JPH0439553Y2 - - Google Patents
Info
- Publication number
- JPH0439553Y2 JPH0439553Y2 JP15818786U JP15818786U JPH0439553Y2 JP H0439553 Y2 JPH0439553 Y2 JP H0439553Y2 JP 15818786 U JP15818786 U JP 15818786U JP 15818786 U JP15818786 U JP 15818786U JP H0439553 Y2 JPH0439553 Y2 JP H0439553Y2
- Authority
- JP
- Japan
- Prior art keywords
- strain
- load
- generating
- groove
- load cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005452 bending Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- OGSYQYXYGXIQFH-UHFFFAOYSA-N chromium molybdenum nickel Chemical compound [Cr].[Ni].[Mo] OGSYQYXYGXIQFH-UHFFFAOYSA-N 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Measurement Of Force In General (AREA)
Description
【考案の詳細な説明】
(a) 技術分野
本考案は、薄形ロードセルに関し、より詳しく
は、外形が厚肉円板状を呈し中心部に円形孔が突
設され、荷重が印加されると弾性変形する起歪体
の起歪部にひずみゲージが添着され、該印加荷重
を該ひずみゲージにより電気信号に変換して検出
する薄形ロードセルに関するものである。[Detailed description of the invention] (a) Technical field The present invention relates to a thin load cell, and more specifically, the invention has a thick disk-like outer shape and a circular hole protruding from the center. The present invention relates to a thin load cell in which a strain gauge is attached to a strain-generating portion of a strain-generating body that deforms elastically, and the applied load is converted into an electric signal by the strain gauge and detected.
(b) 従来技術
この種のロードセルは、円筒状の起歪部を有す
るものと、円板状の起歪部を有するものとに二分
される。(b) Prior Art This type of load cell is divided into those having a cylindrical strain-generating portion and those having a disc-shaped strain-generating portion.
このうちの円筒状の起歪部を有するものは、第
5図に示すように、縦断面が略I字状に形成され
た円筒状の荷重印加部1を有し、この荷重印加部
1の中央に円筒状の起歪部2が形成され、この起
歪部2の外周面の略中央に圧縮ひずみ(または引
張ひずみ、以下同じ)検出用のひずみゲージ3が
接着されている。このようなロードセルの外周部
の上下部には、円環状のフランジ部4,5が延設
され、その先端にはシール板6が取付けられてい
る。 Among these, the one having a cylindrical strain-generating part has a cylindrical load applying part 1 whose longitudinal section is formed in a substantially I-shape, as shown in FIG. A cylindrical strain generating part 2 is formed in the center, and a strain gauge 3 for detecting compressive strain (or tensile strain, the same applies hereinafter) is bonded to approximately the center of the outer peripheral surface of this strain generating part 2. Annular flange portions 4 and 5 extend from the upper and lower portions of the outer periphery of such a load cell, and a seal plate 6 is attached to the tip end of the annular flange portions 4 and 5.
このような構成よりなるロードセルは、使用に
際して不動部材7上に荷重印加部1とは反対側の
底面が載置固定され、荷重印加部1の上面側が図
示省略の被測定対象物に当接または固定される。
被測定対象物から荷重印加部1の上面に荷重が印
加されると、起歪部2には荷重印加方向に圧縮ひ
ずみが、荷重印加方向とは直交する方向に引張ひ
ずみが生じる。このときの圧縮ひずみおよび引張
ひずみは、それぞれひずみゲージ3によつて検出
される。 When a load cell having such a configuration is used, the bottom surface opposite to the load application section 1 is placed and fixed on the immovable member 7, and the top surface side of the load application section 1 is in contact with or against an object to be measured (not shown). Fixed.
When a load is applied from the object to be measured to the upper surface of the load application section 1, compressive strain occurs in the strain generating section 2 in the direction of load application, and tensile strain occurs in the direction orthogonal to the direction of load application. The compressive strain and tensile strain at this time are detected by strain gauges 3, respectively.
