JPH0478584B2 - - Google Patents

Info

Publication number
JPH0478584B2
JPH0478584B2 JP58123855A JP12385583A JPH0478584B2 JP H0478584 B2 JPH0478584 B2 JP H0478584B2 JP 58123855 A JP58123855 A JP 58123855A JP 12385583 A JP12385583 A JP 12385583A JP H0478584 B2 JPH0478584 B2 JP H0478584B2
Authority
JP
Japan
Prior art keywords
sintered body
solid solution
powder
sintering
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58123855A
Other languages
Japanese (ja)
Other versions
JPS6016867A (en
Inventor
Mikio Fukuhara
Tetsuya Mitsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP58123855A priority Critical patent/JPS6016867A/en
Publication of JPS6016867A publication Critical patent/JPS6016867A/en
Publication of JPH0478584B2 publication Critical patent/JPH0478584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、実質的に金属盞からなる結合盞を含
有しおなく、耐熱性、耐酞化性、耐摩耗性、耐食
性、熱䌝導性及び電気䌝導性の優れた硬質盞から
なる高硬床焌結䜓に関する。 埓来、呚期埋衚の4a5a6a族の遷移金属䞭
にの非金属元玠を固溶した䟵入型化合
物は難焌結性材料であり、このたたでは1600℃以
䞋の枩床で緻密に焌結できないために鉄族金属を
添加しお共晶反応による液盞焌結を行い緻密化促
進ず同時に匷床を向䞊させた超硬合金が実甚化さ
れおいる。この超硬合金、サヌメツト等の耇合合
金は、鉄族金属からなる結合盞を有しおいるため
に高枩高応力䞋で䜿甚するず結合盞の軟化に起因
しお塑性倉圢が進行したり、耐摩耗性が䜎䞋した
り、又鉄族金属からなる結合盞の熱膚匵率ず4a
5a6a族金属の化合物からなる硬質盞の熱膚匵
率ずの差に起因するず考えられる熱亀裂が生じた
り、曎に化孊薬品及び腐食性ガス雰囲気䞭で䜿甚
するず結合盞である鉄族金属が腐食しお䜿甚でき
なくなるずいう問題がある。 本発明の高硬床焌結䜓は、䞊蚘のような問題点
を解決したもので、実質的に金属からなる結合盞
を含有しおなく高硬床、䜎比重で熱䌝導性、電気
䌝導性、耐食性及び耐酞化性に優れた焌結䜓を提
䟛するものである。即ち本発明の高硬床焌結䜓
は、TiZrHfNbTaThの炭化物、
窒化物、酞化物の䞭から遞ばれた皮以䞊を組合
わせた固溶䜓化合物からなり、該固溶䜓化合物が
スピノヌダル分解又はバむノヌダル分解による倉
調構造の組織にな぀おいる焌結䜓である。 本発明の高硬床焌結䜓は、TiZrHf
NbTaThの炭化物、窒化物、酞化物の内、
金盞孊的に党率固溶ここで蚘茉の党率固溶ず
は、スピノヌダル分解又はバむノヌダル分解が起
る組成成分比からなるこずを瀺すする皮以䞊
を組合わせるこずによ぀おスピノヌダル分解又は
バむノヌダル分解を発生させ、実質的に金属から
なる結合盞を含有しおなくおも1600℃以䞋の䜎い
枩床で緻密な焌結䜓にしお実甚可胜な靱性ず高硬
床、䜎比重でしかも熱䌝導性、電気䌝導性、耐食
性及び耐酞化性に優れるようにしたものである。
TiZrHfNbTaThの炭化物、窒化
物、酞化物の䞭の皮以䞊を組合わせおスピノヌ
ダル分解又はバむノヌダル分解を発生しない組成
比では、略2000℃以䞊の高枩焌結にする必芁が生
じ埗られる焌結䜓の結晶粒子は粗倧化しお焌結䜓
の諞特性を䜎䞋させるために金盞孊的に党率固溶
する皮の化合物の内、皮をモル以䞊存圚
させる組成比にしおスピノヌダル分解又はバむノ
ヌダル分解を発生させるこずが望たしい。スピノ
ヌダル分解又はバむノヌダル分解を起こさせる組
成比にするず䜎枩で緻密な焌結䜓になるために焌
結䜓の結晶粒子が埮现ずな぀お䞀局高硬床、高靱
性及び耐熱性の傟向が高たる。 スピノヌダル分解又はバむノ−ダル分解による
倉調構造の組織ずは、金属及び又は非金属の含
有量の異な぀た盞以䞊の固溶䜓化合物が呚期的
に繰り返しお䞊んだ組織からな぀おいる。具䜓的
には、䟋えばTiC−TiN−VC固溶䜓化合物の堎
合、Ti及び又はの含有量の倚い固溶䜓化合
物ず少ない固溶䜓化合物、もしくは及び又は
の含有量の倚い固溶䜓化合物ず少ない固溶䜓化
合物、あるいはこれらが䞡方組合わされた固溶䜓
化合物の䞭の぀以䞊の固溶䜓化合物が存圚し、
この぀以䞊の固溶䜓化合物の盞が呚期的に繰り
返しお䞊んだ組織である。 本発明の高硬床焌結䜓は、金属からなる結合盞
を含有しおいないこずから耐食性が著しく優れお
おり、4a族の金属化合物を䞻䜓にしお窒玠含有
量の倚い焌結䜓にするこずによ぀お矎麗な黄金色
の色調になり、しかも高硬床で耐スクラツチ性に
優れおおり、䜎密床であるこずから時蚈甚倖装郚
品、釣り具郚品等の装食品甚郚品に利甚できる。
又、本発明の高硬床焌結䜓は、電気䌝導性が優れ
おいるために攟電加工も容易であるこずから耇雑
な圢状の加工も可胜で、耐食性、高硬床であるこ
ずを加味するずノズル、メカニカルシヌル、サポ
ヌトホヌルド治具、印字ピン甚ガむド、摺動郚材
等䞊びに窒玠含有量の倚い焌結䜓は、ガラス溶解
甚モヌルド、レンズ成圢甚耐熱モヌルド、磁噚ヘ
ツド基盀、テヌプカツタヌ等ず耐摩耗性材料ずし
お利甚できる。曎に本発明の高硬床焌結䜓は、熱
䌝導性が優れおおり、金属からなる結合盞を含有
しおいないので被削材ずの耐反応性も良いこずか
ら硬質黒鉛、暹脂等の非鉄金属の切削甚工具にも
利甚できるものである。 本発明の高硬床焌結䜓の補造するための出発原
料は、埮现粒子を䜿甚する皋焌結過皋においお化
合物䞭の金属原子及び䟵入型の非金属原子が盞互
拡散しおスピノヌダル分解又はバむノヌダル分解
による盞分離珟象を起し易くな぀お、焌結を促進
するために䞀局䜎枩での焌結が可胜ずなり、この
ために焌結䜓の結晶粒子が埮现にな぀お高硬床、
高靱性化の傟向が高くなる。このこずから出発原
料は、10ÎŒm以䞋特に0.1ÎŒm以䞋のものが望たし
いが酞化等が生じるための取扱い䞊から2ÎŒm以䞋
のものが望たしい。出発原料が粗粒のずきは、混
合粉砕を匷化すればよいがこのずきには䞍玔物の
混入が倚くなる傟向になるので甚途によ぀お䜿い
分ける必芁がある。出発原料の構成は、(a)Ti
ZrHfNbTaThの金属粉末の䞭の
皮以䞊からなる混合粉末を甚いお雰囲気調敎によ
り反応焌結する方法、(b)TiZrHfNb
TaThの金属粉末の皮以䞊ずTiZrHf
NbTaThの炭化物粉末、窒化物粉末、
酞化物粉末及びこれらの盞互固溶䜓化合物粉末の
