JPH0473862A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0473862A
JPH0473862A JP2180090A JP18009090A JPH0473862A JP H0473862 A JPH0473862 A JP H0473862A JP 2180090 A JP2180090 A JP 2180090A JP 18009090 A JP18009090 A JP 18009090A JP H0473862 A JPH0473862 A JP H0473862A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
carbon
battery
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2180090A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yoshihisa
吉久 洋悦
Hiroshi Imachi
宏 井町
Kazuya Kuriyama
和哉 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2180090A priority Critical patent/JPH0473862A/en
Publication of JPH0473862A publication Critical patent/JPH0473862A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve discharge characteristic, cycle characteristic and productivity by using a negative electrode in which a lithium layer is formed by coating on a negative electrode surface consisting of carbon formed on a collector. CONSTITUTION:A coated negative electrode consisting of carbon and a binder is provided on the inner surface of a negative electrode collector and outer cell 6, and the surface of the negative electrode 5 is coated with lithium 4 sufficient to be doped in the carbon negative electrode. A positive electrode 2 having a separator 3 placed thereon and the negative electrode 4 are superposed to each other so that they are mutually opposed, and a battery assembled while vacuuming the inner part of the battery so as not to form an air bank between both the layers, and allowed to stand dope the coated lithium 4 in carbon. As the battery inner part is held vacuum at this time, an external pressure is added, if the lithium 4 is doped in the carbon and disappears, and the separator 3 is closely adhered to the negative electrode 5. Thus, a lithium secondary battery excellent in discharge characteristic, cycle characteristic and productivity can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウムを吸蔵させた炭素を負極とするリチウ
ム二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a lithium secondary battery whose negative electrode is carbon occluded with lithium.

従来技術とその問題点 リチウムを吸蔵させた炭素を負極とするリチウム二次電
池は、充放電の繰返しに伴う、リチウム表面へのデンド
ライトの生成がなく、金属リチウムを負極とするリチウ
ム二次電池に比べ、充放電サイクル性能において優れて
いる。
Conventional technology and its problems Lithium secondary batteries that use carbon with lithium occluded as the negative electrode do not generate dendrites on the lithium surface due to repeated charging and discharging, and are not suitable for lithium secondary batteries that use metallic lithium as the negative electrode. It has superior charge/discharge cycle performance.

又、化学的に反応性の高いリチウムを用いないので、安
全性が高い、従って、近年活発な研究開発が行われたい
る。
In addition, since lithium, which is chemically highly reactive, is not used, it is highly safe, and has therefore been actively researched and developed in recent years.

炭素を負極とする従来のリチウム二次電池は、予め電気
化学的な方法で炭素にリチウムをドープし、このリチウ
ムをドープした炭素をバインダーと混練して負極集電体
上に塗布して負極とするか、あるいは、未ドープの炭素
をバインダーと混練して集電体上に塗布し、固化した後
、対極にリチウムを用いて電気化学的な方法で炭素にリ
チウムをドープしていた。上記従来の負極は、ドープの
工程が煩雑で量産に適用できないという欠点があった。
Conventional lithium secondary batteries that use carbon as the negative electrode are made by first doping carbon with lithium using an electrochemical method, then kneading the lithium-doped carbon with a binder and coating it on the negative electrode current collector. Alternatively, undoped carbon is kneaded with a binder and applied onto a current collector, solidified, and then the carbon is doped with lithium by an electrochemical method using lithium as a counter electrode. The conventional negative electrode described above has the disadvantage that the doping process is complicated and cannot be applied to mass production.

この欠点を改良するべく、炭素の層を形成させた負極集
電体の一部分に必要量のリチウムを接触させることによ
り、電池に組込まれた時に、炭素とリチウムが短絡状態
となるようにして、電気化学的に炭素にリチウムをドー
プさせる提案がある。
In order to improve this drawback, by bringing a necessary amount of lithium into contact with a part of the negative electrode current collector on which a carbon layer is formed, carbon and lithium are short-circuited when incorporated into a battery. There is a proposal to electrochemically dope carbon with lithium.

