JPH0461032B2 - - Google Patents

Info

Publication number
JPH0461032B2
JPH0461032B2 JP58002651A JP265183A JPH0461032B2 JP H0461032 B2 JPH0461032 B2 JP H0461032B2 JP 58002651 A JP58002651 A JP 58002651A JP 265183 A JP265183 A JP 265183A JP H0461032 B2 JPH0461032 B2 JP H0461032B2
Authority
JP
Japan
Prior art keywords
mica
titanium
pigment
color
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58002651A
Other languages
Japanese (ja)
Other versions
JPS59126468A (en
Inventor
Asa Kimura
Fukuji Suzuki
Juji Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Shiseido Co Ltd
Original Assignee
Mitsubishi Materials Corp
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Shiseido Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP265183A priority Critical patent/JPS59126468A/en
Publication of JPS59126468A publication Critical patent/JPS59126468A/en
Publication of JPH0461032B2 publication Critical patent/JPH0461032B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は雲母粒子表面が二酸化チタンと低次酸
化チタン、又は低次酸化チタンで被覆されてなる
有色の雲母チタン系顔料に関する。 本発明の有色の雲母チタン系顔料は真珠光沢を
有し、安全性、安定性、耐光性、耐酸性、耐アル
カリ性、耐溶媒性、耐熱性に優れた顔料特性を有
する有色の雲母チタン系顔料である。 従来の雲母チタン系顔料は化粧品原料基準追補
注解6版(昭和57年発行、薬事日報)P54〜
P57に記載されているように微細な薄片状雲母の
表面に二酸化チタン層を形成させた真珠光沢と
種々の干渉色を有するもので、製法としては真空
蒸着処理もあるがデユポンの特許(特公昭43−
25644号公報)に見られるようなチタンの無機酸
塩(たとえば硫酸チタニル)の水溶液を雲母の存
在下で加水分解し、雲母表面に含水二酸化チタン
を析出させたのち加熱する方法が一般的である。
使用するる雲母は、一般には白雲母系雲母
(muscovitemica)を用いるが、場合によつては
黒雲母などを用いることも可能である。また雲母
はあらかじめ水粉砕し、フルイを用いて粒子径を
そろえたものを使用する。生成した雲母チタン系
顔料は、雲母粒子表面上の二酸化チタン被覆層の
厚さによつて様々な干渉色を呈する。干渉色は二
酸化チタンの量が生成物の10〜26重量%の場合、
通常銀色であるが、26〜40%では金色、40〜50%
の範囲では二酸化チタン層の増加の方向で、赤、
青、緑色へと変化し、さらに50〜60%では高いオ
ーダーの干渉色が得られる。第1表に干渉色と雲
母粒子表面上の二酸化チタン層の厚さの関係につ
いて示す。 第1表 (干渉色) (TiO2の幾何学的厚さ) 〔mμ〕 銀 20〜40 うすい金 40〜90 金 40〜90 赤 90〜110 菫 110〜120 青 120〜135 緑 135〜155 第2オーダーの金 155〜175 第2オーダーの菫 175〜200 こうした雲母チタン系顔料は真珠光沢と種々の
干渉色を有するものの、外観色は常に白色に近
く、鮮やかな外観色を呈するものは得られていな
い。そこで従来、種々な外観色を出すためには、
生成した雲母チタン系顔料に酸化鉄、紺青、酸化
クロム、カーボンブラツク、カーミンなどの有色
顔料を添加して対処していた。こうした有色の雲
母チタン系顔料の安全性、安定性、耐光性、耐酸
性、耐アルカリ性、耐溶媒性、耐熱性などは添加
した有色顔料の性質に負うところが多く、例えば
紺青を添加した青色の雲母チタン系顔料はアルカ
リ溶液中で褪色し、カーミンを添加した赤色の雲
母チタン系顔料は光によつて褪色劣化する。一
方、カーボンブラツクを添加した黒色雲母チタン
系顔料、酸化クロムを添加した緑色の雲母チタン
系顔料などのように、カーボンブラツクに混入す
る可能性のある3,4−ベンズピレンの発ガン
性、あるいは六価クロムの経口毒性など、安全性
が問われているものも少なくない。更に、上記有
色の雲母チタン系顔料は有色顔料を添加している
為、溶媒中で色分かれを起すなどの欠点も併せ持
つている。 本発明者等は上記の欠点を改良すべく鋭意研究
の結果、雲母粒子表面を二酸化チタンと低次酸化
チタン、又は低次酸化チタンで被覆することによ
つて、従来の雲母チタン系顔料あるいは有色顔料
を添加した有色の雲母チタン系顔料と同等もしく
はそれ以上に鮮やかな色調を有し、真珠光沢のあ
る安全性、安定性、耐光性、耐酸性、耐アルカリ
性、耐溶媒性、耐熱性に優れた有色の雲母チタン
系顔料が得られることを見い出し、この知見に基
づいて本発明を完成するに至つた。 すなわち本発明は、雲母表面が、二酸化チタン
と低次酸化チタン、又は低次酸化チタンで被覆さ
れてなる有色の雲母チタン系顔料である。 なお、本発明において、雲母は薄片状雲母より
なり、また干渉色と同系色の外観色を持つ有色の
雲母チタン系顔料であることが好適である。 また、雲母表面上での全酸化チタンの幾何学的
層厚(以下、単に層厚という)が40mμ以上であ
ることを特徴とする有色の雲母チタン系顔料であ
ることが好適である。 また、全酸化チタン/雲母が重量比で35/65以
上であることが好適である。 次に、本発明の構成について詳述する。 本発明で使用される雲母はどのようなものでも
よく、一般には市販品の白雲母系雲母
(muscovitemica)を用いるが、場合によつては
黒雲母などを用いることも可能である。粒径はと
くに制限されないが、一般市販の雲母の粒径は1
〜50μ程度であり、このなかでも粒径が小さく粒
子形状ができるだけ偏平なものが本発明の有色の
雲母チタン系顔料にした場合より美しい色調と真
珠光沢が発揮されやすい。 また、本発明における低次酸化チタンとは、四
価のチタンよりも価数の少ないチタンの化合物
で、一般式がTioO2o-1(nは正の整数)で示され
る酸化チタン、及び/又は前記の酸化チタンに窒
素が含まれる酸化窒化チタンを含めての総称であ
る。 本発明の上記有色の雲母チタン系顔料は雲母粒
子表面が二酸化チタンと低次酸化チタン、又は低
次酸化チタンで被覆されてなる顔料であるが、こ
のものを製造するには種々の方法をとることがで
きる。例示すれば市販の雲母チタン系顔料を500
℃〜1000℃、好ましくは700℃〜900℃の温度で水
素ガス及びアンモニアガスなどの還元力を有する
ガスの一種又は二種以上によつて、あるいはこれ
ら還元力を有するガスとヘリウムガス、アルゴン
ガス、窒素ガスなどの不活性ガスとの混合ガスに
よつて加熱還元する方法、市販の雲母チタン系顔
料に二酸化チタンを混合し、該混合物を上記の方
法によつて加熱還元する方法、又は市販の雲母チ
タン系顔料に金属チタンを混合し、該混合物を真
空下で500℃〜1000℃好ましくは700℃〜900℃で
加熱還元するなどの方法を挙げることができる。
更にはデユポンの特許(特公昭43−25644号公報)
に見られるようなチタンの無機酸塩(たとえば硫
酸チタニル)の水溶液を前述した雲母の存在下で
加水分解し、雲母粒子表面に含水二酸化チタンを
析出させ、これを500℃〜1000℃で好ましくは700
℃〜900℃の温度で水素ガス及びアンモニアガス
などの還元力を有するガスの一種又は二種以上に
よつて、あるいはこれら還元力を有するガスとヘ
リウムガス、アルゴンガス、窒素ガスなどの不活
性ガスとの混合ガスによつて加熱還元するか、あ
るいは雲母粒子表面に含水二酸化チタンを析出さ
せたのち加熱し雲母チタンを生成させてこれを上
記市販の雲母チタン系顔料と同様な方法で還元し
ても良い。又、還元の方法は上述の水素ガスやア
ンモニアガスのような還元ガスを用いる方法に限
定されるものではなく、雲母チタンを水素ガスな
どの還元炎を用いて還元する方法や、雲母をチタ
ン塩、例えば四塩化チタン液に懸濁させ、この懸
濁液を空気と水素の混合ガスの炎中で酸化分解さ
せる方法をとることもできる。つまり、本発明の
有色の雲母チタン系顔料は雲母粒子表面が二酸化
チタンと低次酸化チタン、又は低次酸化チタンで
被覆されてなる有色の雲母チタン系顔料であつ
て、その製法は公知のいずれの方法でもよく、特
に制限はない。 雲母を被覆する二酸化チタンと低次酸化チタン
又は低次酸化チタンの量は広い範囲で変化させる
ことができ、通常雲母(100重量部)に対して、
二酸化チタンが0から60重量部の量まで、低次酸
化チタンが0.01〜60重量部の量まで被覆すること
ができる。低次酸化チタンの量が雲母100重量部
に対して0.01重量部未満しか被覆していない場合
はできあがつた雲母チタンが有色にならない。
又、60重量部を超える場合は雲母の性質が極端に
悪くなり、粒子の凝集が強くなる。この性質は二
酸化チタンの量が雲母100重量部に対して60重量
部を超える場合も同様である。 なお、本発明において、全酸化チタン(二酸化
チタン+低次酸化チタン:なお、還元前後で雲母
との重量比、あるいは層厚には殆ど変化がない)
の幾何学的層厚が40mμ未満であると、外観色自
体が銀灰色〜黒色の無彩色となる傾向が強く、有
色となりにくい。 また、本発明において、層厚が40mμ以上であ
ると干渉色と同系色の外観色が得られ、具体的な
製品として金色、赤色、菫色、青色、又は緑色の
干渉色を呈し、該干渉色と同系色の外観色を有す
るものが得られる。 なお、一般に使用される雲母において、前述し
たように幾何学的層厚を40mμ以上とするために
は、全酸化チタン/雲母が重量比で35/65以上で
あることが好適である。 次に本発明を実施例により説明する。例中に部
とあるのは重量部を表わす。 実施例 1 雲母50部をイオン交換水500部に添加して十分
に攪拌し均一に分散させた。得られた分散液に濃
度40重量%の硫酸チタニル水溶液208.5部を加え
て、攪拌しながら加熱し6時間沸騰させた。放冷
後、過水洗し900℃で焼成して、二酸化チタン
で被覆された雲母(雲母チタン)90部を得た。次
に得られた雲母チタンを流速3/minのアンモ
ニアガス気流下で800℃、4時間の還元処理を行
ない、冷却後、粉末を回収した。得られた粉末は
外観色、干渉色ともに鮮やかな青色の真珠光沢を
呈するものであつた。 この製品である青色の雲母チタン系顔料の粒子
の表面状態は第1図の走査型電子顕微鏡写真に示
すとおりである。これによれば、製品である青色
の雲母チタン系顔料の粒子一個の表面が微粒子状
のもので充分に被覆されている状態を観察するこ
とができる。 また、この製品である青色の雲母チタン系顔料
のX線回析図(Cu−Kα線)は第2図に示すとお
りであり、これによれば雲母の回折ピークの他に
回折角(ブラツグ角2θ)25.3°付近にピークが認
められる。これはアナターゼ型二酸化チタンの最
強ピークの101に相当している。又、2θ=43.3°付
近にややブロードのピークが認められるが、この
ピークは一酸化チタン(TiO)に窒素(N)が含
まれる酸化窒化チタンの最強ピークの200に相当
しており、本実施例で得られた製品である青色の
雲母チタン系顔料は二酸化チタンと酸化窒化チタ
ンによつて雲母粒子表面が被覆されていることが
分かる。 なお、第4図には還元処理を行なつていない二
酸化チタン被覆雲母のX線回折図が示されてい
る。同図に示す回折図では、前記酸化窒化チタン
のピーク(2θ=43.3°)は殆ど認められず、本実
施例品と還元処理を行なつていない二酸化チタン
被覆雲母は、まつたく異なる製品であることが理
解される。 さらに、雲母粒子表面を被覆している二酸化チ
タンと低次酸化チタンの量を下記に示す方法によ
つて決定した。 (1) 還元処理を行なう前の試料と還元処理後の試
料を各々メノー製ボールミルを用いて粉砕処理
し、雲母を無定形化した。該試料をX線回折
(Cu−Kα線)の粉末測定法により、二酸化チ
タンの回折線と低次酸化チタンの回折線の強度
を求め、その強度を、別に求めた雲母と二酸化
チタンの混合比、及び低次酸化チタンの混合比
既知の回折強度の検量線と対比させて二酸化チ
タンと低次酸化チタンの量を求めた。 (2) 低次酸化チタンは大気中で焼成することによ
つて全て二酸化チタンに変ることから、還元処
理を行なつた試料について重量分析を行ない低
次酸化チタンの量を定量した。すなわち、20ml
入磁性ルツボに試料約5gを正確に秤り、大気
中800℃で4時間熱処理した。放冷後重量増加
分を正確に測定し、その重量増加分から低次酸
化チタンの量を定量した。 上記の方法によつて製品である青色の雲母チタ
ン系顔料中の二酸化チタンと低次酸化チタンの量
を求めると、この製品である青色の雲母チタン系
顔料は、雲母100重量部に対して6.4重量部の二酸
化チタンと33.6重量部の低次酸化チタンが雲母表
面を被覆してなる青色の雲母チタン系顔料であ
る。 なお、前述したように本実施例にかかる顔料は
外観色と同系色の干渉色、すなわち青色の干渉色
を有するため、前記第1表より120〜135mμの層
厚であることが示唆される。 実施例 2 雲母50部をイオン交換水500部に添加して十分
に攪拌し均一に分散させた。得られた分散液に濃
度40重量%の硫酸チタニル水溶液312.5部を加え
て、攪拌しながら加熱し6時間沸騰させた。放冷
後、過水洗し900℃で焼成して、表面が二酸化
チタンで被覆された雲母(雲母チタン)100部を
得た。次に得られた雲母チタンを流速1/min
のアンモニアガスと流速3/minの窒素ガスと
の混合ガス気流下で800℃、4時間の還元処理を
行ない、冷却後、粉末を回収した。得られた粉末
は外観色、干渉色ともに鮮やかな緑色の真珠光沢
を呈した。 この製品である緑色の雲母チタン系顔料のX線
回折図(Cu−Kα線)を第3図に示す。これによ
ると実施例1の場合と同様に、雲母の回折ピーク
の他に回折角(ブラツグ角2θ)25.3°付近にアナ
ターゼ型二酸化チタンの最強ピークの(101)が、
また2θ=43.3°付近にややブロードの一酸化チタ
ン(TiO)に窒素(N)が含まれる酸化窒化チタ
ンの最強ピークの(200)が認められており、本
実施例で得られた緑色の雲母チタン系顔料は二酸
化チタンと酸化窒化チタンによつて雲母粒子表面
が被覆されていることが分かる。また雲母粒子表
面に被覆されている二酸化チタンと低次酸化チタ
ンの量を実施例1と同様の方法によつて定量し
た。その結果この製品である緑色の雲母チタン系
顔料は雲母100重量部、二酸化チタン3.8重量部及
び低次酸化チタン46.2重量部が被覆してなる緑色
の雲母チタン系顔料であることが判つた。 なお前述したように本実施例にかかる顔料は緑
色の干渉色を有するため、前記第1表より135〜
155mμの層厚であることが示唆される。 実施例 3 雲母50部をイオン交換水500部に添加して十分
に攪拌し均一に分散させた。得られた分散液に濃
度40重量%の硫酸チタニル水溶液208.5部を加え
て、攪拌しながら加熱し6時間沸騰させた。放冷
後、過・水洗し100℃で乾燥し、雲母チタン90
部を得た。該生成物を流速3/minのアンモニ
アガス気流下で900℃、3時間の還元処理を行な
い冷却後、粉末90部を回収した。得られた粉末は