皮以䞊ずからなる混合粉末を甚いお雰囲気調敎
により反応焌結する方法、(c)TiZrHf
NbTaThの炭化物、窒化物、酞化物の単䞀
化合物粉末及びこれらの盞互固溶䜓化合物粉末か
らなる混合粉末を甚いお非酞化性雰囲気䞭で焌結
する方法が考えられる。この内(a)(b)の金属粉末
の混入したものを出発原料ずするのは、反応焌結
時間が長くな぀たり、焌結䜓の䞭に金属が残存し
お耐食性及び硬さを䜎䞋させるために(c)の構成を
出発原料ずするのが望たしい。(c)の構成の䞭でも
耇合化合物粉末のみを出発原料ずするよりも耇合
化合物粉末ず単䞀化合物粉末又は単䞀化合物粉末
ず単䞀化合物粉末を出発原料ずする組合わせがよ
く、特に焌結過皋での固盞拡散による緻密化ず同
時にスピノヌダル分解又はバむノヌダル分解によ
る盞分離珟象を生じさせお䜎枩で焌結し、埮现粒
子による倉調構造の組織からなる焌結䜓にするた
めには皮以䞊の単䞀化合物粉末を出発原料ずし
お䜿甚する。さらに、䟋えばこの出発原料を䜿甚
し、焌結条件の制埡、具䜓的には焌結枩床に保持
した埌、焌結枩床から玄800℃たで冷华速床を速
めお、玄800℃から再床1200〜1450℃たで昇枩す
るず、より速やかに倉調構造の組織からなる焌結
䜓にするこずができる。この出発原料ずしお䜿甚
する単䞀化合物粉末又は耇合化合物粉末は、金属
元玠ず非金属元玠のモル比が同䞀である化孊量論
組成であ぀おも䟵型元玠である炭玠、窒玠、酞玠
の非金属が欠乏又は過剰に固溶した非化孊量論組
織であ぀おも本発明の高硬床焌結䜓が埗られる。 本発明の高硬床焌結䜓の補造工皋の内、出発原
料の混合粉砕は、ステンレス補容噚、超硬合金を
内匵りした容噚又はりレタンゎムを内匵りした容
噚を䜿甚しおステンレス補ボヌル、超硬合金補ボ
ヌル又は衚面被芆したボヌルず共に混合粉砕す
る。粉砕効果を高めお出発原料を埮现化するに
は、ステンレス補容噚又は超硬合金を内匵りした
容噚を䜿甚しお超硬合金補ボヌルず共に混合粉砕
するのがよく、又、アセトン、ヘキサン、ベンれ
ン、アルコヌル等の有機溶媒を加えお湿匏混合粉
砕するのがよい。耐食性及び高枩での耐摩耗性を
利甚する甚途向け等で䞻ずしお金属からなる䞍玔
物を考慮する必芁があるずきはりレタンゎムで内
匵りした容噚を䜿甚しお衚面被芆したボヌルず共
に混合するのがよい。䞍玔物は、混合粉砕工皋か
ら混入する比率が高く、混合粉砕工皋で䜿甚する
超硬合金の内、超硬合金の䞻成分である4a5a
6a族金属化合物が䞍玔物ずしお混入するのは割
合問題がないのに察しお超硬合金の結合盞である
鉄族金属の混入は䜓積以䞋出来れば䜓積
以䞋にするのが望たしい。 本発明の高硬床焌結䜓の補造工皋の内、混合粉
末の成圢は、混合粉砕した粉末を黒鉛モヌルドに
充填しお非酞化性雰囲気䞭でホツトプレスする方
法、又は混合粉砕した粉末にパラフむン、カンフ
ア等の成圢助剀を添加しお必芁ならば顆粒状にし
た埌金型モヌルドに充填しお加圧成圢したり、も
しくはラバヌプレス等の静氎圧加圧によ぀お成圢
する。このようにしお成圢した粉末圧粉䜓を盎接
焌結したり、又は粉末圧粉䜓を焌結枩床よりも䜎
い枩床で予備焌結した埌切断、研削、切削等の機
械加工を斜しおから焌結するこずもできる。 本発明の高硬床焌結䜓の補造工皋の内、焌結
は、非酞化性雰囲気䞭で無加圧焌結又は加圧焌結
したり䞊びに枛圧状又は真空䞭で焌結するこずが
できる。特に窒玠元玠の含有した焌結䜓を埗るず
きには、脱窒の防止からN2ガスを含有した非酞
化性雰囲気䞭で焌結するこずが望たしい。曎に䞊
蚘条件で焌結したものを熱間静氎圧加圧法
HIPによ぀お再凊理するこずにより䞀局緻密
で高靱性の焌結䜓にするこずもできる。 以䞋に実斜䟋に埓぀お本発明の高硬床焌結䜓を
具䜓的に説明する。 実斜䟋  平均粒床0.2〜3ÎŒmの各皮単䞀化合物粉末を所
定の割合に配合し、この配合粉末に〜のパ
ラフむンを成圢助剀ずしお添加埌アセトン溶媒
䞭、WC基超硬合金補ボヌルを甚いおステンレス
容噚にお混合粉砕した。埗られた混合粉末から溶
媒を蒞発也燥埌、この混合粉末を1tcm2〜5tcm2
の加圧力で成圢し、10-3〜10-2mmの真空又は
非酞化性ガス雰囲気䞭1300℃〜1600℃の枩床で30
〜90分保持埌、このそれぞれの焌結枩床から800
℃たでに冷华する冷华速床を玄300℃分ずし、
800℃から再床1300〜1450℃焌結枩床より100〜
150℃䜎枩にに昇枩し、10〜15時間保持しお本
発明品を埗た。各詊料の配合組成及び焌結条件を
第衚に瀺し、埗られた各詊料の焌結䜓の諞特性
を第衚に瀺した。 比范ずしお、焌結枩床から炉冷玄50℃分
し、比范品及びを埗た。この比范品及び
の配合組成及び焌結条件を第衚に、焌結䜓の諞
特性を第衚に䜵蚘した。
The present invention is a high-hardness sintered material that does not contain a binder phase that is substantially made of a metal phase and is made of a hard phase that has excellent heat resistance, oxidation resistance, abrasion resistance, corrosion resistance, thermal conductivity, and electrical conductivity. Regarding the body. Conventionally, interstitial compounds in which nonmetallic elements such as C, N, and O are dissolved in transition metals of groups 4a, 5a, and 6a of the periodic table are difficult-to-sinter materials, and as they are, they cannot be sintered at temperatures below 1600℃. Because it cannot be sintered densely, cemented carbide alloys have been put into practical use in which iron group metals are added and liquid phase sintering is performed through eutectic reaction to promote densification and improve strength at the same time. Composite alloys such as cemented carbide and cermets have a binder phase made of iron group metals, so when used under high temperature and high stress conditions, plastic deformation progresses due to the softening of the binder phase, resulting in poor wear resistance. The thermal expansion coefficient of the binder phase made of iron group metal and 4a,
