25 of the type core 22, and the outer surfaces 27a of the front legs 27 and 27 of the E-type core 22.
The above-mentioned yoke 24 is provided with a magnetic bias means consisting of a permanent magnet 28, 28 attached to the yoke 24, and the above-mentioned yoke 24 is in a state where its one end 24a is in contact with the end 23a of the I-shaped core 23.
It is attached to the outer surface 28a of the permanent magnet 28.
Iコア23と、E型コア22の中脚25および前側脚2
7の各先端部との間には、それぞれギャップ29.30
が設けられている。I core 23, middle leg 25 and front leg 2 of E-type core 22
There is a gap of 29.30 between each tip of 7.
is provided.
上記I型コア23には、磁束通路の一部を絞るために、
部分的に断面積を減少させた磁束調節部31.32が左
右1対設けられており、永久磁石28の直流磁界によっ
て、上記磁束調節部31゜32が磁気飽和点に近づいて
いる。チョーク21は全体として、中心線33を挟んで
左右対称な構造となっている。In the I-type core 23, in order to narrow down a part of the magnetic flux path,
A pair of left and right magnetic flux adjusting sections 31 and 32 whose cross-sectional area is partially reduced are provided, and the magnetic flux adjusting sections 31 and 32 approach the magnetic saturation point due to the DC magnetic field of the permanent magnet 28. The choke 21 as a whole has a symmetrical structure with a center line 33 in between.
ここで、「磁気飽和点に近づく」とは、第3図のB/H
曲線の直線部分a−b(厳密には若干の曲りがある)か
ら外れることをいう。Here, "approaching the magnetic saturation point" means B/H in Figure 3.
It means to deviate from the straight line section a-b (strictly speaking, there is a slight bend) of the curve.
上記第2図の構成において、永久磁石28による直流磁
界は、E型コアとI型コア23の間にギャップ29.3
0があるから、8塁コア22の3つの脚部25,27.
27を通らずに、E型コア22の胴部48,Iコア23
およびLfiヨーク24内を矢印Aのように通り、この
磁気通路内における比較的面積の小さい磁束調節部31
,32が、磁気飽和点に近づく、つまり、第3図のB/
H特性線図の直線部分a−bから外れた領域にあるC点
に達する。ここで、上記永久磁石28は2つ設けられて
いるから、大きな磁気バイアスを容易にかけることがで
きる。In the configuration shown in FIG. 2 above, the DC magnetic field generated by the permanent magnet 28 is applied to the gap 29.
0, the three legs 25, 27 .
27, the body 48 of the E-type core 22, the I core 23
and a magnetic flux adjusting section 31 that passes through the Lfi yoke 24 as shown by arrow A and has a relatively small area within this magnetic path.
, 32 approaches the magnetic saturation point, that is, B/ in FIG.
A point C is reached in a region outside the straight line section a-b of the H characteristic diagram. Here, since two permanent magnets 28 are provided, a large magnetic bias can be easily applied.
この状態で、巻線26の両端子35.36間に交流を通
電したとき、一方の端子35に正、他方の端子36に負
の電圧がかかった場合1巻線26の上向きにN極が生じ
るように磁界B1が発生する。この磁界B1は、ギャッ
プ29.30を通過し、E型コア22とIコア23の中
を通るが、永久磁石28が磁界B1に対してギャップと
して働くことから、ヨーク24および永久磁石28を通
りにくい、したがって、磁界Blによる永久磁石28の
減磁は少ない。In this state, when alternating current is applied between both terminals 35 and 36 of the winding 26, if a positive voltage is applied to one terminal 35 and a negative voltage is applied to the other terminal 36, the N pole of the first winding 26 will be turned upward. A magnetic field B1 is generated so as to occur. This magnetic field B1 passes through the gap 29, 30 and through the E-type core 22 and I core 23, but since the permanent magnet 28 acts as a gap for the magnetic field B1, it passes through the yoke 24 and the permanent magnet 28. Therefore, the permanent magnet 28 is less demagnetized by the magnetic field Bl.