この提案の負極は、リチウムと炭素間の距離に部分的な
隔りがあり、リチウムに近い部分の炭素のみが優先的に
ドープされるのに対し、すチウムから遠い部分の炭素は
ドープされにくく、均一なドープが困難であった。
In this proposed negative electrode, there is a partial distance between lithium and carbon, and only the carbon near the lithium is preferentially doped, while the carbon far from the lithium is less likely to be doped. However, uniform doping was difficult.

又、ドープが完了した時、リチウムが消費されるためリ
チウムがあった部分の集電体と炭素の界面に空間を生じ
、集電体と炭素間の密着性が悪くなるという欠点があっ
た。
In addition, when doping is completed, lithium is consumed and a space is created at the interface between the current collector and carbon where lithium was, resulting in poor adhesion between the current collector and carbon.

発明の目的 本発明は上記従来の問題点に鑑みなされたものであり、
リチウムのドープが均一でしかも集電体と炭素との密着
性が良好であり、放電特性及びサイクル特性さらに生産
性に優れたリチウム二次電池を提供することを目的とす
るものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The object of the present invention is to provide a lithium secondary battery that is uniformly doped with lithium, has good adhesion between the current collector and carbon, and has excellent discharge characteristics, cycle characteristics, and productivity.

発明の構成 本発明は上記目的を達成するべく、 集電体上に形成された炭素からなる負極表面に、コーテ
ィングによりリチウム層を形成した負極を用いたことを
特徴とするリチウム二次電池である。
Structure of the Invention In order to achieve the above object, the present invention is a lithium secondary battery characterized by using a negative electrode in which a lithium layer is formed by coating on the surface of a negative electrode made of carbon formed on a current collector. .

実施例 以下、本発明の詳細について一実施例により説明する。Example Hereinafter, the details of the present invention will be explained using one example.

第1図は本発明の一実施例を示したリチウム二次電池の
断面図であり、組立直後の電池であり、第2図は同電池
のリチウムがドープされた同図であり、第3図は従来の
リチウム二次電池の組立直後の電池を示した断面図、第
4図は従来電池のリチウムがドープされた同図である。
FIG. 1 is a cross-sectional view of a lithium secondary battery showing one embodiment of the present invention, showing the battery immediately after assembly, FIG. 2 showing the same battery doped with lithium, and FIG. 4 is a sectional view showing a conventional lithium secondary battery immediately after assembly, and FIG. 4 is a sectional view of the conventional lithium secondary battery doped with lithium.

ここで、1は正極集電体、2は正極、3はセパレータ、
4はリチウムコーティング層、5は負極、6は負極集電
体、7はシール、8はリチウム箔、9は空間である。正
極集電体兼外槽はステンレス箔又はステンレス板から成
る。この内面に、T i S tやV、aS等の正極作
用物質とカーボンブラック等の導電性剤及びバインダー
からなる正極は、コーティング等によりフィルム状に形
成されている。セパレータはポリエチレンやポリプロピ
レンの微孔膜や不織布にLi CI O4P C(プロ
ピレンカーボネート)/DME (ジメトキシエタン)
等の電解液を含浸させ正極の内面に載置した。
Here, 1 is a positive electrode current collector, 2 is a positive electrode, 3 is a separator,
4 is a lithium coating layer, 5 is a negative electrode, 6 is a negative electrode current collector, 7 is a seal, 8 is a lithium foil, and 9 is a space. The positive electrode current collector and outer tank is made of stainless steel foil or stainless steel plate. On this inner surface, a positive electrode consisting of a positive electrode active substance such as T i S t, V, aS, etc., a conductive agent such as carbon black, and a binder is formed in the form of a film by coating or the like. The separator is made of polyethylene or polypropylene microporous membrane or nonwoven fabric with Li CI O4P C (propylene carbonate)/DME (dimethoxyethane).
The electrode was impregnated with an electrolytic solution such as the following, and placed on the inner surface of the positive electrode.