このように構成された円筒状のロードセルは、
起歪部2の高さを低くして薄形とすると、円筒状
起歪部2における応力分布が不均一となり、そこ
に添着されたひずみゲージ3によつて印加荷重に
正確に対応した電気信号を得ることができないと
いう欠点があるほか、印加荷重の当り面の状態に
よつて検出出力が大きく変動してしまうという欠
点がある。 The cylindrical load cell configured in this way is
When the height of the strain-generating portion 2 is reduced to make it thin, the stress distribution in the cylindrical strain-generating portion 2 becomes uneven, and the strain gauge 3 attached thereto generates an electric signal that accurately corresponds to the applied load. In addition to the drawback that the detection output cannot be obtained, there is also a drawback that the detection output varies greatly depending on the condition of the surface to which the applied load is applied.
このような欠点が解消するため工夫されたもの
として、例えば第6図に示すような円板状起歪部
を有するロードセルがある。 As an example of a load cell that has been devised to overcome these drawbacks, there is a load cell having a disk-shaped strain-generating portion as shown in FIG. 6, for example.
即ち、厚板円板状の荷重印加部11の外周面の
中間部から薄板円板状の起歪部12が延設され、
その外周端は、厚板円板状の固定基部13の内周
端に一体に連接されている。このような起歪部1
2の内面の荷重印加部11寄り部位と固定基部1
3寄り部位のそれぞれには曲げひずみ検出用のひ
ずみゲージ14と15が接続されている。このひ
ずみゲージ14,15への外気の侵入を防止する
ために上記固定基部13の下端部には内方に延び
る円板状シール板16が取付けられ、このシール
板16の内方端は、非常に弱い弾力を有するベロ
ーズ状のシール部材17を介して荷重印加部11
の下端に連結されている。 That is, a thin disc-shaped strain generating part 12 is extended from the middle part of the outer peripheral surface of the thick disc-shaped load application part 11,
The outer peripheral end thereof is integrally connected to the inner peripheral end of a fixed base 13 in the shape of a thick plate disk. Such a strain-generating part 1
2 near the load application part 11 on the inner surface and the fixed base 1
Strain gauges 14 and 15 for detecting bending strain are connected to each of the third portions. In order to prevent outside air from entering the strain gauges 14 and 15, a disc-shaped seal plate 16 extending inward is attached to the lower end of the fixed base 13, and the inner end of the seal plate 16 is The load applying section 11 is
is connected to the bottom end of.
このようなロードセルにおいて、固定基部13
の下面を不動部材7上に載置固定し、荷重印加部
11の上面から矢印方向の荷重を印加すると、起
歪部12に曲げひずみが生じ、ひずみゲージ1
4,15のそれぞれに異なる方向の抵抗値変化が
生じる。この抵抗値変化を適宜のホイートストン
ブリツジ回路で検出することによつて印加荷重の
値を検出するように構成されている。しかしなが
ら、このようなロードセルにおいては、起歪部1
2の曲げひずみを検出する形式であるので小さな
荷重で大きな出力が得られるものの、大荷重には
耐えられず、大荷重用、即ち高容量用とするため
には起歪部12の厚みを大きくせざるを得ない。
起歪部12の板厚を厚くすると、荷重印加部11
と起歪部12の境界部分と、起歪部12と固定基
部13の境界部分に大きな応力集中が生じ、それ
程大きくない荷重によつて弾性限界を超えたり比
較的短期間のうちに疲労破壊を生じる等の事故を
引き起す虞れがある。このためこの形式のロード
セルは、実際に印加される荷重の値を低めに設定
せざるを得ず、従つて高容量用には不向きなロー
ドセルであると考えられていた。 In such a load cell, the fixed base 13
When the lower surface of the is placed and fixed on the immovable member 7 and a load is applied in the direction of the arrow from the upper surface of the load application section 11, bending strain is generated in the strain generating section 12, and the strain gauge 1
4 and 15, resistance value changes occur in different directions. The structure is such that the value of the applied load is detected by detecting this change in resistance value using a suitable Wheatstone bridge circuit. However, in such a load cell, the strain-generating portion 1
Since this type detects bending strain (2), a large output can be obtained with a small load, but it cannot withstand large loads, and in order to use it for large loads, that is, for high capacity, the thickness of the strain-generating part 12 must be increased. I have no choice but to do it.
When the plate thickness of the strain-generating portion 12 is increased, the load applying portion 11
A large stress concentration occurs at the boundary between the strain-generating part 12 and the strain-generating part 12 and the fixed base 13, and even a moderate load can exceed the elastic limit or cause fatigue failure in a relatively short period of time. There is a risk of causing accidents such as accidents. For this reason, in this type of load cell, the value of the load actually applied must be set to a low value, and it was therefore considered that the load cell was unsuitable for high capacity applications.
