JPH0440343A - Alcohol content detecting device - Google Patents

Alcohol content detecting device

Info

Publication number
JPH0440343A
JPH0440343A JP14794090A JP14794090A JPH0440343A JP H0440343 A JPH0440343 A JP H0440343A JP 14794090 A JP14794090 A JP 14794090A JP 14794090 A JP14794090 A JP 14794090A JP H0440343 A JPH0440343 A JP H0440343A
Authority
JP
Japan
Prior art keywords
light
fuel
alcohol content
refracted
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14794090A
Other languages
Japanese (ja)
Inventor
Yoshiaki Asayama
浅山 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14794090A priority Critical patent/JPH0440343A/en
Publication of JPH0440343A publication Critical patent/JPH0440343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure content without any delay even if the temperature of the device varies by making the light emitted by a light emitting element incident on a light-transmissive fuel partition wall and a transparent body, transmitting, refracting, and reflecting the light, and then making the light incident on a linear optical position detecting element. CONSTITUTION:The light emitting element 4 emits the light, which becomes parallel luminous flux 11 and is made incident directly on the light-transmissive fuel partition wall 10 vertically, transmitted in the fuel in a fuel chamber 6, and then made incident on a point P0 on the refracting surface of the transparent body 13 at an angle phi of incidence. The luminous flux 11 is refracted at an angle x of refraction and transmitted in the transparent body 13 and the transmitted light is reflected at a point P1 on a reflecting surface 14 formed at the other end, made incident on a point P2 on the refracting surface again, and refracted into the fuel again. This refracted light is made incident on the point P3 on the partition wall 10 and refracted, and then transmitted in the partition wall 10, and the transmitted light is made incident on the linear optical position detecting element 16 through a condenser lens 15. Photocurrents i1 and i2 corresponding to the incidence position are inputted to a detecting circuit 100, whose output voltage corresponds to the alcohol content in the fuel. Thus, the alcohol content is given in the form of the ratio of the photocurrents, so accurate and continu ous detection becomes possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃焼器等に供給される燃料の性状を非接触
で判別する装置で、特に自動車等のエンジンに用いられ
るアルコール混合燃料中のアルコール含有率を測定する
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a device for non-contact determining the properties of fuel supplied to a combustor, etc., and particularly for determining the properties of alcohol-mixed fuel used in automobile engines. This invention relates to a device for measuring alcohol content.

〔従来の技術〕[Conventional technology]

近年、米国や欧州各国で石油の消費量の低減化を図るた
め、ガソリン中にアルコールを混合した燃料が自動車用
として普及しつつある。このようなアルコール混合燃料
をガソリン燃料の空燃比にマツチングされたエンジンに
そのまま用いると、アルコールがガソリンに比し理論空
燃比が小さい等に起因して空燃比がリーン化するため、
アルコール混合燃料中のアルコール含有率を検出して燃
料噴射弁等のアクチュエータを制御し、アルコール含有
率に応じて空燃比、点火時期等を調整する。
In recent years, in order to reduce oil consumption in the United States and European countries, fuel made by mixing alcohol with gasoline has become popular for use in automobiles. If such an alcohol blended fuel is directly used in an engine that has been matched to the air-fuel ratio of gasoline fuel, the air-fuel ratio will become lean due to the fact that the stoichiometric air-fuel ratio of alcohol is smaller than that of gasoline.
The alcohol content rate in the alcohol mixed fuel is detected to control actuators such as fuel injection valves, and the air-fuel ratio, ignition timing, etc. are adjusted according to the alcohol content rate.

従来、上記のごとき、アルコール含有率検知装置として
は、例えば特開昭57−51920号公報に記載された
ものが知られている。かかる従来装置を、以下、第5図
、第6図において説明する。
Conventionally, as an alcohol content detection device as described above, the one described in, for example, Japanese Patent Laid-Open No. 57-51920 is known. Such a conventional device will be explained below with reference to FIGS. 5 and 6.