負極集電体兼外槽の内面にコーティングされた炭素及び
バインダーからなる負極がある。尚、負極の表面には、
炭素負極にドープされるだけのリチウムがコーティング
されている。リチウムのコーティングは、不活性ガス中
で溶解させたリチウムをコーティングにより炭素負極の
表面に塗布する。尚、このコーティング法は、リチウム
箔に比べ薄い層が形成できる点、炭素の表面前面にコー
ティング層を形成できる点、生産性が高い点で優れた方
法である。
There is a negative electrode made of carbon and a binder coated on the inner surface of the negative electrode current collector and outer tank. Furthermore, on the surface of the negative electrode,
The carbon negative electrode is coated with just enough lithium to be doped. In the lithium coating, lithium dissolved in an inert gas is coated on the surface of the carbon negative electrode. This coating method is superior in that it can form a thin layer compared to lithium foil, that it can form a coating layer on the front surface of carbon, and that it has high productivity.

セパレータを載置した正極と負極が相対向するように重
ね、各層間に空気溜りが生じないように、電池の内部を
真空に引きながらヒートシールにより電池を組立てた。
The positive and negative electrodes with separators placed thereon were stacked so as to face each other, and the battery was assembled by heat sealing while evacuating the inside of the battery to prevent air pockets from forming between each layer.

シールには、変性ポリオレフィン等の熱融着性の樹脂か
らなる窓枠状のものを用いた。
A window frame-shaped seal made of heat-fusible resin such as modified polyolefin was used as the seal.

組立てられた電池を放置し、コーティングされたリチウ
ムを炭素中にドープさせる。この時電池内部が真空に保
持されているので、炭素負極の表面にコーティングされ
ていたリチウムが炭素にドープされて消失しても外部か
ら圧力が加わり、セパレータと負極が密着するので、良
好な電池特性が得られる。
The assembled battery is left to dope the coated lithium into the carbon. At this time, the inside of the battery is kept in a vacuum, so even if the lithium coated on the surface of the carbon negative electrode is doped with carbon and disappears, pressure is applied from the outside, and the separator and negative electrode stick together, resulting in a good battery. characteristics are obtained.

比較のために、従来のリチウム二次電池を第3図と第4
図に示した。正極及びセパレータについて、前記の本発
明のリチウム二次電池と同様である。
For comparison, conventional lithium secondary batteries are shown in Figures 3 and 4.
Shown in the figure. The positive electrode and separator are the same as those of the lithium secondary battery of the present invention described above.

負極は、負極集電体の内面にリチウム箔を圧着し、その
上に炭素負極を載置して形成されている。この正極、負
極、セパレータにより、電池を組立てた。(第3図) 放1によりリチウムが炭素にドープされた後、リチウム
が占めていた部分が空間として残った状態が第4図であ
る。
The negative electrode is formed by pressing a lithium foil onto the inner surface of a negative electrode current collector and placing a carbon negative electrode thereon. A battery was assembled using this positive electrode, negative electrode, and separator. (FIG. 3) FIG. 4 shows a state in which after carbon is doped with lithium by the irradiation 1, the portion occupied by lithium remains as a space.

集電体と負極の間に空間があり、接触が悪い。There is a space between the current collector and the negative electrode, resulting in poor contact.

又、リチウム近傍の炭素にリチウムが優先的にドープさ
れるので、リチウムの分布が不均一である。
Furthermore, since lithium is preferentially doped into carbon near lithium, the distribution of lithium is non-uniform.

本発明の電池と従来品の電池とを放電試験して放電特性
を第5図に示した。尚、組み込んだリチウムが全て放電
された時の容量を100とした。
A discharge test was conducted on the battery of the present invention and a conventional battery, and the discharge characteristics are shown in FIG. Note that the capacity when all the incorporated lithium was discharged was set as 100.

第6図にサイクル特性の比較を示した。Figure 6 shows a comparison of cycle characteristics.

第5図・第6図の結果より本発明の電池が優れた特性を
有している。
The results shown in FIGS. 5 and 6 show that the battery of the present invention has excellent characteristics.