外観色、干渉色ともに鮮やかな青色の真珠光沢を
呈するものであつた。また雲母粒子表面を被覆し
ている二酸化チタンと低次酸化チタンの量は、二
酸化チタンが、核となつている雲母100部重量部
に対して4.6重量部、低次酸化チタンが同じく
35.4重量部であつた。 なお本実施例にかかる顔料は青色の干渉色を有
するため、前記第1表より120〜135mμの層厚で
あることが示唆される。 実施例 4 雲母50部をイオン交換水500部に添加して十分
に攪拌し均一に分散させた。得られた分散液に濃
度40重量%の硫酸チタニル水溶液312.5部を加え
て、攪拌しながら加熱し6時間沸騰させた。放冷
後、過水洗し900℃で焼成して、二酸化チタン
で被覆された雲母(雲母チタン)100部を得た。
次に得られた雲母チタン100部に金属チタン1.2部
を混合し、該混合物をオイル拡散ポンプを用いて
10-3torr以下の真空度にて、800℃で4時間加熱
還元した。冷却後、粉末101.2部を得た。得られ
た粉末は外観色、干渉色ともに真珠光沢のある鮮
やかな青緑色の粉末であつた。またこの製品であ
る青緑色の雲母チタン系顔料において雲母を被覆
している二酸化チタンと低次酸化チタンの量を実
施例1記載中の定量方法(1)と(2)によつて求める
と、二酸化チタンが雲母100部重量部に対して
40.5重量部、低次酸化チタンが9.5重量部である
ことが判つた。 なお本実施例にかかる顔料は青緑色の干渉色を
有するので、前記第1表より130〜140mμの層厚
であることが示唆される。 実施例 5〜8 市販(米国マール社製)の干渉色を有する雲母
チタン系真珠光沢顔料4種類を各50部とり、還元
ガスの種類、ガス流速、還元温度、還元時間を変
えて各々還元した。放冷後、生成物50部を得た。
得られた粉末の色、干渉色を肉眼で観察し、色調
をカラーアナライザー607(日立製作所)を用いて
粉末セル法で測色した(色相(H).明度
(V)./彩度(C))。また二酸化チタンと低次酸化
チタンの量を実施例1記載の定量法(1)と(2)によつ
て求めた。結果を第2表に示す。 実施例 9〜12 市販(米国マール社製)の干渉色を有する雲母
チタン系真珠光沢顔料4種類を各50部とり、金属
チタンの混合量を変えて、該混合物と拡散ポンプ
を用いて10-3torr以下の真空度にして800℃で4
時間加熱還元した。冷却後、得られた粉末の色、
干渉色を肉眼で観察し色調をカラーアナライザー
607を用いて粉末セル法で測色した(色相(H).
明度(V)./彩度(C))。
The present invention relates to a colored mica titanium pigment in which the surface of mica particles is coated with titanium dioxide, lower titanium oxide, or lower titanium oxide. The colored mica titanium pigment of the present invention has pearlescent luster and has excellent pigment properties such as safety, stability, light resistance, acid resistance, alkali resistance, solvent resistance, and heat resistance. It is. Conventional mica titanium pigments are from Cosmetic Raw Materials Standards Supplementary Commentary 6th Edition (published in 1981, Yakuji Nippo) P54~
As described on page 57, it has pearlescent luster and various interference colors by forming a titanium dioxide layer on the surface of fine flaky mica. Vacuum deposition processing is also available as a manufacturing method, but Dupont's patent (Tokuko Showa) 43−
A common method is to hydrolyze an aqueous solution of an inorganic acid salt of titanium (for example, titanyl sulfate) in the presence of mica to precipitate hydrated titanium dioxide on the mica surface, and then heat it, as shown in Japanese Patent Publication No. 25644. .
The mica used is generally muscovite mica, but biotite or the like may also be used in some cases. In addition, mica is pulverized with water in advance and the particle size is made uniform using a sieve. The produced mica titanium pigment exhibits various interference colors depending on the thickness of the titanium dioxide coating layer on the mica particle surface. The interference color shows that when the amount of titanium dioxide is between 10 and 26% by weight of the product,
Usually silvery, but 26-40% golden, 40-50%
Red, in the direction of increasing titanium dioxide layer in the range of
The color changes to blue and green, and at 50 to 60%, high-order interference colors are obtained. Table 1 shows the relationship between interference color and the thickness of the titanium dioxide layer on the surface of the mica particles. Table 1 (Interference colors) (Geometric thickness of TiO 2 ) [mμ] Silver 20-40 Light gold 40-90 Gold 40-90 Red 90-110 Violet 110-120 Blue 120-135 Green 135-155 2nd order gold 155-175 2nd order violet 175-200 Although these mica titanium pigments have pearlescent luster and various interference colors, the appearance color is always close to white, and it is difficult to obtain one that exhibits a bright appearance color. Not yet. Therefore, in order to produce various external colors, conventionally,
Colored pigments such as iron oxide, navy blue, chromium oxide, carbon black, and carmine were added to the mica titanium pigments produced. The safety, stability, light resistance, acid resistance, alkali resistance, solvent resistance, heat resistance, etc. of these colored mica titanium pigments are largely due to the properties of the colored pigments added.For example, blue mica with navy blue added. Titanium-based pigments discolor in alkaline solutions, and red mica titanium-based pigments containing carmine discolor and deteriorate when exposed to light. On the other hand, the carcinogenicity of 3,4-benzpyrene, which may be mixed into carbon black, such as black mica titanium pigments containing carbon black and green mica titanium pigments containing chromium oxide, There are many safety concerns, such as the oral toxicity of chromium. Furthermore, since the colored mica titanium pigments contain colored pigments, they also have drawbacks such as color separation in the solvent. As a result of intensive research in order to improve the above-mentioned drawbacks, the present inventors have discovered that by coating the surface of mica particles with titanium dioxide and lower titanium oxide, or with lower titanium oxide, we have succeeded in improving the conventional mica titanium-based pigment or colored pigment. It has a color tone that is equal to or more vivid than colored mica titanium pigments, and has pearlescent safety, stability, light resistance, acid resistance, alkali resistance, solvent resistance, and heat resistance. It was discovered that a colored mica titanium pigment can be obtained, and the present invention was completed based on this knowledge. That is, the present invention is a colored mica titanium pigment in which the mica surface is coated with titanium dioxide and lower titanium oxide, or lower titanium oxide. In the present invention, the mica is composed of flaky mica, and is preferably a colored mica titanium pigment having an appearance color similar to the interference color. Furthermore, it is preferable that the pigment be a colored mica titanium-based pigment characterized in that the geometric layer thickness (hereinafter simply referred to as layer thickness) of total titanium oxide on the mica surface is 40 mμ or more. Further, it is preferable that the total titanium oxide/mica weight ratio is 35/65 or more. Next, the configuration of the present invention will be explained in detail. Any type of mica may be used in the present invention, and commercially available muscovitemica is generally used, but biotite or the like may also be used in some cases. The particle size is not particularly limited, but the particle size of commercially available mica is 1
~50μ, and among these, those with a small particle size and a particle shape as flat as possible are more likely to exhibit beautiful color tone and pearlescent luster than when the colored mica titanium pigment of the present invention is used. In addition, the low-order titanium oxide in the present invention is a titanium compound with a lower valence than tetravalent titanium, and is a titanium oxide whose general formula is Ti o O 2o-1 (n is a positive integer); It is a general term that includes titanium oxide nitride in which nitrogen is contained in the titanium oxide mentioned above. The colored mica titanium pigment of the present invention is a pigment in which the surface of mica particles is coated with titanium dioxide, lower titanium oxide, or lower titanium oxide, and various methods can be used to produce this pigment. be able to. For example, commercially available mica titanium pigment