上記巻線26による磁界B1は、左側の磁束調節部31
には、上記直流磁界Aと逆方向にかかり、右側の磁束調
節部32には、直流磁界Aと同方向にかかる。その結果
、上記磁界B1のうち、右側の磁束調節部32を通る磁
束は制限され、左側の磁束調節部31を通る磁束が増大
するので、巻線26がつくる磁界B1は、その大部分が
左側の磁束調節部31を通る閉磁路内に収まる。この磁
界B1が通る閉磁路には、ギャップ30が存在するので
、閉磁路は巻線26の大きな電流値に対しても、飽和し
にくい特性となる。The magnetic field B1 due to the winding 26 is applied to the left magnetic flux adjusting section 31.
is applied in the opposite direction to the DC magnetic field A, and is applied to the right magnetic flux adjustment section 32 in the same direction as the DC magnetic field A. As a result, of the magnetic field B1, the magnetic flux passing through the magnetic flux adjusting section 32 on the right side is restricted, and the magnetic flux passing through the magnetic flux adjusting section 31 on the left side increases, so that most of the magnetic field B1 generated by the winding 26 is on the left side. It fits within a closed magnetic path passing through the magnetic flux adjustment section 31 of. Since the gap 30 exists in the closed magnetic path through which the magnetic field B1 passes, the closed magnetic path has a characteristic that it is difficult to be saturated even with a large current value of the winding 26.
ここで、巻線26に通電される電流が小電流である場合
、磁界Blの閉磁路を構成する左側の磁束調節部31の
磁化強さは、第3図のC点とb点の間になるので、磁束
調節部31の透磁率(B/H曲線の勾配に相当)は低く
、他方、大電流である場合には、磁束調節部31の磁化
強さがb点とa点の間になるので、磁束調節部31の透
磁率が高くなる。したがって、チョーク21のインダク
タンスは、小電流領域では小さく、大電流領域では大き
くなる。Here, when the current flowing through the winding 26 is a small current, the magnetization strength of the left magnetic flux adjustment section 31 that constitutes the closed magnetic path of the magnetic field Bl is between the point C and the point b in FIG. Therefore, the magnetic permeability (corresponding to the gradient of the B/H curve) of the magnetic flux adjustment section 31 is low, and on the other hand, in the case of a large current, the magnetization strength of the magnetic flux adjustment section 31 is between points b and a. Therefore, the magnetic permeability of the magnetic flux adjustment section 31 becomes high. Therefore, the inductance of the choke 21 is small in a small current region and large in a large current region.
つぎに、交流電圧が反転して、第4図に示すように、一
方の端子35に負、他方の端子36に正の電圧がかかっ
た場合、巻線26の下向きにN極が生じるように磁界B
2が発生する。この場合には、第2図の場合とは逆に、
左側の磁束調節部31を通る磁束が制限され、右側の磁
束調節部32を通る磁束が増大するので、磁界B2は、
その大部分が右側の磁束調節部32を通る閉磁路内に収
まり、やはり、この磁束調節部32の透磁率の変化によ
って、チョーク21のインダクタンスは、小電流時に小
さく、大電流時に大きくなる。Next, when the AC voltage is reversed and a negative voltage is applied to one terminal 35 and a positive voltage is applied to the other terminal 36 as shown in FIG. 4, an N pole is generated downward in the winding 26. Magnetic field B
2 occurs. In this case, contrary to the case in Figure 2,
Since the magnetic flux passing through the left magnetic flux adjusting section 31 is restricted and the magnetic flux passing through the right magnetic flux adjusting section 32 increases, the magnetic field B2 becomes
Most of it falls within a closed magnetic path passing through the magnetic flux adjustment section 32 on the right side, and due to changes in the magnetic permeability of the magnetic flux adjustment section 32, the inductance of the choke 21 becomes small when the current is small and becomes large when the current is large.