Thermal cracks may occur, which is thought to be due to the difference in thermal expansion coefficient of the hard phase consisting of compounds of group 5a and 6a metals.Furthermore, if used in a chemical or corrosive gas atmosphere, the iron group metal, which is the binder phase, may corrode. The problem is that it becomes unusable. The high-hardness sintered body of the present invention solves the above-mentioned problems, and does not contain a binder phase substantially made of metal, has high hardness, low specific gravity, and has good thermal conductivity, electrical conductivity, and corrosion resistance. and a sintered body with excellent oxidation resistance. That is, the high hardness sintered body of the present invention contains carbides of Ti, Zr, Hf, V, Nb, Ta, and Th,
It is a sintered body made of a solid solution compound that is a combination of two or more selected from nitrides and oxides, and the solid solution compound has a modulated structure structure due to spinodal decomposition or binodal decomposition. The high hardness sintered body of the present invention includes Ti, Zr, Hf, V,
Among carbides, nitrides, and oxides of Nb, Ta, and Th,
Spinodal decomposition or binodal decomposition or It generates binodal decomposition and can be made into a compact sintered body at a low temperature of 1600℃ or less even without containing a binder phase consisting essentially of metal.It has toughness, high hardness, low specific gravity, and thermal conductivity. , which has excellent electrical conductivity, corrosion resistance, and oxidation resistance.
If two or more of the carbides, nitrides, and oxides of Ti, Zr, Hf, V, Nb, Ta, and Th are combined at a composition ratio that does not cause spinodal decomposition or binodal decomposition, high-temperature sintering at approximately 2000°C or higher Since it becomes necessary to sinter, the crystal grains of the resulting sintered body become coarse and the various properties of the sintered body deteriorate, one of the two types of compounds that are completely dissolved in metallurgy is added at 5 mol %. It is desirable to cause spinodal decomposition or binodal decomposition to occur at a composition ratio greater than or equal to the above. When the composition ratio is set to cause spinodal decomposition or binodal decomposition, a dense sintered body is formed at a low temperature, so that the crystal grains of the sintered body become finer and tend to have higher hardness, higher toughness, and higher heat resistance. The modulated structure resulting from spinodal decomposition or binodal decomposition consists of a structure in which solid solution compounds of two or more phases with different metal and/or nonmetal contents are arranged in a periodic manner. Specifically, for example, in the case of a TiC-TiN-VC solid solution compound, a solid solution compound with a high content of Ti and/or V and a solid solution compound with a low content, or a solid solution compound with a high content of C and/or N and a solid solution compound with a low content. , or there are two or more solid solution compounds in the solid solution compound in which both of these are combined,