℃ ~ 1000 ℃, preferably 700 ℃ ~ 900 ℃ by one or more gases having reducing power such as hydrogen gas and ammonia gas, or these gases having reducing power and helium gas, argon gas , a method of heating and reducing with a mixed gas with an inert gas such as nitrogen gas, a method of mixing titanium dioxide with a commercially available mica titanium pigment, and heating and reducing the mixture by the above method, or Examples of the method include mixing titanium metal with a mica titanium pigment and reducing the mixture by heating at 500°C to 1000°C, preferably 700°C to 900°C, under vacuum.
Furthermore, DuPont's patent (Special Publication No. 43-25644)
An aqueous solution of an inorganic acid salt of titanium (e.g., titanyl sulfate), such as that found in 700
By one or more gases having reducing power such as hydrogen gas and ammonia gas at a temperature of ℃ to 900℃, or by combining these gases with reducing power and inert gas such as helium gas, argon gas, nitrogen gas, etc. Either by heating and reducing with a gas mixture with mica particles, or by precipitating hydrous titanium dioxide on the surface of mica particles, heating to generate mica titanium, which is reduced in the same manner as the commercially available mica titanium pigments. Also good. Furthermore, the reduction method is not limited to the method using a reducing gas such as hydrogen gas or ammonia gas as described above, but also a method in which mica titanium is reduced using a reducing flame such as hydrogen gas, or a method in which mica is reduced with a titanium salt. For example, it is also possible to suspend the titanium tetrachloride solution and oxidize and decompose this suspension in a flame of a mixed gas of air and hydrogen. In other words, the colored mica titanium pigment of the present invention is a colored mica titanium pigment in which the surface of mica particles is coated with titanium dioxide, lower titanium oxide, or lower titanium oxide, and can be produced by any known method. This method may be used, and there is no particular restriction. The amount of titanium dioxide and lower titanium oxide or lower titanium oxide coating the mica can be varied within a wide range, and is usually about 100 parts by weight of mica (100 parts by weight).
Titanium dioxide can be coated in amounts of 0 to 60 parts by weight, and lower titanium oxides can be coated in amounts of 0.01 to 60 parts by weight. If the amount of lower titanium oxide is less than 0.01 part by weight per 100 parts by weight of mica, the resulting titanium mica will not be colored.
If it exceeds 60 parts by weight, the properties of the mica will be extremely poor and the particles will agglomerate strongly. This property holds true even when the amount of titanium dioxide exceeds 60 parts by weight per 100 parts by weight of mica. In the present invention, total titanium oxide (titanium dioxide + lower titanium oxide: there is almost no change in the weight ratio with mica or layer thickness before and after reduction)
If the geometric layer thickness is less than 40 mμ, the appearance color itself tends to be achromatic from silvery gray to black, and is unlikely to be colored. In addition, in the present invention, when the layer thickness is 40 mμ or more, an appearance color similar to the interference color can be obtained, and specific products exhibit an interference color of gold, red, violet, blue, or green. A product having an appearance color similar to that of the product can be obtained. In addition, in the case of commonly used mica, in order to obtain a geometric layer thickness of 40 mμ or more as described above, it is preferable that the total titanium oxide/mica weight ratio is 35/65 or more. Next, the present invention will be explained by examples. Parts in the examples represent parts by weight. Example 1 50 parts of mica was added to 500 parts of ion-exchanged water and thoroughly stirred to be uniformly dispersed. 208.5 parts of a titanyl sulfate aqueous solution having a concentration of 40% by weight was added to the obtained dispersion, and the mixture was heated and boiled for 6 hours while stirring. After cooling, it was washed with water and calcined at 900°C to obtain 90 parts of mica coated with titanium dioxide (titanium mica). Next, the obtained titanium mica was subjected to a reduction treatment at 800° C. for 4 hours under an ammonia gas flow at a flow rate of 3/min, and after cooling, the powder was recovered. The obtained powder had a bright blue pearlescent appearance and interference color. The surface condition of the blue mica titanium pigment particles of this product is as shown in the scanning electron micrograph of FIG. According to this, it is possible to observe that the surface of each particle of the blue mica titanium pigment, which is a product, is sufficiently covered with fine particles. In addition, the X-ray diffraction diagram (Cu-Kα ray) of the blue mica titanium pigment that is this product is as shown in Figure 2, and it shows that in addition to the diffraction peak of mica, the diffraction angle (Bragg angle 2θ) A peak is observed around 25.3°. This corresponds to 101, the strongest peak of anatase titanium dioxide. In addition, a slightly broad peak is observed near 2θ = 43.3°, but this peak corresponds to the strongest peak of 200 in titanium oxynitride, which contains nitrogen (N) in titanium monoxide (TiO). It can be seen that the mica particle surface of the blue mica titanium pigment, which is the product obtained in the example, is coated with titanium dioxide and titanium oxynitride. Incidentally, FIG. 4 shows an X-ray diffraction diagram of titanium dioxide-coated mica that has not been subjected to reduction treatment. In the diffraction diagram shown in the same figure, the peak of titanium oxynitride (2θ = 43.3°) is hardly recognized, and the product of this example and the titanium dioxide-coated mica that has not been subjected to reduction treatment are completely different products. That is understood. Furthermore, the amounts of titanium dioxide and lower titanium oxide coating the mica particle surface were determined by the method shown below. (1) The sample before reduction treatment and the sample after reduction treatment were each pulverized using an agate ball mill to render mica amorphous. The intensity of the diffraction line of titanium dioxide and the diffraction line of lower order titanium oxide was determined by the powder measurement method of X-ray diffraction (Cu-Kα rays) of the sample, and the intensity was calculated based on the mixing ratio of mica and titanium dioxide determined separately. The amounts of titanium dioxide and lower titanium oxide were determined by comparing with a calibration curve of diffraction intensity for which the mixing ratio of titanium dioxide and lower titanium oxide was known. (2) Since lower titanium oxide is completely converted to titanium dioxide by firing in the atmosphere, the amount of lower titanium oxide was determined by gravimetric analysis of the sample that had been subjected to the reduction treatment. i.e. 20ml