つまり、交流が両端子35.36に加えられた場合、そ
の極性が反転するたびに、その交流が作る磁力線の主た
る通過経路が、両磁束調節部31.32間で切り換わる
。したがって、千璽−り21が左右対称に作られている
かぎり、永久磁石28による磁気バイアスの方向を一定
にしておいても、巻線電流の正、負の反転に対して同様
に機能する。このチョーク21のインダクタンス特性を
第5図に示す。In other words, when alternating current is applied to both terminals 35, 36, each time the polarity is reversed, the main passage of the lines of magnetic force created by the alternating current is switched between both magnetic flux adjustment parts 31, 32. Therefore, as long as the ring 21 is made symmetrically, even if the direction of the magnetic bias by the permanent magnet 28 is kept constant, it will function in the same way when the winding current is reversed between positive and negative. The inductance characteristics of this choke 21 are shown in FIG.
つぎに、インダクタンスを第5図のように変化させると
、第1a図または第1b図のインバータlOへの供給電
力の力率が向上する理由を説明する。Next, the reason why changing the inductance as shown in FIG. 5 improves the power factor of the power supplied to the inverter IO in FIG. 1a or 1b will be explained.
まず、低負荷時には、コンデンサ13に蓄積されている
電荷が多いから、交流電源11から整流回路12を経て
コンデンサ13に供給される供給電流は、正弦波の電流
波形の頂部のみとなるので、この発明のチョーク21が
ない場合には、第6図に示すように、交流電源11から
の正弦波である供給電圧41と比べて、供給電流は1幅
の狭い急俊な波形42となる。First, when the load is low, there is a lot of charge stored in the capacitor 13, so the supply current supplied from the AC power supply 11 to the capacitor 13 via the rectifier circuit 12 is only at the top of the sine wave current waveform. In the absence of the choke 21 of the invention, as shown in FIG. 6, compared to the supply voltage 41 which is a sine wave from the AC power source 11, the supply current has a steep waveform 42 with a narrow width.
これに対し、この発明のチョーク21を用いた場合、電
流波形42における小電流時、つまり波形の裾の部分4
2aにおいては、インダクタンスが小さいので、電流は
若干抑制されるだけであるが、大電流時、つまり波形の
頂部42bにおいては、インダクタンスが大きいので、
電流が強く抑制される。したがって、第7図に示すよう
に、裾部分42aが若干下がり、頂部42bが大きく下
がって、出力電圧41の正弦波に近い波形43が得られ
る。その結果、力率が向上する。On the other hand, when the choke 21 of the present invention is used, when the current waveform 42 is small, that is, the tail portion of the waveform 42
2a, the inductance is small, so the current is only slightly suppressed, but at the time of large current, that is, at the top 42b of the waveform, the inductance is large, so
Current is strongly suppressed. Therefore, as shown in FIG. 7, the bottom portion 42a is slightly lowered and the top portion 42b is significantly lowered, so that a waveform 43 close to a sine wave of the output voltage 41 is obtained. As a result, the power factor improves.
他方、従来のように、電流の大小にかかわらずにインダ
クタンスが一定なチョークを用いた場合には、第8図に
示すように、電流波形の全体が一様に抑制されるので、
この発明のチョーク21を用いた場合のような力率の向
上は望めない。On the other hand, if a choke with constant inductance is used regardless of the magnitude of the current as in the past, the entire current waveform is uniformly suppressed, as shown in Figure 8.
It is not possible to expect an improvement in the power factor as in the case of using the choke 21 of the present invention.
つぎに、高負荷時には、コンデンサ13に蓄積されてい
る電荷が少ないから、コンデンサ13への供給電流は、
正弦波の電流波形の頂部と、その下方の中間部、つまり
、ゼロ点に近い下部を除いた部分となるので、この発明
の千厘−り21がない場合の供給電流は、第9図に示す
ように、若干幅の広い滑らかな波形42となるが、それ
でも、この波形42は、正弦波とはかなり大きく相違し
ている。Next, when the load is high, the electric charge stored in the capacitor 13 is small, so the current supplied to the capacitor 13 is
Since this is the part excluding the top of the sine wave current waveform and the middle part below it, that is, the bottom part near the zero point, the supplied current without the senrin 21 of this invention is shown in FIG. As shown, this results in a slightly wider and smoother waveform 42, but this waveform 42 is still quite significantly different from a sine wave.