It is a structure in which phases of two or more solid solution compounds are arranged in a periodic manner. The high-hardness sintered body of the present invention has extremely excellent corrosion resistance because it does not contain a metal binder phase, and it is possible to make the sintered body mainly composed of group 4a metal compounds and with a high nitrogen content. As a result, it has a beautiful golden color, has high hardness and excellent scratch resistance, and has a low density, so it can be used for decorative parts such as watch exterior parts and fishing gear parts.
In addition, the high hardness sintered body of the present invention has excellent electrical conductivity and is easy to perform electric discharge machining, so it is possible to process complicated shapes. Mechanical seals, support holding jigs, guides for printing pins, sliding parts, etc., as well as sintered bodies with high nitrogen content, are used as wear-resistant materials for glass melting molds, heat-resistant molds for lens molding, porcelain head bases, tape cutters, etc. It can be used as Furthermore, the high-hardness sintered body of the present invention has excellent thermal conductivity, and since it does not contain a metal binder phase, it has good reaction resistance with work materials, so it can be used with non-ferrous metals such as hard graphite and resin. It can also be used for cutting tools. The starting material for producing the high-hardness sintered body of the present invention is such that the finer particles are used, the more metal atoms and interstitial nonmetal atoms in the compound interdiffuse during the sintering process, resulting in spinodal decomposition or binodal decomposition. This makes it easier for phase separation to occur, making it possible to sinter at even lower temperatures to promote sintering, which results in finer crystal grains in the sintered body, resulting in higher hardness and higher hardness.
The tendency towards higher toughness increases. For this reason, it is desirable that the starting material has a diameter of 10 ÎŒm or less, especially 0.1 ÎŒm or less, but it is preferably 2 ÎŒm or less from the viewpoint of handling since oxidation may occur. When the starting material is coarse particles, the mixing and pulverization may be strengthened, but since this tends to increase the amount of impurities mixed in, it is necessary to use them appropriately depending on the purpose. The composition of the starting materials is (a) Ti,
2 in metal powders of Zr, Hf, V, Nb, Ta, Th
A method of reaction sintering by adjusting the atmosphere using a mixed powder consisting of more than 1 species, (b) Ti, Zr, Hf, V, Nb,
One or more types of Ta, Th metal powder and Ti, Zr, Hf,
V, Nb, Ta, Th carbide powder, nitride powder,
A method of reaction sintering by adjusting the atmosphere using a mixed powder consisting of an oxide powder and one or more of these mutual solid solution compound powders, (c) Ti, Zr, Hf, V,