第5図は従来のアルコール含有率検知装置を配した燃料
制御系を示す構成図であって、Aはアルコール含有率検
知装置、37は自動車のエンジン、36はエンジン37
へ燃料を噴射する燃料噴射弁、22は燃料タンク、23
は燃料ポンプ、25はこのポンプ23と上記アルコール
含有率検知装置Aとを接続した燃料供給パイプ24の途
中に設けた高圧フィルタ、26は燃料分配管、27は燃
料レギエレータ、28は燃料リターンパイプ、29は空
燃比センサ、30は点火プラグ、31はエンジンの回転
を検出するエンジン回転センサ、32は吸気圧センサ、
33はスロットル弁、34はエアクリーナ、35は制御
装置であって、アルコール含有率検知装置Aの信号、空
燃比センサ29の信号、エンジ′ン37の状態量である
エンジン回転センサ31および吸気圧センサ32等の信
号が人力され、人力に応じた制御量で燃料噴射弁36、
点火プラグ30等を駆動する0図において、燃料タンク
22にアルコール混合燃料が給油されると、エンジン3
7の始動とともに、アルコール混合燃料は燃料ポンプ2
3で加圧され燃料供給パイプ24、高圧フィルタ25を
通してアルコール含有率検知装置Aに導かれて、アルコ
ール含有率が測定される。燃料は、つぎに燃料分配管2
6に流入し、一部が燃料噴射弁36よりエンジン37に
供給され、他は燃圧レギュレータ27、燃料リターンパ
イプ28を通って燃料タンク22に戻される。
FIG. 5 is a block diagram showing a fuel control system equipped with a conventional alcohol content detection device, in which A is the alcohol content detection device, 37 is an automobile engine, and 36 is an engine 37.
22 is a fuel tank, 23 is a fuel injection valve that injects fuel into
25 is a fuel pump, 25 is a high-pressure filter provided in the middle of the fuel supply pipe 24 connecting this pump 23 and the alcohol content detection device A, 26 is a fuel distribution pipe, 27 is a fuel regierator, 28 is a fuel return pipe, 29 is an air-fuel ratio sensor, 30 is a spark plug, 31 is an engine rotation sensor that detects engine rotation, 32 is an intake pressure sensor,
33 is a throttle valve, 34 is an air cleaner, and 35 is a control device, which includes a signal from the alcohol content detection device A, a signal from the air-fuel ratio sensor 29, an engine rotation sensor 31 and an intake pressure sensor which are the state quantities of the engine 37. A signal such as 32 is input manually, and the fuel injection valve 36 is controlled by a control amount according to the human input.
In FIG. 0, when the fuel tank 22 is filled with alcohol mixed fuel, the engine 3
7 starts, alcohol mixed fuel is pumped to fuel pump 2.
3, and is led to the alcohol content detection device A through the fuel supply pipe 24 and the high pressure filter 25, where the alcohol content is measured. The fuel is then transferred to fuel distribution pipe 2.
6, a portion is supplied to the engine 37 from the fuel injection valve 36, and the rest is returned to the fuel tank 22 through the fuel pressure regulator 27 and fuel return pipe 28.

燃圧レギュレータ27は、燃料噴射弁36の噴射燃料量
に関わらず、燃料分配管26までの圧力を常に一定値に
保持する。アルコール含有率検知装置Aで測定されたア
ルコール含有率が制御量r35に入力されると、制御装
置35はエンジン回転センサ31および吸気圧センサ3
2等の信号によりエンジン状態を判定し、燃料噴射弁2
1の開弁時間を制御してエンジン37に供給する燃料量
を変化させ、空燃比センサ29により空燃比を検出して
、上記エンジン状態に応した目標値となるよう空燃比を
フィードバック制御し、またエンジン状態に応じて点火
プラグ300点火時期を制御している。
The fuel pressure regulator 27 always maintains the pressure up to the fuel distribution pipe 26 at a constant value, regardless of the amount of fuel injected by the fuel injection valve 36. When the alcohol content measured by the alcohol content detection device A is input to the control amount r35, the control device 35 detects the engine rotation sensor 31 and the intake pressure sensor 3.
The engine condition is determined based on the 2nd class signal, and the fuel injection valve 2
1 by controlling the valve opening time to change the amount of fuel supplied to the engine 37, detecting the air-fuel ratio with the air-fuel ratio sensor 29, and feedback-controlling the air-fuel ratio so that it becomes a target value corresponding to the engine state, Further, the ignition timing of the spark plug 300 is controlled according to the engine condition.

第6図は、従来のアルコール含有率検知装置Aの構成を
示すもので、1は光学ガラス等で形成された円柱状透光
体、2はケース、3は円柱状透光体1とケース2の間の
燃料シール、4はLEDのごとき発光素子、5はフォト
ダイオードのごとき受光素子、6は燃料室、6aは燃料
入口、6bは燃料出口、7aは全反射光、7bは屈折光
、100は発光素子4を駆動し受光素子5の受光量を測
定する検知回路である0円柱状透光体lの外周面は燃料
室6で燃料と均一に接している0発光素子4より発した
光は円柱状透光体1の外周面、即ち燃料との境界面に入
射するが、この時燃料の屈折率Nt と円柱状透光体1
の屈折率N4との差により、境界面への入射角が全反射
角ψ=arcSIN(N t/ N −)以上の光7a
は全反射されて受光素子5に達し、入射角が全反射角ψ
より小さい光7bは燃料中に屈折透過するため、受光素
子5は境界面への入射角が全反射角φ以上となる光のみ
を受光する。燃料中のアルコール含有率が変化すると、
燃料の屈折率N、が変化し全反射角φが変わるため、受
光素子5の受光量が変化する。この受光量の変化を検知
回路100で測定することにより燃料中のアルコール含
有率が求められる。
FIG. 6 shows the configuration of a conventional alcohol content detection device A, in which 1 is a cylindrical transparent body made of optical glass or the like, 2 is a case, and 3 is a cylindrical transparent body 1 and a case 2. 4 is a light emitting element such as an LED, 5 is a light receiving element such as a photodiode, 6 is a fuel chamber, 6a is a fuel inlet, 6b is a fuel outlet, 7a is totally reflected light, 7b is refracted light, 100 is a detection circuit that drives the light-emitting element 4 and measures the amount of light received by the light-receiving element 5. The outer circumferential surface of the cylindrical transparent body l is in uniform contact with the fuel in the fuel chamber 6. The light emitted from the light-emitting element 4 is is incident on the outer peripheral surface of the cylindrical transparent body 1, that is, the interface with the fuel, but at this time, the refractive index Nt of the fuel and the cylindrical transparent body 1
Due to the difference between the refractive index of
is totally reflected and reaches the light receiving element 5, and the incident angle is the total reflection angle ψ
Since the smaller light 7b is refracted and transmitted through the fuel, the light receiving element 5 receives only the light whose incident angle on the boundary surface is greater than or equal to the total reflection angle φ. When the alcohol content in the fuel changes,
Since the refractive index N of the fuel changes and the total reflection angle φ changes, the amount of light received by the light receiving element 5 changes. By measuring this change in the amount of light received by the detection circuit 100, the alcohol content in the fuel can be determined.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる従来のアルコール含有率検知装置
においては、発光素子4の発光量、受光素子5の受光感
度、ピーク感度周波数が温度により変化するため、エン
ジンの発熱、それによる燃料温度の上昇等で検知装置の
温度が変わると受光素子5の受光量も変化し、燃料中の
アルコール含有率が正確に求められないといった欠点が
あった。
However, in such a conventional alcohol content detection device, the amount of light emitted by the light emitting element 4, the light receiving sensitivity of the light receiving element 5, and the peak sensitivity frequency change depending on the temperature, so detection is detected based on engine heat generation and the resulting rise in fuel temperature. When the temperature of the device changes, the amount of light received by the light-receiving element 5 also changes, and the alcohol content in the fuel cannot be determined accurately.