これに対し、この発明のチョーク21を用いた場合には
、やはり電流波形42の裾部分42aが若干押し下げら
れ、頂部42bが大きく押し下げられるので、正弦波に
近い波形47となる結果、力率が向上する。この高負荷
時にも、従来のようにインダクタンスが一定のチョーク
を用いた場合には、上記低負荷時と同様に、やはり正弦
波に近い波形が得られないので、力率は十分向上しない
。On the other hand, when the choke 21 of the present invention is used, the bottom portion 42a of the current waveform 42 is pushed down slightly, and the top portion 42b is pushed down significantly, resulting in a waveform 47 that is close to a sine wave, and as a result, the power factor is reduced. improves. Even at this high load, if a conventional choke with a constant inductance is used, a waveform close to a sine wave cannot be obtained, as in the case of the low load, so the power factor will not improve sufficiently.
実際、インダクタンスが一定の従来のチョークと、第5
図に示した特性を持つこの発明のチョーク21とを用い
てインバータ10への供給電力の力率を比較したところ
、第10図に示した結果が得られた。この第10図から
れかるように、低負荷(100V、8A) テ3ポイン
ト、高負荷(100V、1I3A)テ4ポイント、それ
ぞれ力率の改善が見られた。In fact, a traditional choke with constant inductance and a fifth
When the power factor of the power supplied to the inverter 10 was compared using the choke 21 of the present invention having the characteristics shown in the figure, the results shown in FIG. 10 were obtained. As can be seen from FIG. 10, an improvement in power factor was observed for 3 points at low load (100V, 8A) and 4 points at high load (100V, 1I3A).
ところで、上記第2図に示した実施例では、永久磁石2
8が2つ必要になるうえに、両側部にL型ヨーク24も
必要になるので、チョーク21が大型化する。By the way, in the embodiment shown in FIG. 2 above, the permanent magnet 2
8 is required, and L-shaped yokes 24 are also required on both sides, making the choke 21 larger.
これに対し、第11図に示す実施例では、E型コア22
の中脚25の先端部とI型コア23との間に一ギャップ
29を設けるとともに、INコア23を上記中脚25の
先端部に対向する中央部で2分割して、その分割部に、
直流磁界を発生する永久磁石28を挿入している。また
、この例では、EJココア2の胴部48をE型コア22
の他の部分およびIコア23よりも細くして、磁束調節
部31.32としている。On the other hand, in the embodiment shown in FIG.
A gap 29 is provided between the tip of the middle leg 25 and the I-shaped core 23, and the IN core 23 is divided into two at the center opposite to the tip of the middle leg 25.
A permanent magnet 28 that generates a DC magnetic field is inserted. In this example, the body 48 of the EJ cocoa 2 is connected to the E-type core 22.
The magnetic flux adjusting portions 31 and 32 are made thinner than the other portions of the I core 23 and the I core 23.
この第11図の構成によれば、第2図のL型ヨーク24
を省略でき、しかも1つの小型の永久磁石28によって
磁気バイアスをかけることが可能になるので、チョーク
21が小型化される。ここで、永久磁石28が小型であ
ることから、永久磁石28の材料として、強い磁力の得
られるサマリウム、コバルトのような希土類を用いるの
が好ましい。According to the configuration shown in FIG. 11, the L-shaped yoke 24 shown in FIG.
can be omitted, and since it becomes possible to apply a magnetic bias using one small permanent magnet 28, the choke 21 can be made smaller. Here, since the permanent magnet 28 is small, it is preferable to use a rare earth material such as samarium or cobalt, which provides strong magnetic force, as the material for the permanent magnet 28.
また、永久磁石28がI型コア23の中央部に位置して
いるから、巻線26の電流による交番磁界Bl、B2は
、永久磁石28をその磁化方向(第11図の左右方向)
に横切らないので、上記磁界Bl、B2による永久磁石
28の減磁は少ない。Furthermore, since the permanent magnet 28 is located at the center of the I-type core 23, the alternating magnetic fields Bl and B2 due to the current in the winding 26 move the permanent magnet 28 in its magnetization direction (left and right direction in FIG. 11).
Since the magnetic fields B1 and B2 do not intersect with each other, the permanent magnet 28 is less demagnetized by the magnetic fields B1 and B2.