発明の効果 上述した如く、本発明のリチウム二次電池は、リチウム
のドープが均一でしかも集電体と炭素との密着性が良好
であり、放電特性及びサイクル特性さらに生産性に優れ
たリチウム二次電池を提供することが出来るので、その
工業的価値は極めて大である。
Effects of the Invention As described above, the lithium secondary battery of the present invention is a lithium secondary battery that is uniformly doped with lithium, has good adhesion between the current collector and carbon, and has excellent discharge characteristics, cycle characteristics, and productivity. Since it can provide a secondary battery, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示したリチウム二次電池の
断面図(組立直後)、第2図はリチウムドープ後の同電
池の断面図、第3図は従来のリチウム二次電池の断面図
(&ll立直後)、第4図はリチウムドープ後の同電池
の断面図である。 1・・・正極集電体    2・・・正極3・・・セパ
レータ
Figure 1 is a cross-sectional view of a lithium secondary battery showing an embodiment of the present invention (immediately after assembly), Figure 2 is a cross-sectional view of the same battery after doping with lithium, and Figure 3 is a cross-sectional view of a conventional lithium secondary battery. 4 is a cross-sectional view of the same battery after doping with lithium. 1... Positive electrode current collector 2... Positive electrode 3... Separator

Claims (1)

【特許請求の範囲】[Claims]  集電体上に形成された炭素からなる負極表面に、コー
ティングによりリチウム層を形成した負極を用いたこと
を特徴とするリチウム二次電池。
A lithium secondary battery characterized by using a negative electrode in which a lithium layer is formed by coating on the surface of a negative electrode made of carbon formed on a current collector.
JP2180090A 1990-07-06 1990-07-06 Lithium secondary battery Pending JPH0473862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180090A JPH0473862A (en) 1990-07-06 1990-07-06 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180090A JPH0473862A (en) 1990-07-06 1990-07-06 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0473862A true JPH0473862A (en) 1992-03-09

Family

ID=16077272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180090A Pending JPH0473862A (en) 1990-07-06 1990-07-06 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0473862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
WO2003058145A1 (en) * 2001-12-28 2003-07-17 Nec Corporation Lithium-ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
JP2003115293A (en) * 2001-07-31 2003-04-18 Nec Corp Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
EP1282179A3 (en) * 2001-07-31 2005-06-29 Nec Corporation Negative electrode for rechargeable battery
US7202000B2 (en) 2001-07-31 2007-04-10 Nec Corporation Anode for secondary battery, secondary battery using same and method for fabricating anode
WO2003058145A1 (en) * 2001-12-28 2003-07-17 Nec Corporation Lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
CN108899472B (en) Electrode plate for lithium metal battery, preparation method of electrode plate and lithium metal battery
CN104008893B (en) The preparation method of lithium ion hybrid capacitors and lithium ion hybrid capacitors thereof
TW540174B (en) Electrochemical cell and method of manufacturing the same
TW201523985A (en) Lithium electrode and lithium secondary battery comprising the same
JPH0722023B2 (en) Method for manufacturing solid state electrochemical cell
KR20200029961A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery comprising the same
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
JP2000208129A (en) Lithium secondary battery
CN110383568B (en) Secondary battery and method for manufacturing secondary battery
JPH09134726A (en) Collector of electrochemical element, and manufacture of electrochemical element and collector of electrochemical element
KR20180113417A (en) Method of manufacturing lithium secondary battery
KR20190090723A (en) Method of manufacturing negative electrode for lithium secondary battery
US3694268A (en) Multicell battery construction using continuous carrier strip of separator material
CN112993208A (en) Lithium ion energy storage device, pre-lithiation method thereof and preparation method thereof
JP2000090979A (en) Sealed battery
JPH11307084A (en) Organic electrolyte battery
JPH0473862A (en) Lithium secondary battery
JPH11339856A (en) Manufacture of sheet-type lithium-ion secondary battery
JP2002231196A (en) Method of manufacturing thin battery
CN216054799U (en) Zinc electrode protected by fiber membrane
JPH11126600A (en) Lithium ion secondary battery
JP2022081421A (en) Negative electrode body for zinc battery and zinc battery
JPH07240233A (en) High polymer solid electrolyte lithium secondary battery
JP2609847B2 (en) Non-aqueous secondary battery
JP2003217671A (en) Manufacturing method for gastight battery and sealing evaluation method for gastight battery