Approximately 5 g of the sample was accurately weighed into a magnetic crucible and heat-treated at 800°C for 4 hours in the atmosphere. After cooling, the weight increase was accurately measured, and the amount of lower titanium oxide was determined from the weight increase. When the amounts of titanium dioxide and lower titanium oxide in the blue mica titanium pigment product are determined by the above method, the blue mica titanium pigment product is 6.4 parts by weight per 100 parts by weight of mica. This is a blue mica titanium pigment made by coating the mica surface with 33.6 parts by weight of titanium dioxide and 33.6 parts by weight of lower titanium oxide. As mentioned above, since the pigment according to this example has an interference color similar to the appearance color, that is, a blue interference color, Table 1 suggests that the layer thickness is 120 to 135 mμ. Example 2 50 parts of mica was added to 500 parts of ion-exchanged water and thoroughly stirred to be uniformly dispersed. 312.5 parts of a titanyl sulfate aqueous solution having a concentration of 40% by weight was added to the obtained dispersion, and the mixture was heated and boiled for 6 hours while stirring. After cooling, it was washed with water and fired at 900°C to obtain 100 parts of mica (mica titanium) whose surface was coated with titanium dioxide. Next, the obtained mica titanium was poured at a flow rate of 1/min.
Reduction treatment was performed at 800° C. for 4 hours under a mixed gas flow of ammonia gas and nitrogen gas at a flow rate of 3/min, and after cooling, the powder was collected. The obtained powder exhibited a bright green pearlescent appearance and interference color. The X-ray diffraction pattern (Cu-Kα line) of this product, a green mica titanium pigment, is shown in Figure 3. According to this, as in Example 1, in addition to the diffraction peak of mica, the strongest peak (101) of anatase-type titanium dioxide is found near the diffraction angle (Bragg angle 2θ) of 25.3°.
In addition, the strongest peak (200) of titanium oxynitride, which contains nitrogen (N) in titanium monoxide (TiO), which is slightly broad around 2θ = 43.3°, is observed, and the green mica obtained in this example It can be seen that the mica particle surface of the titanium-based pigment is coated with titanium dioxide and titanium oxynitride. Further, the amounts of titanium dioxide and lower titanium oxide coated on the surface of the mica particles were determined by the same method as in Example 1. As a result, it was found that the green mica titanium pigment of this product was coated with 100 parts by weight of mica, 3.8 parts by weight of titanium dioxide, and 46.2 parts by weight of lower titanium oxide. As mentioned above, since the pigment according to this example has a green interference color, from Table 1 above, 135~
It is suggested that the layer thickness is 155mμ. Example 3 50 parts of mica was added to 500 parts of ion-exchanged water and thoroughly stirred to be uniformly dispersed. 208.5 parts of a titanyl sulfate aqueous solution having a concentration of 40% by weight was added to the obtained dispersion, and the mixture was heated and boiled for 6 hours while stirring. After cooling, filter and wash with water, dry at 100℃, mica titanium 90
I got the department. The product was subjected to a reduction treatment at 900° C. for 3 hours under an ammonia gas flow at a flow rate of 3/min, and after cooling, 90 parts of powder was recovered. The obtained powder had a bright blue pearlescent appearance and interference color. In addition, the amount of titanium dioxide and lower titanium oxide coating the mica particle surface is 4.6 parts by weight for 100 parts by weight of mica that is the core of titanium dioxide, and the same amount for lower titanium oxide.
It was 35.4 parts by weight. Since the pigment according to this example has a blue interference color, Table 1 suggests that the layer thickness is 120 to 135 mμ. Example 4 50 parts of mica was added to 500 parts of ion-exchanged water and thoroughly stirred to be uniformly dispersed. 312.5 parts of a titanyl sulfate aqueous solution having a concentration of 40% by weight was added to the obtained dispersion, and the mixture was heated and boiled for 6 hours while stirring. After cooling, it was washed with water and calcined at 900°C to obtain 100 parts of mica coated with titanium dioxide (mica titanium).
Next, 1.2 parts of metallic titanium was mixed with 100 parts of the obtained mica titanium, and the mixture was mixed using an oil diffusion pump.
The mixture was heated and reduced at 800° C. for 4 hours at a vacuum level of 10 −3 torr or less. After cooling, 101.2 parts of powder was obtained. The obtained powder was a bright blue-green powder with pearlescent appearance and interference color. In addition, the amounts of titanium dioxide and lower titanium oxide coating the mica in the blue-green mica titanium pigment of this product were determined by quantitative methods (1) and (2) described in Example 1. Titanium dioxide per 100 parts by weight of mica
It was found that the amount of titanium oxide was 40.5 parts by weight, and the amount of lower titanium oxide was 9.5 parts by weight. Since the pigment according to this example has a blue-green interference color, Table 1 suggests that the layer thickness is 130 to 140 mμ. Examples 5 to 8 Fifty parts of each of four types of commercially available (manufactured by Marl Inc., USA) mica titanium pearlescent pigments with interference colors were taken and each was reduced by changing the type of reducing gas, gas flow rate, reduction temperature, and reduction time. . After cooling, 50 parts of product was obtained.
The color and interference color of the obtained powder were observed with the naked eye, and the color tone was measured by the powder cell method using Color Analyzer 607 (Hitachi) (Hue (H). Brightness (V)./Saturation (C). )). Further, the amounts of titanium dioxide and lower titanium oxide were determined by quantitative methods (1) and (2) described in Example 1. The results are shown in Table 2. Examples 9 to 12 Take 50 parts each of four types of commercially available (manufactured by Marl Inc., USA) mica titanium pearlescent pigments with interference colors, change the amount of metallic titanium mixed, and use the mixture and a diffusion pump to produce 10 - 4 at 800℃ with a vacuum level of 3 torr or less
The mixture was heated and reduced for a period of time. After cooling, the color of the powder obtained,
A color analyzer that observes interference colors with the naked eye and determines the color tone.
607 using the powder cell method (hue (H).
Brightness (V). /Saturation (C)).