第12図はさらに他の実施例を示すもので、同図におい
て、E型コア22の中脚25を縦に2分割し、その分割
部に永久磁石28を挿入している。また、I型コア23
をE型コア22よりも細く形成して、これを磁束調節部
31.32としている。FIG. 12 shows still another embodiment, in which the middle leg 25 of the E-shaped core 22 is vertically divided into two parts, and a permanent magnet 28 is inserted into the divided part. In addition, I-type core 23
is formed to be thinner than the E-shaped core 22, and serves as the magnetic flux adjusting portions 31 and 32.
第12図の実施例によれば、やはりチョーク21が小型
化されるほか、上記中脚25の面積の大きい分割面49
で永久磁石28を挟み込むので、永久磁石28が強固に
保持される。しかも、永久磁石28は第11図の場合よ
りも大型になるので、上記希土類よりも磁束密度は低い
が安価な材料、たとえば、フェライト磁石を用いること
ができる。また、巻線26の電流による交番磁界B1、
B2は、やはり、永久磁石28をその磁化方向に横切ら
ないので、上記磁界Bl 、B2による永久磁石28の
減磁は少ない。According to the embodiment shown in FIG. 12, the choke 21 is also made smaller, and the dividing surface 49 of the middle leg 25 has a large area.
Since the permanent magnet 28 is sandwiched between the two, the permanent magnet 28 is firmly held. Moreover, since the permanent magnet 28 is larger than that shown in FIG. 11, it is possible to use a material that has a lower magnetic flux density than the rare earth but is cheaper, such as a ferrite magnet. In addition, an alternating magnetic field B1 due to the current of the winding 26,
Since B2 does not cross the permanent magnet 28 in its magnetization direction, the permanent magnet 28 is less demagnetized by the magnetic fields B1 and B2.
なお、上記各実施例では、コアの一部のみを細くして、
磁束調wi部としたが、これは、コアの他の部分を太く
することによって、磁気回路全体の磁気抵抗を小さくす
るためである。したがって、巻線26が作る磁束密度が
さほど高くない場合には、コア全体を細くして、コア全
体が永久磁石28の直流磁界によって磁気飽和点に近づ
くように設定してもよい。In addition, in each of the above embodiments, only a part of the core is thinned,
The reason for using the magnetic flux adjusting portion is to reduce the magnetic resistance of the entire magnetic circuit by making the other portions of the core thicker. Therefore, if the magnetic flux density produced by the winding 26 is not very high, the entire core may be made thinner so that the DC magnetic field of the permanent magnet 28 causes the entire core to approach the magnetic saturation point.
また、磁気バイアス手段としては、直流で励磁される巻
線を持つ電磁石を用いることもできる。Further, as the magnetic bias means, an electromagnet having a winding excited by direct current can also be used.
さらに、この発明は、インバータに限らず、整流回路を
持つコンデンサーインプットffiの他の電気機器にも
、力率改善用として使用できる。Furthermore, the present invention can be used not only for inverters but also for other electric devices having a capacitor input ffi having a rectifier circuit for power factor correction.
[発明の効果]
上述のとおり、請求項1〜4の発明によれば、千票−り
のインダクタンスが小電流時には小さく、大電流時には
大きくなるから、正弦波の電圧波形よりも幅の狭い電流
波形が、その裾部分(小電流部)では小さく抑制され、
頂部(大電流部)では大きく抑制される結果、全体とし
て、正弦波に近づくので、力率が向上する。[Effects of the Invention] As described above, according to the inventions of claims 1 to 4, the inductance of 1,000 volts is small when the current is small and becomes large when the current is large, so that the current width is narrower than the voltage waveform of the sine wave. The waveform is suppressed to a small size at the tail portion (low current portion),
As a result of being largely suppressed at the top (high current section), the overall waveform approaches a sine wave, improving the power factor.