また、一般に円柱状透光体1の屈折率N4の制約より全
反射角ψが余り小さく出来ないため、円柱状透光体1を
あまり短くできず、装置を小形化できないという問題点
があった。これらの理由により、従来のアルコール含有
率検知装置はエンジンと離間させて設置せざるを得ない
ため、特にエンジン始動の際等、実際に燃料噴射弁36
より噴射される燃料のアルコール含有率を遅滞なく検出
することが不可能であり、特にアルコール含有率の異な
る燃料の給油後のエンジン始動の際等においては、アル
コール含有率検知装置Aの燃料室6と燃料分配管26内
のアルコール含有率に差がでる始動モードも予想され、
かかる場合には最悪エンジンが始動できないという不具
合が出現することも予想される。
Additionally, because the angle of total reflection ψ cannot generally be made too small due to the restriction of the refractive index N4 of the cylindrical transparent body 1, there is a problem that the cylindrical transparent body 1 cannot be made very short and the device cannot be miniaturized. . For these reasons, conventional alcohol content detection devices have to be installed separately from the engine, so they do not actually detect the fuel injection valve 36, especially when starting the engine.
It is impossible to detect the alcohol content of the fuel injected from the fuel chamber 6 of the alcohol content detection device A without delay, especially when starting the engine after refueling with fuel with a different alcohol content. It is also expected that there will be a starting mode in which there will be a difference in the alcohol content in the fuel distribution pipe 26.
In such a case, it is expected that in the worst case, a problem will occur in which the engine cannot be started.

この発明は、かかる従来の問題点を解消するためになさ
れたもので、装置温度が変化しても常に遅滞なく、連続
的に精度よく燃料のアルコール含有率を検出することが
でき、燃料分配管26等の近傍に取付けられる小型なア
ルコール含有率検知装置を得ることを目的とする。
This invention was made to solve these conventional problems, and it is possible to continuously and accurately detect the alcohol content of fuel without any delay even when the device temperature changes. The purpose of the present invention is to obtain a small-sized alcohol content detection device that can be installed near 26 or the like.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るアルコール含有率検知装置は、燃料の屈
折率を検出して燃料中のアルコール含有率を検知するア
ルコール含有率検知装置において、発光素子と、一次元
光位置検知素子と、透光性燃料隔壁と、一方側に燃料と
の屈折面を設け、他方側に反射面を設けると共に上記透
光性燃料隔壁の屈折率と同じかそれ以上の屈折率を有す
る透光体と、この透光体の少なくとも上記屈折面を除く
外周面を覆う吸光部材を備え、上記発光素子より発せら
れた光を上記透光性燃料隔壁を介して上記透光体の一方
側の燃料との屈折面に入射させ、その屈折光を透光体の
他方側の反射面で反射させたのち、再度上記屈折面に入
射させ、屈折面での屈折光を再度上記透光性燃料隔壁を
介して上記一次元光位置検出素子に入射させるようにし
たものである。
The alcohol content detection device according to the present invention detects the alcohol content in the fuel by detecting the refractive index of the fuel. a fuel partition, a light-transmitting body provided with a fuel refractive surface on one side and a reflective surface on the other side, and having a refractive index equal to or higher than the refractive index of the light-transmitting fuel partition; a light-absorbing member that covers at least an outer circumferential surface of the body excluding the refracting surface, and the light emitted from the light emitting element is incident on the refracting surface of the light-transmitting body with the fuel on one side through the transparent fuel partition wall. The refracted light is reflected by the reflective surface on the other side of the light-transmitting body, and then made incident on the refracting surface again, and the refracted light at the refracting surface is again transmitted to the one-dimensional light through the light-transmitting fuel partition wall. The light is made incident on the position detection element.