A possible method is to sinter in a non-oxidizing atmosphere using a powder mixture of single compound powders of carbides, nitrides, and oxides of Nb, Ta, and Th, and powders of mutual solid solution compounds thereof. Among these, using materials mixed with metal powder (a) and (b) as starting materials may result in a longer reaction sintering time, or may cause metals to remain in the sintered body, reducing corrosion resistance and hardness. In order to achieve this, it is desirable to use the composition (c) as a starting material. Among configurations (c), a combination of a composite compound powder and a single compound powder, or a combination of a single compound powder and a single compound powder as a starting material is better than using only a composite compound powder as a starting material, especially during the sintering process. In order to produce a sintered body with a modulated structure of fine particles by sintering at a low temperature by causing a phase separation phenomenon by spinodal decomposition or binodal decomposition at the same time as densification by solid phase diffusion, two or more types of A single compound powder is used as starting material. Furthermore, for example, using this starting material, controlling the sintering conditions, specifically holding it at the sintering temperature, increasing the cooling rate from the sintering temperature to about 800 °C, and then increasing the cooling rate from about 800 °C to 1200 to 1450 °C again. When the temperature is raised to .degree. C., a sintered body having a modulated structure can be formed more quickly. Even if the single compound powder or composite compound powder used as the starting material has a stoichiometric composition in which the molar ratio of metallic elements and nonmetallic elements is the same, the nonmetallic powder of carbon, nitrogen, and oxygen, which are erosive elements, The high hardness sintered body of the present invention can be obtained even if it has a non-stoichiometric structure in which the solid solution is deficient or excessive. In the manufacturing process of the high-hardness sintered body of the present invention, the starting materials are mixed and pulverized using a stainless steel container, a container lined with cemented carbide, or a container lined with urethane rubber. Mix and grind together with manufactured balls or surface-coated balls. In order to improve the grinding effect and make the starting materials finer, it is best to use a stainless steel container or a container lined with cemented carbide to mix and grind together with cemented carbide balls. It is preferable to add an organic solvent such as alcohol and perform wet mixing and pulverization. When it is necessary to consider impurities mainly made of metal, such as for applications that utilize corrosion resistance and high-temperature abrasion resistance, it is best to use a container lined with urethane rubber and mix with surface-coated balls. A high proportion of impurities are mixed in during the mixing and grinding process, and among the cemented carbide used in the mixing and grinding process, 4a, 5a, which is the main component of cemented carbide,