請求項2の発明によれば、磁気バイアスの方向を一定に
しておいても、巻線に流れる交流の極性の反転に応じて
交互に、いずれか一方の磁束調整部が、巻線の発生する
磁界の大部分を上記直流磁界と逆方向に通過させる磁束
調節部として作用するので、チョークの構造が簡単にな
る。According to the invention of claim 2, even if the direction of the magnetic bias is kept constant, one of the magnetic flux adjusting sections alternately adjusts the polarity of the alternating current flowing through the winding in accordance with the reversal of the polarity of the alternating current flowing through the winding. Since it acts as a magnetic flux adjustment section that allows most of the magnetic field to pass in the opposite direction to the DC magnetic field, the structure of the choke is simplified.
請求項3の発明によれば、2つの永久磁石によって、大
きな磁気バイアスを容易にかけることができる。According to the third aspect of the invention, a large magnetic bias can be easily applied using the two permanent magnets.
請求項4の発明によれば、小型の永久磁石1つで磁気バ
イアスをかけることが可能になるので、チョークが小型
化される。According to the fourth aspect of the invention, it is possible to apply a magnetic bias using one small permanent magnet, so that the choke is miniaturized.
請求項5の発明によれば、チヨークが小型化されるうえ
に、E型コアの中脚の面積の大きい分割面で永久磁石を
挟み込むので、永久磁石が強固に保持される。しかも、
上記分割面が大きい分だけ永久磁石が大型になるので、
磁束密度は低いが安価な磁石材料を用いることができる
利点もある。According to the fifth aspect of the present invention, not only is the tie yoke made smaller, but also the permanent magnet is sandwiched between the large-area dividing surfaces of the middle legs of the E-shaped core, so that the permanent magnet is firmly held. Moreover,
The permanent magnet will be larger as the dividing surface is larger, so
There is also the advantage that an inexpensive magnet material can be used although the magnetic flux density is low.
さらに、請求項3〜5の発明によれば、巻線電流の磁界
による永久磁石の減磁が少ない。Furthermore, according to the third to fifth aspects of the invention, there is little demagnetization of the permanent magnet due to the magnetic field of the winding current.
第1a図および第1b図はこの発明に係るチョークが用
いられた電気機器の回路を示す回路図、第2図はこの発
明の一実施例を示すチ菖−りの正面図、第3図は同実施
例のチョークのB/H特性を示す特性図、第4図は同実
施例の動作を説明するための正面図、第5図は同実施例
の電流とインダクタンスの関係を示す特性図、第6図は
チョークを用いない場合の低負荷時の電圧波形と電流波
形を示す波形図、第7図は同実施例のチョークを用いた
場合の電流波形を示す波形図、第8図は従来のチョーク
を用いた場合の電流波形を示す波形図、第9図は高負荷
時の電流波形を示す波形図、第10図は負荷と力率との
関係を示す特性図、第11図は他の実施例を示すチョー
クの正面図、第12図はさらに他の実施例を示すチョー
クの正面図、第13図は従来のチョークのB/H特性を
示す特性図である。
10・・・インバータ(電気機器)、11・・・交流電
源、12・・・整流回路、13・・・コンデンサ、14
・・・負荷、21・・・チョーク、22・・・E型コア
、23・・・I型コア、23a−・端部、24−3−り
、24a・・・一端部、25・・・中脚、26・・・巻
線、27・・・側脚、27a・・・外側面、28・・・
永久磁石(磁気バイアス手段)、28a・・・外側面、
31.32・・・磁束調節部。
第
18図
交流電源
整流回路
コンデンサ
チョーク
第1b図
第
図
図
3132、磁束調節部
第11
図
第
図
4日
b
第13
図1a and 1b are circuit diagrams showing the circuits of electrical equipment using the choke according to the present invention, FIG. A characteristic diagram showing the B/H characteristics of the choke of the same embodiment, FIG. 4 is a front view for explaining the operation of the same embodiment, and FIG. 5 is a characteristic diagram showing the relationship between current and inductance of the same embodiment. Figure 6 is a waveform diagram showing the voltage and current waveforms at low load when no choke is used, Figure 7 is a waveform diagram showing the current waveform when the choke of the same example is used, and Figure 8 is the conventional waveform. Figure 9 is a waveform diagram showing the current waveform when using a choke, Figure 9 is a waveform diagram showing the current waveform at high load, Figure 10 is a characteristic diagram showing the relationship between load and power factor, and Figure 11 is another diagram. FIG. 12 is a front view of a choke showing another embodiment, and FIG. 13 is a characteristic diagram showing B/H characteristics of a conventional choke. 10... Inverter (electrical equipment), 11... AC power supply, 12... Rectifier circuit, 13... Capacitor, 14
Load, 21 Choke, 22 E-type core, 23 I-type core, 23a-end, 24-3-ri, 24a one end, 25... Middle leg, 26... Winding wire, 27... Side leg, 27a... Outer surface, 28...