〔作 用〕[For production]

この発明のアルコール含有率検知装置は、発光素子より
発せられる光を透光性燃料隔壁を介して透光体の一方の
側の燃料との屈折面に入射せしめ、この屈折光を前記透
光体の他方の側の反射面にて反射させた後、再度上記屈
折面に入射せしめるとともに、上記屈折面での屈折光を
再度前記透光性燃料隔壁を介して一次元光位置検知素子
に入射せしめて、燃料中のアルコール含有率の変化によ
る燃料の屈折率の変化を一次元光位置検知素子上の光入
射位置変化として測定する事により、燃料中のアルコー
ル含有率を精度よく検知する。
The alcohol content detection device of the present invention allows light emitted from a light emitting element to enter a refracting surface with fuel on one side of a light transmitting body through a light transmitting fuel partition, and directing this refracted light to the light transmitting body. After being reflected by the reflecting surface on the other side, the light is made to enter the refracting surface again, and the light refracted by the refracting surface is again made to enter the one-dimensional optical position sensing element via the light-transmitting fuel partition. By measuring the change in the refractive index of the fuel due to the change in the alcohol content in the fuel as a change in the light incident position on the one-dimensional optical position detection element, the alcohol content in the fuel can be detected with high accuracy.

また、吸光部材は、上記屈折面に異物等が付着した場合
に入射光の一部が散乱して透光体の側面で反射をくり返
して一次元光位置検知素子に迷光として受光されるのを
防止する作用をする。
In addition, the light absorbing member prevents a portion of the incident light from being scattered when a foreign object or the like adheres to the refractive surface, repeatedly reflecting on the side surface of the transparent body, and being received as stray light by the one-dimensional optical position detection element. It acts to prevent.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明によるアルコール含有率検知装置の構成図
を示し、図中、第6図に示した従来例と同一部分は同一
符号を付しである。8は絞り、9はコリメートレンズ、
10は透光性燃料隔壁、11は平行光束、12は燃料室
6への燃料出入口、13は透光体で、一方側が燃料と接
し、他方側に反射面14を設けており、15はコンデン
サレンズ、16は一次元光位置検知素子であって、ここ
では半導体装置検出素子(以下、PSDという)を用い
た場合を示す、18は透光体13の外周面を覆う黒色の
吸光部材、100は検知回路で発光素子4を駆動する駆
動部101、PSD16の光電流の前置増幅部102、
加算部103、除算部104よりなる。また第2図はP
SDの説明図、第3図は装置の出力特性図である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a configuration diagram of an alcohol content detection device according to the present invention, and in the figure, the same parts as those of the conventional example shown in FIG. 6 are given the same reference numerals. 8 is the aperture, 9 is the collimating lens,
10 is a translucent fuel partition, 11 is a parallel light beam, 12 is a fuel inlet/outlet to the fuel chamber 6, 13 is a translucent body, one side is in contact with the fuel, and the other side is provided with a reflective surface 14, and 15 is a condenser. Lens 16 is a one-dimensional optical position detection element, and here the case is shown in which a semiconductor device detection element (hereinafter referred to as PSD) is used; 18 is a black light absorbing member covering the outer peripheral surface of the transparent body 13; A driving section 101 that drives the light emitting element 4 with a detection circuit, a preamplification section 102 for photocurrent of the PSD 16,
It consists of an addition section 103 and a division section 104. Also, Figure 2 shows P
An explanatory diagram of the SD, FIG. 3 is an output characteristic diagram of the device.

次に実施例の動作につき説明する。第1図において、発
光素子4が検知回路100の駆動部101により駆動さ
れて発光すると、放射光は絞り8を通り、コリメートレ
ンズ13で平行光束11となり、屈折率N、1の透光性
燃料隔壁lOに垂直入射して透過し、さらに燃料室6内
の燃料中を透過した後、透光体13の屈折面に80点に
て入射角ψで入射する。上記屈折面は燃料出入口12よ
り燃料室6へ流入した燃料と接しており、平行光束14
は80点で燃料の屈折率N、と透光体13の屈折率N。
Next, the operation of the embodiment will be explained. In FIG. 1, when the light emitting element 4 is driven by the drive unit 101 of the detection circuit 100 to emit light, the emitted light passes through the aperture 8 and becomes a parallel light beam 11 at the collimating lens 13. The light is perpendicularly incident on the partition wall lO and transmitted therethrough, and after further passing through the fuel in the fuel chamber 6, it is incident on the refractive surface of the transparent body 13 at an incident angle ψ at 80 points. The refracting surface is in contact with the fuel flowing into the fuel chamber 6 from the fuel inlet/outlet 12, and the parallel light beam 14
is the refractive index N of the fuel and the refractive index N of the transparent body 13 at 80 points.