【表】 また二酸化チタンと低次酸化チタンの量を実施
例1記載の定量法(1)と(2)によつて求めた。結果を
第3表に示す。
[Table] Furthermore, the amounts of titanium dioxide and lower titanium oxide were determined by quantitative methods (1) and (2) described in Example 1. The results are shown in Table 3.

【表】 前記実施例5〜12においても、いずれも干渉色
は金色〜緑色であり、40〜155mμの層厚であるこ
とが示唆される。 次に、以上の実施例1〜12で得られた製品であ
る有色の雲母チタン系顔料の顔料特性を試験し
た。比較のため米国マール社から市販されている
有色の雲母チタン系真珠光沢顔料(従来の雲母チ
タン系顔料に有色顔料を添加したもの)の顔料特
性を同様に試験した。比較した市販の有色雲母チ
タン系真珠光沢顔料には、実施例1〜12の製品で
ある有色の雲母チタン系顔料の色調と対応するも
のを選んでいる。結果を第4表に示す。
[Table] In Examples 5 to 12, the interference colors are gold to green, suggesting that the layer thickness is 40 to 155 mμ. Next, the pigment properties of the colored mica titanium pigments obtained in Examples 1 to 12 above were tested. For comparison, the pigment properties of a colored mica titanium based pearlescent pigment (a conventional mica titanium based pigment with a colored pigment added thereto) commercially available from Marl Corporation of the United States were tested in the same manner. The commercially available colored mica titanium pearlescent pigments for comparison were selected to correspond to the color tones of the colored mica titanium pigments produced in Examples 1 to 12. The results are shown in Table 4.