Permanent magnet (magnetic bias means), 28a...outer surface,
31.32...Magnetic flux adjustment section. Fig. 18 AC power supply rectifier circuit capacitor choke Fig. 1b Fig. 3132, magnetic flux adjustment section Fig. 11 Fig. 4th b Fig. 13
Claims (5)
力を電気機器に供給するコンデンサと、上記交流電源と
の間に接続されるチヨークであって、コアと、このコア
に巻かれた通電用の巻線と、コアに直流磁界を付加する
磁気バイアス手段とを備え、上記コアの少なくとも一部
に、上記直流磁界で磁気飽和点に近づき、かつ、上記巻
線が発生する磁界の大部分を上記直流磁界と逆方向に通
過させる磁束調節部が設けられている力率改善用チヨー
ク。(1) A chiyoke connected between a capacitor that supplies DC input obtained by rectifying power from an AC power source to an electrical device and the AC power source, including a core and a current-carrying wire wound around the core. and a magnetic bias means for applying a direct current magnetic field to the core, wherein at least a portion of the core is near the magnetic saturation point with the direct current magnetic field, and a majority of the magnetic field generated by the winding is provided. A power factor improving cheese yoke is provided with a magnetic flux adjusting section that allows the magnetic flux to pass in the opposite direction to the DC magnetic field.
上記巻線が発生する磁界が、一方の磁束調節部には上記
直流磁界と同方向に、他方の磁束調節部には上記直流磁
界と逆方向にそれぞれかかるよう設定されている力率改
善用チヨーク。(2) In claim 1, a pair of magnetic flux adjustment sections are provided,
A power factor correction chain is set so that the magnetic field generated by the winding is applied to one magnetic flux adjustment section in the same direction as the DC magnetic field, and to the other magnetic flux adjustment section in the opposite direction to the DC magnetic field. .
型の中脚に通電用の巻線が巻かれて,この中脚および両
側脚の各先端部とI型コアとの間にギャップが設けられ
、上記両側脚の各外側面に、上記直流磁界を発生する永
久磁石が装着され、各永久磁石の外側面に、一端部がI
型コアの端部に接触するヨークが装着され、上記I型コ
アに、その磁束通路の一部を絞って上記磁束調節部が形
成されている力率改善用チヨーク。(3) In claim 2, the core is of EI type, and its E
A current-carrying winding is wound around the middle leg of the mold, a gap is provided between the tips of the middle leg and both legs, and the I-shaped core, and the DC magnetic field is applied to each outer surface of the both legs. Permanent magnets that generate
A yoke for power factor improvement, wherein a yoke that contacts an end of the I-shaped core is attached, and the magnetic flux adjustment section is formed by narrowing a part of the magnetic flux path in the I-shaped core.
型の中脚に通電用の巻線が巻かれて、この中脚の先端部
とI型コアとの間にギャップが設けられ、I型コアが中
央部で2分割されてその分割部に、上記直流磁界を発生
する永久磁石が挿入されている力率改善用チョーク。(4) In claim 2, the core is of EI type, and its E
A current-carrying winding is wound around the middle leg of the mold, a gap is provided between the tip of the middle leg and the I-shaped core, and the I-shaped core is divided into two parts at the center. A choke for power factor improvement in which a permanent magnet that generates the above-mentioned DC magnetic field is inserted.