との差により、屈折角X x =arcSIN(Nd2/ NrXSINψ)で屈
折する。80点で屈折角Xで屈折した平行光束11は透
光体13中を透過してその他端に形成された反射面14
のP、点にて反射され、再度上記屈折面にP!点で入射
し、上記入射角ψと屈折角Xとの関係式に従って再度燃
□料中に屈折する。
Due to the difference between the two, it is refracted at a refraction angle X x = arcSIN (Nd2/NrXSINψ). The parallel light beam 11 refracted at the refraction angle X at 80 points passes through the transparent body 13 and reaches the reflective surface 14 formed at the other end
It is reflected at point P of , and P! is reflected again on the refracting surface. point, and is refracted into the fuel □ according to the above relational expression between the incident angle ψ and the refraction angle X.

かかる22点での屈折光は上記透光性燃料隔壁10にP
層点にて入射し、同様に上記入射角ψと屈折角χとの関
係式に−従って屈折した後、透光性燃料隔壁lO内を透
過し、コンデンサレンズ15に入射してPSD16に到
達する。コンデンサレンズ15はPSD16上で平行光
束11が略集光されるよう焦点距離が選定されている。
The refracted light at these 22 points is transmitted to the transparent fuel partition wall 10.
It enters at the layer point and is similarly refracted according to the above relational expression between the incident angle ψ and the refraction angle χ, then passes through the translucent fuel partition lO, enters the condenser lens 15, and reaches the PSD 16. . The focal length of the condenser lens 15 is selected so that the parallel light beam 11 is substantially focused on the PSD 16.

使用する発光素子4はPSD16の受光周波数感度領域
に合せ900n−程度の近赤外光とし、PSD16の温
度に依存した暗電流を除去するよう駆動部101でパル
ス発光させるのが有利である。また、透光性燃料隔壁l
Oの屈折率N□を透光体13の屈折率N、tより小さく
する方が、透光性燃料隔壁10の大気界面での屈折角変
化を小さくでき反射を防止して光学系の透過率を上げら
れるとともに、透光体13の燃料との屈折面での屈折角
変化を大きくでき小さな透光体13でPSD16上での
光入射位置変化ゲインを上げられる点で有利である。
It is advantageous that the light-emitting element 4 used emits near-infrared light of about 900 nm to match the light receiving frequency sensitivity range of the PSD 16, and that the drive unit 101 causes the drive unit 101 to emit pulsed light so as to eliminate dark current depending on the temperature of the PSD 16. In addition, the translucent fuel partition l
By making the refractive index N□ of O smaller than the refractive index N, t of the light-transmitting body 13, the change in the refraction angle at the atmospheric interface of the light-transmitting fuel partition wall 10 can be made smaller, and reflection can be prevented, thereby increasing the transmittance of the optical system. This is advantageous in that it is possible to increase the change in the angle of refraction at the refractive surface of the light transmitting body 13 with respect to the fuel, and it is possible to increase the gain of light incident position change on the PSD 16 with a small light transmitting body 13.

透光体13の屈折面、特に光の入射点Pa、Pm点に燃
料中に混入している金属粉等が付着した場合、入射する
光の一部が散乱し透光体13の外周面で反射をくり返し
PSD16に迷光として受光されるのを防止するために
黒色仕上げされた吸光部材18が配設されている。
If metal powder, etc. mixed in the fuel adheres to the refractive surface of the transparent body 13, especially the light incident points Pa and Pm, a part of the incident light will be scattered and the light will be scattered on the outer peripheral surface of the transparent body 13 In order to prevent the light from being repeatedly reflected and received as stray light by the PSD 16, a light absorbing member 18 finished in black is provided.

次に第2図において、PSD16の光位置検出原理につ
き説明する。PSDはシリコンフォトダイオードを応用
した光重心位置検出素子で、抵抗層(P層)、中間層、
N層の3層で構成されており、光スポットが入射すると
、入射位置より光電流i、、i1が均一な抵抗層を通り
、各々電極11+12に分割して流れ、光電流11+ 
 +1は電極までの距離に逆比例して分割出力される。
Next, referring to FIG. 2, the principle of optical position detection of the PSD 16 will be explained. PSD is an optical center of gravity position detection element using a silicon photodiode, and consists of a resistive layer (P layer), an intermediate layer,
It is composed of three N layers, and when a light spot is incident, photocurrents i, , i1 pass through the uniform resistance layer from the incident position, are divided into electrodes 11+12, and flow, resulting in a photocurrent of 11+
+1 is divided and output in inverse proportion to the distance to the electrode.

今、電極11から光入射位置までの距離をXとし、PS
Dの電極間距離をLとすると、位置XはX=L X i
t/ (it + L )で与えられる。この時、位置
Xは入射光の重心に一致するため、光スポットは必ずし
も微小径とする必要はない。
Now, let the distance from the electrode 11 to the light incidence position be X, and PS
If the distance between the electrodes of D is L, then the position X is X=L X i
It is given by t/(it + L). At this time, since the position X coincides with the center of gravity of the incident light, the light spot does not necessarily have to have a minute diameter.