【表】 また、市販品の組成は第5表に示す通りであ
る。
[Table] The composition of the commercially available product is shown in Table 5.

【表】 試験項目は酸安定性、アルカリ安定性、光安定
性、熱安定性、分散安定性であり、試験方法と試
験結果は次のとおりである。 酸安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の有色雲母チタン系真珠光沢顔料1.5gを
それぞれ共栓付50ml入り試験管に入れ、これに
2N塩酸水溶液30mlを加えて分散後、試験管立て
に立てて静置し、24時間後の色調を肉眼で観察し
た。結果を第6表に示す。 第6表の結果から明らかなように本発明の製品
である有色の雲母チタン系顔料は酸に対して全て
安定であつたが、市販の有色雲母チタン系真珠光
沢顔料はいずれも不安定で徐々に褪色し、24時間
後には市販品のクロイゾネレツドは白色に変化
し、クロイゾネゴールド、クロイゾネブルー、ク
ロイゾネグリーンは色調が薄く白つぽくなり、真
珠光沢も極端に低下した。このように本発明の製
品である有色の雲母チタン系顔料は酸安定性に優
れていることがわかる。
[Table] The test items are acid stability, alkali stability, light stability, thermal stability, and dispersion stability, and the test methods and test results are as follows. Acid stability test 1.5 g of the colored mica titanium-based pigment, which is a product of the present invention, and the commercially available colored mica titanium-based pearlescent pigment were each placed in a 50 ml test tube with a stopper.
After adding 30 ml of 2N hydrochloric acid aqueous solution and dispersing, the mixture was allowed to stand still in a test tube stand, and the color tone after 24 hours was observed with the naked eye. The results are shown in Table 6. As is clear from the results in Table 6, all of the colored mica titanium pigments that are products of the present invention were stable against acids, but all of the commercially available colored mica titanium pearlescent pigments were unstable and gradually deteriorated. After 24 hours, the commercially available Cloisonne Red turned white, and the colors of Cloisonne Gold, Cloisonne Blue, and Cloisonne Green became pale and whitish, and their pearlescent luster was extremely reduced. Thus, it can be seen that the colored mica titanium pigment, which is a product of the present invention, has excellent acid stability.

【表】【table】

【表】 アルカリ安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の有色雲母チタン系真珠光沢顔料1.5gを
それぞれ共栓付50ml入り試験管に入れ、これに
2N苛性ソーダ水溶液30mlを加えて分散後、試験
管立てに静置し24時間後の色調を肉眼で観察し
た。結果を第7表に示す。
[Table] Alkali stability test 1.5 g of the colored mica titanium pigment, which is a product of the present invention, and the commercially available colored mica titanium pearlescent pigment were each placed in a 50 ml test tube with a stopper.
After adding and dispersing 30 ml of 2N caustic soda aqueous solution, the mixture was left to stand in a test tube rack and the color tone was observed with the naked eye after 24 hours. The results are shown in Table 7.

【表】【table】

【表】 第7表の結果から明らかなように、本発明の製
品である有色の雲母チタン系顔料はアルカリに対
して全く安定なのに対して、市販の有色雲母チタ
ン系真珠光沢顔料はいずれも不安定で徐々に褪色
し、24時間後には市販品のクロイゾネレツドとク
ロイゾネブルーは白色に変化し、クロイゾネゴー
ルド、クロイゾネグリーンは色調がうすく白つぽ
くなり、真珠光沢も極端に低下した。このように
本発明の製品である有色の雲母チタン系顔料はア
ルカリ安定性に優れていることがわかる。 光安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の有色雲母チタン系真珠光沢顔料をそれ
ぞれタルク(浅田製粉社製)と3:7の割合で混
合し、該混合物2.5gをそれぞれ厚さ3mm、一辺20
mmの正方形のアルミ製中皿に成型し、これにキセ
ノンランプを30時間照射した。照射後の色調と照
射前の色調をカラーアナライザー607を用いて測
色して、測色値から照射前後の色差(ΔE)を求
めた。 結果を第8表に示す。
[Table] As is clear from the results in Table 7, the colored mica titanium-based pigment, which is the product of the present invention, is completely stable against alkalis, whereas the commercially available colored mica titanium-based pearlescent pigments are completely unstable. It was stable and gradually faded, and after 24 hours, the commercially available Cloisonne Red and Cloisonne Blue changed to white, and the colors of Cloisonne Gold and Cloisonne Green became pale and whitish, and their pearlescent luster was extremely reduced. Thus, it can be seen that the colored mica titanium pigment, which is a product of the present invention, has excellent alkali stability. Photostability test The colored mica titanium pigment that is a product of the present invention and the commercially available colored mica titanium pearlescent pigment are each mixed with talc (manufactured by Asada Seifun Co., Ltd.) in a ratio of 3:7, and 2.5 g of the mixture is 3mm thick each, 20 on each side
It was molded into a mm square aluminum medium plate, and was irradiated with a xenon lamp for 30 hours. The color tone after irradiation and the color tone before irradiation were measured using a color analyzer 607, and the color difference (ΔE) before and after irradiation was determined from the colorimetric values. The results are shown in Table 8.