While there is no problem with the ratio of group 6a metal compounds mixed as impurities, the mixing of iron group metals, which are the binder phase of cemented carbide, should be 2% by volume or less, preferably 1% by volume.
It is desirable to do the following. In the manufacturing process of the high-hardness sintered body of the present invention, the mixed powder can be formed by filling the mixed and pulverized powder into a graphite mold and hot pressing it in a non-oxidizing atmosphere, or by adding paraffin or camphor to the mixed and pulverized powder. If necessary, it is made into granules by adding a molding aid such as, for example, granules, and then filled into a metal mold and molded under pressure, or molded by isostatic pressure using a rubber press or the like. The powder compact formed in this way can be directly sintered, or the powder compact can be pre-sintered at a temperature lower than the sintering temperature and then subjected to mechanical processing such as cutting, grinding, cutting, etc., and then sintered. It can also be tied. In the manufacturing process of the high-hardness sintered body of the present invention, sintering can be performed by pressureless sintering or pressure sintering in a non-oxidizing atmosphere, or by sintering under reduced pressure or in a vacuum. Particularly when obtaining a sintered body containing nitrogen element, it is desirable to sinter in a non-oxidizing atmosphere containing N 2 gas to prevent denitrification. Furthermore, a sintered body sintered under the above conditions can be reprocessed by hot isostatic pressing (HIP) to produce a sintered body that is even denser and has higher toughness. EXAMPLES The high-hardness sintered body of the present invention will be specifically described below with reference to Examples. Example 1 Various single compound powders with an average particle size of 0.2 to 3 ÎŒm were blended in a predetermined ratio, and after adding 3 to 5% paraffin as a molding aid to the blended powder, a WC-based cemented carbide ball was formed in an acetone solvent. The mixture was mixed and ground in a stainless steel container. After the solvent is evaporated and dried from the obtained mixed powder, this mixed powder is 1 t/cm 2 to 5 t/cm 2
Molding at a pressure of 10 -3 to 10 -2 mmHg or a non-oxidizing gas atmosphere at a temperature of 1300℃ to 1600℃ for 30 minutes.
After holding for ~90 min, this respective sintering temperature is
The cooling rate to cool down to ℃ is approximately 300℃/min,
From 800℃ again to 1300~1450℃ (100~100℃ higher than sintering temperature)
The temperature was raised to 150° C.) and maintained for 10 to 15 hours to obtain a product of the present invention. Table 1 shows the composition and sintering conditions of each sample, and Table 2 shows the properties of the sintered body of each sample. For comparison, furnace cooling (approximately 50℃/min) from sintering temperature
Comparative products 1 and 2 were obtained. These comparative products 1 and 2
The compounding composition and sintering conditions are listed in Table 1, and the properties of the sintered body are listed in Table 2.