第1図において、PSD16の各電極!、、I□からの
光電流III  I!は、検知回路100に入力され、
前!増幅部102で増幅された後、11 と18が加算
部103で加算され、i、と前記加算結果より除算部1
04で除算ti/ (++ 十it )が行われて、位
置信号Xに相当した電圧■。、として出力される。この
時、加算部103の出力が駆動部101にフィードバッ
クされ加算結果C+ + ++ 1)が一定となるよう
発光素子4の発光強度が制御される。燃料中のアルコー
ル含有率の変化に従い燃料の屈折率N、が変化すると、
透光体13、透光性燃料隔壁10の燃料との各屈折面に
おける屈折角χが変化するため、発光素子4の放射光の
PSD16上への入射位置Xが変化し、検知回路の出力
電圧v、l、Lはアルコール含有率に応じた値となる。
In FIG. 1, each electrode of the PSD 16! ,, Photocurrent from I□ III I! is input to the detection circuit 100,
Before! After being amplified by the amplifying section 102, 11 and 18 are added together by the adding section 103, and from the addition result i, the dividing section 1
The voltage ■ corresponding to the position signal X is obtained by dividing ti/(++ 1 it) by 04. , is output as . At this time, the output of the adding section 103 is fed back to the driving section 101, and the light emission intensity of the light emitting element 4 is controlled so that the addition result C+ + ++ 1) is constant. When the refractive index N of the fuel changes as the alcohol content in the fuel changes,
Since the refraction angle χ between the light-transmitting body 13 and the fuel of the light-transmitting fuel partition wall 10 changes, the incident position X of the emitted light from the light emitting element 4 onto the PSD 16 changes, and the output voltage of the detection circuit changes. v, l, and L have values according to the alcohol content.

第3図は、ガソリン燃料中にメチルアルコール含有率に
対する出力電圧■。1.の変化を示した。
Figure 3 shows the output voltage vs. methyl alcohol content in gasoline fuel. 1. showed a change in

ガソリンに比較してメチルアルコールの屈折率が小さい
ため、メチルアルコール含有率が大なるにつれPSD1
6への光入射位置は電極■1側に移り光電流i、が小と
なるので、出力電圧V 6@t はメチルアルコール含
有率に反比例する。エンジンの発熱、それによる燃料温
度の上昇等で検知装置Aの温度が変わると、発光素子4
の発光量、PSD16の総光電流量は変化するが、アル
コール含有率は光電流の比で与えられるため、検知装置
への温度変化によらず常に正確に、連続的に燃料中のア
ルコール含有率を検知できる。また、アルコール含有率
の検知は透光体13、透光性燃料隔壁10の接液面のご
く一部で行われるため、燃料通路に挿入される検知部を
小形化できるという利点がある。
Since the refractive index of methyl alcohol is smaller than that of gasoline, as the methyl alcohol content increases, the PSD1
Since the light incident position on the electrode 6 shifts to the electrode 1 side and the photocurrent i becomes small, the output voltage V 6@t is inversely proportional to the methyl alcohol content. When the temperature of the detection device A changes due to heat generation from the engine, a rise in fuel temperature, etc., the light emitting element 4
Although the amount of light emitted by the PSD16 and the total photocurrent amount of the PSD16 change, the alcohol content rate is given by the ratio of photocurrents, so it is possible to accurately and continuously measure the alcohol content in the fuel regardless of temperature changes to the detection device. Can be detected. Furthermore, since the alcohol content is detected on only a small portion of the liquid-contacting surfaces of the transparent body 13 and the transparent fuel partition wall 10, there is an advantage that the detection section inserted into the fuel passage can be made smaller.

第4図はこの発明のアルコール含有率検知装置の検知部
の断面構成図であり、17は絞り8とコリメートレンズ
9およびコンデンサレンズ15の保持機能を持ったホル
ダである。透光性燃料隔壁lOは白板ガラスあるいは廉
価な光学ガラスの平板で、シール3aによりケース2と
の間で燃料側と絶縁される。透光体13は矩形柱状ない
しは円筒状の光学ガラスの一方の端部を柱軸に対し所定
角度でカットして燃料との接触面(屈折面)とし、他方
の端面を金属膜蒸着等により反射[14を形成させて裏
面鏡としたものである。19は透光体13の上記接触面
を除く外周面を覆う吸光部材であり、例えば黒色アルマ
イト処理されたアルミ材で形成されている。したがって
、反射面14は燃料に触れないので、燃料中の汚れの付
着や、燃料によるg蝕の影響がなく反射率の劣化がない
、ケース2の下部構造体にはシール3bで燃料シールさ
れて燃料室6が形成され、その燃料出入口12に燃料人
口6a、燃料出口6bの各ニップルが設けられ、燃料分
配管26等燃料噴射弁36に近い高圧側管路に取付けら
れる0発光素子4、PSD16は検知回路100の基板
に固定されている。
FIG. 4 is a sectional view of the detection section of the alcohol content detection device of the present invention. Reference numeral 17 denotes a holder having the function of holding the aperture 8, the collimating lens 9, and the condenser lens 15. The translucent fuel partition lO is a flat plate made of white glass or inexpensive optical glass, and is insulated from the fuel side with the case 2 by a seal 3a. The light-transmitting body 13 is a rectangular columnar or cylindrical optical glass whose one end is cut at a predetermined angle with respect to the column axis to serve as a contact surface (refraction surface) with the fuel, and the other end is formed by depositing a metal film or the like to reflect light. [14 was formed to serve as a back mirror. Reference numeral 19 denotes a light-absorbing member that covers the outer circumferential surface of the transparent body 13 except for the contact surface, and is made of, for example, black alumite-treated aluminum. Therefore, since the reflective surface 14 does not touch the fuel, there is no adhesion of dirt in the fuel, no influence of g-erosion caused by the fuel, and no deterioration of reflectance.The lower structure of the case 2 is sealed with the fuel seal 3b. A fuel chamber 6 is formed, and its fuel inlet/outlet 12 is provided with a fuel port 6a and a fuel outlet 6b, respectively, and a light emitting element 4 and a PSD 16 are attached to a high pressure side pipe such as a fuel distribution pipe 26 near a fuel injection valve 36. is fixed to the substrate of the detection circuit 100.