【表】【table】

【表】 第8表の結果から明らかなように本発明の製品
である有色の雲母チタン系顔料は照射前後で色差
(ΔE)が0.5以下とほとんど変らず、肉眼ではほ
とんど色調の差が半別できないのに対して、市販
品のクロイゾネレツドやクロイゾネゴールドがそ
れぞれ35.3,18.0と極端に大きく、肉眼でも色調
の変化が明瞭であつた。また、クロイゾネグリー
ンやクロイゾネブルーもそれぞれ色差6.0,5.2と
大きく、肉眼でもはつきりと色調変化を起してい
ることが認められた。 熱安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の有色雲母チタン系真珠光沢顔料を各々
20ml入磁性ルツボに3g秤り取り、大気中で200
℃、300℃、400℃、500℃の各温度条件下、2時
間熱処理した。処理後の粉末をカラーアナライザ
−607で測色し、処理前の顔料との色差(ΔE)を
求めた。また色調変化を肉眼観察した、各々の結
果を第9表に示す。 第9表の結果から明らかなように本発明の製品
である有色の雲母チタン系顔料は、400℃までは
色差0.5以下で肉眼ではほとんど色調に変化がな
く安定である。500℃になると黄白色に変化する。
これは雲母粒子表面の低次酸化チタンが酸化され
酸化チタンに変化したためである。即ち本発明の
製品である有色の雲母チタン系顔料は500℃未満
の温度まで安定であることがわかる。これに対
し、市販品のクロイゾネレツドやクロイゾネブル
ーは、200℃で色差がそれぞれ3.2,3.5となり、
肉眼でも色調変化がはつきりみられる。300℃に
なると色調が36.4,26.2とさらに大きくなり色調
も赤から黄赤色に、青から赤茶色に変化する。即
ちクロイゾネレツドとクロイゾネブルーは200℃
で色調が変化することから熱安定性に劣ることが
わかる。クロイゾネグリーンは400℃で色差が7.8
となり、彩度が低下し暗緑色に変化する。即ち
400℃未満までは安定であるが、それ以上の温度
では不安定である。クロイゾネゴールドに限つて
は500℃になつても多少彩度が劣る程度であり、
色差も1.0以下で安定性が高い。
[Table] As is clear from the results in Table 8, the color difference (ΔE) of the colored mica titanium pigment, which is the product of the present invention, is almost 0.5 or less before and after irradiation, and there is almost no difference in color tone with the naked eye. On the other hand, the commercial products Cloisonne Red and Cloisonne Gold had extremely large values of 35.3 and 18.0, respectively, and the change in color tone was obvious even to the naked eye. In addition, Cloisonne Green and Cloisonne Blue had a large color difference of 6.0 and 5.2, respectively, and it was observed that the color tone changed noticeably even with the naked eye. Thermal Stability Test The colored mica titanium pigment that is the product of the present invention and the commercially available colored mica titanium pearlescent pigment were tested.
Weighed 3g into a 20ml magnetic crucible and placed it in the atmosphere for 200 ml.
Heat treatment was performed for 2 hours under each temperature condition of 300°C, 300°C, 400°C, and 500°C. The color of the treated powder was measured using a color analyzer 607 to determine the color difference (ΔE) from the pigment before treatment. Table 9 shows the results of visual observation of color tone changes. As is clear from the results in Table 9, the colored mica titanium pigment, which is a product of the present invention, is stable with a color difference of 0.5 or less up to 400°C, with almost no change in color tone to the naked eye. When the temperature reaches 500℃, the color changes to yellowish white.
This is because the lower titanium oxide on the surface of the mica particles was oxidized and changed to titanium oxide. That is, it can be seen that the colored mica titanium pigment, which is the product of the present invention, is stable up to temperatures below 500°C. On the other hand, commercially available Cloisonne Red and Cloisonne Blue have a color difference of 3.2 and 3.5, respectively, at 200℃.
The color change is clearly visible even with the naked eye. When the temperature reaches 300℃, the color tone increases to 36.4 and 26.2, and the color changes from red to yellow-red and from blue to red-brown. In other words, Cloisonne Red and Cloisonne Blue are at 200℃.
The change in color tone indicates poor thermal stability. Cloisonné green has a color difference of 7.8 at 400℃
The color saturation decreases and the color changes to dark green. That is,
It is stable at temperatures below 400°C, but unstable at temperatures above that. As for Cloisonné Gold, even at 500℃, the chroma is slightly inferior.
The color difference is also less than 1.0 and it is highly stable.

【表】【table】

【表】 分散(色分れ)安定性試験 本発明の製品である有色の雲母チタン系顔料お
よび市販の有色雲母チタン系真珠光沢顔料をそれ
ぞれ1.0g、共栓目盛付50ml試験管に入れ、これに
0.2重量%のヘキサタリン酸水溶液50mlを加えて、
ポリトロンにて30秒間分散させ、更にこの分散液
を超音波にて分散させた。分散後、試験管立てに
て静置し、静置直後、5分間後、10分間後、30分
間後、1時間後の分散状態を肉眼で観察した。結
果は第10表に示す通りであつた。 第10表の結果から明らかなように本発明の製品
である有色の雲母チタン系顔料は、1時間静置後
も均一に分散しているのに対して、市販品のクロ
イゾネブルーとクロイゾネレツドは、静置後5分
間で沈降がみられ、しかも上澄液が青色や赤色を
していた。これは、。単に混合した紺青やカーミ
ンが分離したためである。クロイゾネグリーン
は、静置後30分で沈降がみられ、しかも上澄液の
方が沈降した粒子の緑色より、濃い緑色をしてい
た。これは単に混合した酸化クロムが分離したた
めである。クロイゾネゴールドは、1時間静置後
も均一に分散していた。 以上の各試験結果から明らかなように、本発明
の製品である有色の雲母チタン系顔料は、酸、ア
ルカリ、光に対してまつたく変化がなく安定であ
り、熱に対しても500℃未満の温度までは安定で、
色調変化を起さない。また、分散性に優れ、色分
れを起さず、優れた顔料特性を有するものであ
る。
[Table] Dispersion (color separation) stability test Put 1.0 g each of the colored mica titanium pigment, which is a product of the present invention, and the commercially available colored mica titanium pearlescent pigment into a 50 ml test tube with a stopper scale. to
Add 50ml of 0.2% by weight hexatalic acid aqueous solution,
Dispersion was carried out for 30 seconds using a Polytron, and this dispersion liquid was further dispersed using ultrasonic waves. After dispersion, the mixture was allowed to stand still in a test tube stand, and the dispersion state was observed with the naked eye immediately after, 5 minutes, 10 minutes, 30 minutes, and 1 hour after leaving it still. The results were as shown in Table 10. As is clear from the results in Table 10, the colored mica titanium pigment, which is a product of the present invention, is uniformly dispersed even after standing for 1 hour, whereas the commercial products Cloisonne Blue and Cloisonne Red are uniformly dispersed. , Sedimentation was observed after 5 minutes of standing, and the supernatant liquid was blue or red in color. this is,. This is simply due to the separation of the mixed navy blue and carmine. Sedimentation of Cloisonne Green was observed after 30 minutes of standing, and the supernatant liquid had a darker green color than the green color of the sedimented particles. This is simply due to the separation of the mixed chromium oxide. Cloisonne gold remained uniformly dispersed even after standing for 1 hour. As is clear from the above test results, the colored mica titanium pigment that is the product of the present invention is stable against acids, alkalis, and light, and is stable under heat at temperatures below 500°C. Stable up to temperatures of
Does not cause color change. Furthermore, it has excellent dispersibility, does not cause color separation, and has excellent pigment properties.

【表】【table】

【表】 ×印;色分れを伴い完全に沈降する

[Table] ×: Sediments completely with color separation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られた製品である外観
色、干渉色とともに鮮やかな青色の真珠光沢を呈
した雲母チタン系顔料の走査型電子顕微鏡写真
(30000倍)であり、第2図は実施例1の製品であ
る雲母チタン系顔料のX線回折図(Cu−Kα線)
である。第3図は実施例2で得られた製品である
外観色、干渉色ともに鮮やかな緑色の真珠光沢を
呈した雲母チタン系顔料のX線回折図(Cu−Kα
線)である。第4図は還元処理を行なつていない
二酸化チタン被覆雲母のX線回折図である。
Figure 1 is a scanning electron micrograph (30,000x) of the mica titanium pigment, which was the product obtained in Example 1, exhibiting a bright blue pearlescent color as well as an appearance color and an interference color. X-ray diffraction diagram (Cu-Kα ray) of the mica titanium pigment that is the product of Example 1
It is. Figure 3 shows the X-ray diffraction diagram (Cu-Kα
line). FIG. 4 is an X-ray diffraction diagram of titanium dioxide-coated mica that has not been subjected to reduction treatment.