【衚】【table】

【衚】 第衚に瀺した諞特性の内、耐食性詊隓は塩化
ナトリりム、硫化ナトリりム、尿玠、シペ糖、ア
ンモニア氎、乳酞からなるPH3.9〜5.0に調敎し
た人工汗に各詊料を浞挬しお鏡面研摩面の腐食状
態を芳察したものである。 尚、第衚の本発明品〜及び比范品〜
の組織構造をEPMA分析により調べたずころ、
本発明品〜は、盞以䞊の固溶䜓化合物が芏
則的に配列されおいるのに察し、比范品及び
は党䜓が均䞀な盞からな぀おいた。 実斜䟋  平均粒床0.2〜3ÎŒmの各皮単䞀化合物粉末及び
耇合化合物粉末を所定の割合に配合し、実斜䟋
ず同様にしお焌結䜓を埗た。各詊料の配合組成及
び焌結条件を第衚に瀺し、埗られた各詊料の焌
結䜓の諞特性を実斜䟋ず同様にしお求め、その
結果を第衚に瀺した。 EPMA分析により調べた所、第衚の本発明
品10〜14は盞以䞊の固溶䜓化合物が芏則的に配
列されおいるのに察し、比范品は党䜓が均䞀な
盞からな぀おいた。
[Table] Among the various properties shown in Table 2, the corrosion resistance test was performed by immersing each sample in artificial sweat containing sodium chloride, sodium sulfide, urea, sucrose, aqueous ammonia, and lactic acid, adjusted to a pH of 3.9 to 5.0. The corrosion state of the mirror-polished surface was observed. In addition, the present invention products 1 to 9 and comparative products 1 to 2 in Table 2
When the organizational structure of the was investigated by EPMA analysis, it was found that
Inventive products 1 to 9 have solid solution compounds of two or more phases arranged regularly, whereas comparative products 1 and 2
The whole consisted of one uniform phase. Example 2 Various single compound powders and composite compound powders with an average particle size of 0.2 to 3 ÎŒm were blended at a predetermined ratio, and Example 1
A sintered body was obtained in the same manner as above. The composition and sintering conditions of each sample are shown in Table 3, and the various properties of the sintered body of each sample obtained were determined in the same manner as in Example 1, and the results are shown in Table 4. When investigated by EPMA analysis, it was found that inventive products 10 to 14 in Table 4 had two or more phases of solid solution compounds arranged regularly, whereas comparative product 3 consisted of one homogeneous phase as a whole. .

【衚】【table】

【衚】 実斜䟋  平均粒床0.5〜5ÎŒmの䞍定比化合物からなる単
䞀化合物粉末及び耇合化合物粉末を所定の割合に
配合し、実斜䟋ず同様にしお焌結䜓を埗た。各
詊料の配合組成及び焌結条件を第衚に瀺し、埗
られた各詊料の焌結䜓の諞特性を実斜䟋ず同様
にしお求め、その結果を第衚に瀺した。 EPMA分析により調べた所、第衚の本発明
品15〜21は盞以䞊の固溶䜓化合物が芏則的に配
列されおいるのに察し、比范品は党䜓が均
䞀な盞からな぀おいた。
[Table] Example 3 A sintered body was obtained in the same manner as in Example 1 by blending a single compound powder and a composite compound powder made of non-stoichiometric compounds with an average particle size of 0.5 to 5 ÎŒm in a predetermined ratio. The composition and sintering conditions of each sample are shown in Table 5, and the various properties of the sintered body of each sample obtained were determined in the same manner as in Example 1, and the results are shown in Table 6. According to EPMA analysis, inventive products 15 to 21 in Table 6 have solid solution compounds of two or more phases arranged regularly, whereas comparative products 4 and 5 consist of a uniform single phase throughout. was.

【衚】【table】

【衚】 以䞊実斜䟋ず比范に垂販の超硬合金
及びサヌメツトを人工汗による耐食詊隓を行぀た
ずころ垂販の超硬合金及びサヌメツトは金属結合
盞が腐食しお曇りが生じた。又実斜䟋の詊料番
号、実斜䟋の詊料番号14、実斜䟋の詊
料番号21の焌結䜓の鏡面状態は、矎麗な黄金色系
の色調であ぀た。本発明の盞以䞊でなる倉調構
造組織の焌結䜓は、埓来の盞の固溶䜓化合物の
焌結䜓に比べお硬床、抵抗力、砎壊靱性倀及びダ
ング率が顕著に高く優れおいた。このような諞特
性から本発明の高硬床焌結䜓は、装食品甚材料、
切削工具甚郚品及び皮々の耐摩耗甚郚品にず産業
䞊応甚範囲の広い材料である。
[Table] In comparison with Examples 1, 2, and 3, commercially available cemented carbide and cermet were subjected to a corrosion resistance test using artificial sweat. As a result, the commercially available cemented carbide and cermet were cloudy due to corrosion of the metal bonding phase. . The mirror surfaces of the sintered bodies of sample numbers 8 and 9 of Example 1, sample number 14 of Example 2, and sample number 21 of Example 3 had a beautiful golden yellow tone. The sintered body of the present invention having a modulated structure consisting of two or more phases had significantly higher hardness, resistance, fracture toughness, and Young's modulus than the conventional sintered body of a single-phase solid solution compound. Due to these characteristics, the high hardness sintered body of the present invention can be used as a material for decorative items,
It is a material with a wide range of industrial applications, including parts for cutting tools and various wear-resistant parts.