上記実施例では一次元光位置検知素子16としてPSD
を用いた場合を示したか、フォトダイオードアレイ、C
CD等の位1検知素子を用いても同様の効果が期待でき
ることは当業者にとって明らかである。また、透光性燃
料隔壁10の燃料側との絶縁も燃料シール3aによらず
、透光性燃料隔壁10とケース2間をシール剤の充填、
接着等により、また透光性燃料隔壁10の周面をメタラ
イズした後、ケース2と溶接、ロウ付けする等によって
も行うことができる。さらにまた、上記実施例では燃料
中のアルコール含有率の検知について示したが、他の液
体の屈折率測定用としても応用できることは言うまでも
ない。
In the above embodiment, the one-dimensional optical position sensing element 16 is a PSD.
The case using a photodiode array, C
It is clear to those skilled in the art that similar effects can be expected even if a digit-1 detection element such as a CD is used. Furthermore, the insulation between the translucent fuel partition wall 10 and the fuel side is not based on the fuel seal 3a, but the space between the translucent fuel partition wall 10 and the case 2 is filled with a sealing agent.
This can be done by adhesion or the like, or by welding or brazing to the case 2 after metalizing the circumferential surface of the translucent fuel partition 10. Furthermore, although the above embodiments described detection of alcohol content in fuel, it goes without saying that the present invention can also be applied to measuring the refractive index of other liquids.