Claims (1)

【特許請求の範囲】 1 雲母表面が、二酸化チタンと低次酸化チタ
ン、又は低次酸化チタンで被覆されてなる有色の
雲母チタン系顔料。 2 特許請求の範囲1項記載の雲母チタン系顔料
において、雲母は薄片状雲母よりなり、干渉色と
同系色の外観色を持つことを特徴とする雲母チタ
ン系顔料。 3 特許請求の範囲2項記載の雲母チタン系顔料
において、雲母表面上での全酸化チタンの幾何学
的層厚が40mμ以上であることを特徴とする雲母
チタン系顔料。 4 特許請求の範囲1項記載の雲母チタン系顔料
において、全酸化チタン/雲母が重量比で35/65
以上であることを特徴とする雲母チタン系顔料。
[Scope of Claims] 1. A colored mica titanium pigment whose mica surface is coated with titanium dioxide, lower titanium oxide, or lower titanium oxide. 2. The mica titanium pigment according to claim 1, wherein the mica is made of flaky mica and has an appearance color similar to an interference color. 3. The mica titanium pigment according to claim 2, characterized in that the geometric layer thickness of the total titanium oxide on the mica surface is 40 mμ or more. 4 In the mica titanium pigment described in claim 1, the total titanium oxide/mica weight ratio is 35/65.
A mica titanium pigment characterized by the above.
JP265183A 1983-01-11 1983-01-11 Pigment composed of mica and titanium Granted JPS59126468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP265183A JPS59126468A (en) 1983-01-11 1983-01-11 Pigment composed of mica and titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP265183A JPS59126468A (en) 1983-01-11 1983-01-11 Pigment composed of mica and titanium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP30682689A Division JPH0379673A (en) 1989-11-27 1989-11-27 Production of colored mica titanium-based pigment

Publications (2)

Publication Number Publication Date
JPS59126468A JPS59126468A (en) 1984-07-21
JPH0461032B2 true JPH0461032B2 (en) 1992-09-29

Family

ID=11535256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP265183A Granted JPS59126468A (en) 1983-01-11 1983-01-11 Pigment composed of mica and titanium

Country Status (1)

Country Link
JP (1) JPS59126468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601761A1 (en) * 1992-11-30 1994-06-15 Shiseido Company Limited Manufacturing method of pigment including lower titanium oxide
JP2008127273A (en) * 2006-11-24 2008-06-05 Nippon Koken Kogyo Kk Reduction type flake-like highly heterochromic titanium oxide composition and method of producing the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623396A (en) * 1983-09-14 1986-11-18 Shiseido Company Ltd. Titanium-mica composite material
JPS61192749A (en) * 1985-02-21 1986-08-27 Hinode Kagaku Kogyo Kk Electrically conductive mica powder and production thereof
JPS61225264A (en) * 1985-03-29 1986-10-07 Shiseido Co Ltd Paint having colored iridescent luster
DE3808070A1 (en) * 1988-03-11 1989-09-21 Basf Ag METHOD FOR PRODUCING PARTICULARLY BLUE-TONE PEARL PIGMENTS
DE3813335A1 (en) * 1988-04-21 1989-11-02 Basf Ag METAL OXIDE COATED ALUMINUM PIGMENTS
JPH04126811A (en) * 1990-09-17 1992-04-27 Shin Etsu Chem Co Ltd Swimming cap
JPH0688041A (en) * 1992-09-04 1994-03-29 Shin Etsu Chem Co Ltd Marking agent and molded silicone rubber article
DE4419089A1 (en) * 1994-06-01 1995-12-07 Basf Ag Interference pigments used for security documents and packaging
JP3542388B2 (en) * 1994-10-11 2004-07-14 株式会社資生堂 Pigment containing low order titanium oxide and method for producing the same
DE19511697A1 (en) * 1995-03-30 1996-10-02 Basf Ag Process for the preparation of bluish gloss pigments
DE19511696A1 (en) * 1995-03-30 1996-10-02 Basf Ag Luster pigments based on reduced titanium dioxide coated silicate flakes
US6129784A (en) * 1997-09-30 2000-10-10 Shiseido Co., Ltd. Color titanated mica pigment and coated-body using the same
US7022409B2 (en) 1999-03-23 2006-04-04 Shiseido Co., Ltd. Pleochroism powder and pleochroism printed article
JP3745688B2 (en) * 2002-01-22 2006-02-15 メルク株式会社 Cosmetic extender pigment and method for producing the same
JP2008120914A (en) * 2006-11-13 2008-05-29 Nippon Koken Kogyo Kk Black pearlescent powder and method for producing the same
EP2030797A1 (en) 2007-08-25 2009-03-04 Mondi Business Paper Services AG Optically and thermally writeable nano coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949173A (en) * 1972-09-18 1974-05-13
JPS5265528A (en) * 1975-11-26 1977-05-31 Kansai Paint Co Ltd Thermosetting powder coating composition for metallic finish
JPS5496534A (en) * 1977-12-27 1979-07-31 Mearl Corp Mica coated with external grade titanium dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949173A (en) * 1972-09-18 1974-05-13
JPS5265528A (en) * 1975-11-26 1977-05-31 Kansai Paint Co Ltd Thermosetting powder coating composition for metallic finish
JPS5496534A (en) * 1977-12-27 1979-07-31 Mearl Corp Mica coated with external grade titanium dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601761A1 (en) * 1992-11-30 1994-06-15 Shiseido Company Limited Manufacturing method of pigment including lower titanium oxide
JP2008127273A (en) * 2006-11-24 2008-06-05 Nippon Koken Kogyo Kk Reduction type flake-like highly heterochromic titanium oxide composition and method of producing the same

Also Published As

Publication number Publication date
JPS59126468A (en) 1984-07-21

Similar Documents

Publication Publication Date Title
JPH0461032B2 (en)
JP2728294B2 (en) Particularly, a method for producing a bluish pearlescent pigment
JP2585128B2 (en) Colored fine particle inorganic pigment
JP3132918B2 (en) Red pigment and method for producing the same
JPH0461033B2 (en)
JP2577777B2 (en) Platelet-shaped two-phase pigments based on aluminum-containing iron oxides and process for their production
US6056815A (en) Methods and compositions related to pearlescent pigments
EP0707050B1 (en) Pigment containing low-order titanium oxide and method of manufacturing the same
US6616747B2 (en) Process for producing granular hematite particles
JPH08259840A (en) Red-based pigment and its production
JP2514003B2 (en) Mica titanium-based composite material
JPH0781093B2 (en) Mica coated with titanium compound
JP2646454B2 (en) Coated pigment
JP3683951B2 (en) Yellow scale powder
JPH01158077A (en) Colored mica titanium material
JPH058168B2 (en)
JPH0420031B2 (en)
JPH0511153B2 (en)
JPH05156174A (en) Pigment coated with titanium and zinc, its production and cosmetic containing the same
JPH10110113A (en) Colored stainless flake pigment and coating material having colored metal gloss
JPS60170670A (en) Mica coated with titanium compound
JPH0363591B2 (en)
JPH08176459A (en) Production of pearlescent flaky barium sulfate
EP0509352A1 (en) Oxidized graphite flaky particles and pigments being based thereon
CA1283253C (en) Titanium-mica composite material