Claims (1)

【特蚱請求の範囲】  TiZrHfNbTaThの炭化物、
窒化物及び酞化物の䞭から遞ばれた皮以䞊でな
る固溶䜓化合物からなり、該固溶䜓化合物がスピ
ノヌダル分解又はバむノヌダル分解による倉調構
造の組織にな぀おいるこずを特城ずする高硬床焌
結䜓。  䞊蚘固溶䜓化合物が金属元玠に察しお非金属
元玠の欠乏又は過剰である非化孊量論組成からな
るこずを特城ずする特蚱請求の範囲第項蚘茉の
高硬床焌結䜓。
[Claims] 1 Carbide of Ti, Zr, Hf, V, Nb, Ta, Th,
A high-hardness sintered body comprising a solid solution compound composed of two or more selected from nitrides and oxides, the solid solution compound having a modulated structure structure due to spinodal decomposition or binodal decomposition. 2. The high-hardness sintered body according to claim 1, wherein the solid solution compound has a non-stoichiometric composition in which nonmetallic elements are deficient or in excess of metallic elements.
JP58123855A 1983-07-07 1983-07-07 High hardness sintered body Granted JPS6016867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123855A JPS6016867A (en) 1983-07-07 1983-07-07 High hardness sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123855A JPS6016867A (en) 1983-07-07 1983-07-07 High hardness sintered body

Publications (2)

Publication Number Publication Date
JPS6016867A JPS6016867A (en) 1985-01-28
JPH0478584B2 true JPH0478584B2 (en) 1992-12-11

Family

ID=14871061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123855A Granted JPS6016867A (en) 1983-07-07 1983-07-07 High hardness sintered body

Country Status (1)

Country Link
JP (1) JPS6016867A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118674A (en) * 1983-11-30 1985-06-26 東芝タンガロむ株匏䌚瀟 Heat resistant high hardness sintered body
US4910171A (en) * 1987-03-26 1990-03-20 Agency Of Industrial Science And Technology Titanium hafnium carbide-boride metal based ceramic sintered body
US20210230073A1 (en) * 2018-07-17 2021-07-29 Sumitomo Electric Industries, Ltd. Sintered material, powder and powder producing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426810A (en) * 1977-08-01 1979-02-28 Sumitomo Electric Industries Sintered body for tool and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426810A (en) * 1977-08-01 1979-02-28 Sumitomo Electric Industries Sintered body for tool and method of making same

Also Published As

Publication number Publication date
JPS6016867A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
EP2165990B1 (en) Dense boron carbide ceramic and process for producing the same
EP0170889B1 (en) Zrb2 composite sintered material
JP2628200B2 (en) TiCN-based cermet and method for producing the same
JPS6159391B2 (en)
US7648675B2 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JPH0478584B2 (en)
JPH07502072A (en) Boron carbide-copper cermet and its manufacturing method
JP2863829B2 (en) High toughness, high strength, high hardness alumina-based composite material
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS60103148A (en) Boride-base high-strength sintered hard material
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH0687656A (en) Sintered compact based on tantalum-containing multiple compound and its production
JPH03290356A (en) Aluminum oxide based ceramics having high toughness and strength and production thereof
JP2001179508A (en) Cutting tool
JP3366696B2 (en) Manufacturing method of high strength cermet
JPS60131867A (en) High abrasion resistance superhard material
JPH0547509B2 (en)
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPH0559481A (en) Sintered hard alloy having high hardness
JPH0545549B2 (en)
KR820001538B1 (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
JPH09239605A (en) Ticn group cermet tool and its manufacture