〔発明の効果〕〔Effect of the invention〕

この発明は、上記説明したとおり、発光素子と、一次元
光位置検知素子と、透光性燃料隔壁と、−方の側に燃料
との屈折面を設は他方の側に反射面を設けた透光体を備
え、前記発光素子より発せられる光を前記透光性燃料隔
壁を介して前記透光体の一方の側の燃料との屈折面に入
射せしめ、該屈折光を前記透光体の他方の側の反射面に
て反射させた後、再度前記屈折面に入射せしめるととも
に、前記屈折面での屈折光を再度前記透光性燃料隔壁を
介して前記一次元光位置検知素子に入射せしめるよう構
成し、該一次元光位置検知素子上の光入射位置により燃
料中のアルコール含有率を検知するようにしたため、検
知装置を小形化でき、燃料噴射弁の近傍管路に配設でき
る結果、燃料噴射弁の噴射燃料中のアルコール含有率を
常に、遅滞なく連続的に検知でき、また検知装置の温度
変化に関わらず精度良くアルコール含有率を検知できる
という効果がある。さらに、屈折面に燃料中の異物等が
付着して入射光の一部が散乱しても上記一次元光位置検
知素子に散乱光が受光されないように吸光部材を設けた
ので安定したアルコール含有率検知が可能となる。
As explained above, this invention includes a light emitting element, a one-dimensional optical position sensing element, a translucent fuel partition, a refractive surface for fuel on one side, and a reflective surface on the other side. A light-transmitting body is provided, and the light emitted from the light-emitting element is made to enter a refracting surface with fuel on one side of the light-transmitting body through the light-transmitting fuel partition wall, and the refracted light is transmitted through the light-transmitting body. After being reflected by the reflection surface on the other side, the light is made to enter the refraction surface again, and the light refracted by the refraction surface is made to enter the one-dimensional optical position detection element again through the light-transmitting fuel partition. Since the alcohol content in the fuel is detected by the light incident position on the one-dimensional optical position detection element, the detection device can be made smaller and can be installed in the pipe near the fuel injection valve. The alcohol content in the fuel injected by the fuel injection valve can be detected continuously without delay, and the alcohol content can be detected with high accuracy regardless of temperature changes in the detection device. Furthermore, even if a part of the incident light is scattered due to foreign matter in the fuel adhering to the refracting surface, a light absorbing member is provided to prevent the scattered light from being received by the one-dimensional optical position sensing element, resulting in a stable alcohol content. Detection becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるアルコール含有率検
知装置の構成図、第2図はPSDの光位置検出原理の説
明図、第3図はガソリン燃料中のメタノール含有率に対
する装置の出力特性図、第4図はこの発明のアルコール
含有率検知装置の検知部の断面図、第5図は従来のアル
コール含有率検知装置を配した燃料制御系の構成図、第
6図は従来のアルコール含有率検知装置の構成図である
。 4・・・発光素子、6・・・燃料室、8・・・絞り、9
・・・コリメートレンズ、10・・・透光性燃料隔壁、
13・・・透光体、14・・・反射面、15・・・コン
デンサレンズ、16・・・一次元光位置検知素子、18
.19・・・吸光部材、100・・・検知回路。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 is a block diagram of an alcohol content detection device according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the optical position detection principle of PSD, and Fig. 3 is the output characteristics of the device with respect to methanol content in gasoline fuel. 4 is a sectional view of the detection unit of the alcohol content detection device of the present invention, FIG. 5 is a configuration diagram of a fuel control system equipped with a conventional alcohol content detection device, and FIG. 6 is a conventional alcohol content detection device. FIG. 2 is a configuration diagram of a rate detection device. 4...Light emitting element, 6...Fuel chamber, 8...Aperture, 9
... collimating lens, 10... translucent fuel partition,
13... Translucent body, 14... Reflective surface, 15... Condenser lens, 16... One-dimensional optical position detection element, 18
.. 19... Light absorption member, 100... Detection circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 燃料の屈折率を検出して燃料中のアルコール含有率を検
知するアルコール含有率検知装置において、発光素子と
、一次元光位置検知素子と、透光性燃料隔壁と、一方側
に燃料との屈折面を設け、他方側に反射面を設けると共
に上記透光性燃料隔壁の屈折率と同じかそれ以上の屈折
率を有する透光体と、この透光体の少なくとも上記屈折
面を除く外周面を覆う吸光部材を備え、上記発光素子よ
り発せられた光を上記透光性燃料隔壁を介して上記透光
体の一方側の燃料との屈折面に入射させ、その屈折光を
透光体の他方側の反射面で反射させたのち、再度上記屈
折面に入射させ、屈折面での屈折光を再度上記透光性燃
料隔壁を介して上記一次元光位置検出素子に入射させる
ようにしたことを特徴とするアルコール含有率検知装置
An alcohol content detection device that detects the alcohol content in the fuel by detecting the refractive index of the fuel includes a light emitting element, a one-dimensional optical position detection element, a translucent fuel partition, and a refraction device with the fuel on one side. a light-transmitting body having a refractive index equal to or higher than the refractive index of the light-transmitting fuel partition wall, and a reflective surface on the other side; The light-absorbing member covers the light-absorbing member, and makes the light emitted from the light-emitting element enter the refracting surface with the fuel on one side of the light-transmitting body through the light-transmitting fuel partition wall, and transmitting the refracted light to the other side of the light-transmitting body. After being reflected by the reflective surface on the side, the light is made to enter the refracting surface again, and the refracted light at the refracting surface is made to enter the one-dimensional optical position detection element again via the transparent fuel partition wall. Characteristic alcohol content detection device.
JP14794090A 1990-06-06 1990-06-06 Alcohol content detecting device Pending JPH0440343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14794090A JPH0440343A (en) 1990-06-06 1990-06-06 Alcohol content detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14794090A JPH0440343A (en) 1990-06-06 1990-06-06 Alcohol content detecting device

Publications (1)

Publication Number Publication Date
JPH0440343A true JPH0440343A (en) 1992-02-10

Family

ID=15441504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14794090A Pending JPH0440343A (en) 1990-06-06 1990-06-06 Alcohol content detecting device

Country Status (1)

Country Link
JP (1) JPH0440343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031131A1 (en) 2008-07-02 2010-01-07 Denso Corporation, Kariya-City File management apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009031131A1 (en) 2008-07-02 2010-01-07 Denso Corporation, Kariya-City File management apparatus

Similar Documents

Publication Publication Date Title
KR910004217B1 (en) Alcohol containing ratio detecting device
KR940002500B1 (en) Apparatus for detecting alcohol concentration
JP4948117B2 (en) Fuel property detection device
JP2008286531A (en) Fuel property detection apparatus
EP0483725B1 (en) Alcohol content detector
US4895444A (en) Detector device for mixing ratio for gasoline and alcohol or the like
JPH01263536A (en) Apparatus of detecting content ratio of alcohol
US5083018A (en) Fluid index of refraction sensor
JPH02184743A (en) Apparatus for measuring particle load in flue or exhaust gas of combustion process
JPH0440343A (en) Alcohol content detecting device
JPH03233347A (en) Detector for alcohol content
JP2001132511A (en) Air-fuel ratio control device for internal combustion engine
JPH01262442A (en) Alcohol content detector
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
US4912319A (en) Detector device for mixing ratio for gasoline and alcohol or the like
JPH0249143A (en) Detector for liquid mixing ratio of mixed liquid
JPH0452679Y2 (en)
JPH0247487Y2 (en)
JPS59100840A (en) Smoke detector for internal-combustion engine
JPH02141645A (en) Detector of mixing ratio of mixed liquid
WO2019093143A1 (en) Component sensor
JPS62180245A (en) Mixing ratio sensor for alcohol mixed liquid
JPH0610654B2 (en) Alcohol content detector
JPH03233346A (en) Detector for alcohol content