型の中脚に通電用の巻線が巻かれて、この中脚の先端部
とIコアとの間にギャツプが設けられ、上記中脚が縦に
2分割されてその分割部に、上記直流磁界を発生する永
久磁石が挿入されている力率改善用チョーク。(5) In claim 2, the core is of EI type, and its E
A current-carrying winding is wound around the middle leg of the mold, a gap is provided between the tip of the middle leg and the I core, the middle leg is vertically divided into two parts, and the direct current is applied to the divided part. A power factor correction choke that has a permanent magnet inserted that generates a magnetic field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP90199919A JPH0484405A (en) | 1990-07-27 | 1990-07-27 | Choke for improving power factor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP90199919A JPH0484405A (en) | 1990-07-27 | 1990-07-27 | Choke for improving power factor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0484405A true JPH0484405A (en) | 1992-03-17 |
Family
ID=16415784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP90199919A Pending JPH0484405A (en) | 1990-07-27 | 1990-07-27 | Choke for improving power factor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0484405A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821844A (en) * | 1994-12-09 | 1998-10-13 | Kabushiki Kaisha Yaskawa Denki | D.C. reactor |
JP2002164217A (en) * | 2000-11-29 | 2002-06-07 | Tokin Corp | Inductance parts |
WO2004012214A1 (en) * | 2002-07-26 | 2004-02-05 | Nihon Riken Co., Ltd. | Power converter utilizing permanent magnet |
EP2001028A1 (en) * | 2007-06-08 | 2008-12-10 | ABB Oy | Protection of permanent magnets in a DC-inductor |
EP2117020A1 (en) * | 2008-05-05 | 2009-11-11 | ABB Oy | A reactor arrangement for alternating electrical current |
-
1990
- 1990-07-27 JP JP90199919A patent/JPH0484405A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5821844A (en) * | 1994-12-09 | 1998-10-13 | Kabushiki Kaisha Yaskawa Denki | D.C. reactor |
JP2002164217A (en) * | 2000-11-29 | 2002-06-07 | Tokin Corp | Inductance parts |
WO2004012214A1 (en) * | 2002-07-26 | 2004-02-05 | Nihon Riken Co., Ltd. | Power converter utilizing permanent magnet |
EP2001028A1 (en) * | 2007-06-08 | 2008-12-10 | ABB Oy | Protection of permanent magnets in a DC-inductor |
US8035470B2 (en) | 2007-06-08 | 2011-10-11 | Abb Oy | Protection of permanent magnets in a DC-inductor |
EP2117020A1 (en) * | 2008-05-05 | 2009-11-11 | ABB Oy | A reactor arrangement for alternating electrical current |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8581442B2 (en) | Inductively coupled power transfer system | |
JPH0799727B2 (en) | Electromagnetic device and electromagnetic core structure | |
US7593244B2 (en) | Limit for the harmonics of a current | |
US4009460A (en) | Inductor | |
KR101849866B1 (en) | Ac permanent-magnet gain transformer device and voltage regulation control method thereof | |
TW201511048A (en) | Inductance and switch circuit including the inductance | |
US20140091890A1 (en) | Switching power supply | |
Gohil et al. | Integrated inductor for interleaved operation of two parallel three-phase voltage source converters | |
WO2013136854A1 (en) | Dc-dc converter | |
CA1145381A (en) | Low voltage transformer relay | |
JPH0484405A (en) | Choke for improving power factor | |
RU184270U1 (en) | THREE-PHASE TRANSFORMER OF DC SUPPLY SUBSTANCES | |
JP3986809B2 (en) | Three-phase electromagnetic equipment | |
JP2001238349A (en) | Current limiter | |
JP3305997B2 (en) | Magnetically biased induction magnet | |
JP3789333B2 (en) | Electromagnetic equipment | |
US5886507A (en) | Controlled ferroresonant transformer | |
TW201123225A (en) | Magnetic device with series excitation magnetic core. | |
JP7300942B2 (en) | electromagnetic device | |
JP2696417B2 (en) | Bipolar magnetizer | |
SU1325584A1 (en) | Three-phase controllable reactor | |
Okanuma et al. | Frequency characteristics of bridge-connected magnetic circuit with parallel output winding and its application to a power controller | |
KR200336886Y1 (en) | Power-saving apparatus | |
JPH051210U (en) | Thin induction porcelain | |
RU2239902C2 (en) | Controllable magnetic system |