(c) 目的
本考案は、上述の事情に鑑みなされたもので、
その目的は、実質的な感度を犠牲にすることなく
応力集中を減じ、高荷重でも疲労破壊を生ずるこ
となく印加荷重に正確に対応した電気信号を得る
ことのできる薄形ロードセルを提供することにあ
る。(c) Purpose This invention was created in view of the above circumstances.
The objective is to provide a thin load cell that can reduce stress concentration without sacrificing substantial sensitivity and that can obtain an electrical signal that accurately corresponds to the applied load without causing fatigue failure even at high loads. be.
(d) 構成
本考案に係る薄形ロードセルは、上述の目的を
達成するために外形が厚肉円板状を呈し中心部に
円形孔が突設され荷重が印加されると弾性変形す
る起歪体の起歪部にひずみゲージが添着され、該
印加荷重を該ひずみゲージにより電気信号に変換
して検出する薄形ロードセルにおいて、前記円形
孔と前記起歪体の外周との間に、前記起歪体の一
面側より所定の深さに達する幅狭の環状の溝を形
成すると共に前記起歪体の他面側より所定の深さ
に達する前記一面側の溝よりも幅広の環状の溝を
形成することによつて、前記起歪体の前記円形孔
と前記両溝との間に荷重印加部を、前記両溝と前
記起歪体の外周との間に固定基部を、前記一面側
の溝の底面と前記他面側の溝の底面との間に薄肉
の起歪部を、それぞれ設け、前記起歪部の他面側
にひずみゲージを添着したことを特徴とするもの
である。(d) Structure In order to achieve the above-mentioned purpose, the thin load cell according to the present invention has a thick disk-like outer shape, has a circular hole protruding in the center, and has a strain-generating structure that elastically deforms when a load is applied. In a thin load cell in which a strain gauge is attached to a strain-generating part of a body, and the applied load is converted into an electric signal and detected by the strain gauge, the strain-generating part is connected between the circular hole and the outer periphery of the strain-generating body. A narrow annular groove reaching a predetermined depth from one side of the strain body is formed, and an annular groove wider than the groove on the first side reaching a predetermined depth from the other side of the strain body. By forming a load applying part between the circular hole and both grooves of the flexure body, a fixed base between both grooves and the outer periphery of the flexure body, and a fixed base between the grooves and the outer periphery of the flexure body, and A thin strain-generating portion is provided between the bottom surface of the groove and the bottom surface of the groove on the other surface side, and a strain gauge is attached to the other surface side of the strain-generating portion.
以下、本考案の一実施例を第1図ないし第3図
A,Bを用いて詳細に説明する。 Hereinafter, one embodiment of the present invention will be explained in detail using FIGS. 1 to 3A and 3B.
同図において、21は荷重を受けると弾性変形
する材料、例えばニツケル−クロム鋼、ニツケル
クロム−モリブデン鋼、アンバ(商品名)、ベリ
リウム−銅合金、アルミニウム合金等をもつてほ
ぼ厚肉円板状に形成された起歪体である。この起
歪体21は、中心部に円形孔22が突設されてい
る。この円形孔22と起歪体21の外周とのほぼ
中間部に、起歪体21の一面側(第1図において
は上面側)より所定の深さ(実施例の場合、起歪
体21の板厚の約1/3の深さ)に達する一定幅W1
の環状(円形孔22と同心円)の溝23が形成さ
れている。一方、起歪体21の他面側(第1図に
おいては下面側)にも、その他面側より所定の深
さに達する前記一面側の溝23よりも広い幅W2
の環状の溝24が形成されている。このような2
つの環状の溝23,24を形成することによつ
て、起歪体21の円形孔22と溝23,24との
間に、厚み方向に厚肉とされた剛性大なる荷重印
加部25が形成され、また溝23,24と起歪体
21の外周との間に、同様に厚み方向に厚肉とさ
れた剛性大なる固定基部26が形成され、さらに
溝23の底面と溝24の底面との間には定格容量
に応じた所定の厚みを有する薄肉の起歪部27が
形成される。 In the same figure, 21 is made of a material that elastically deforms when subjected to a load, such as nickel-chromium steel, nickel-chromium-molybdenum steel, Amber (trade name), beryllium-copper alloy, aluminum alloy, etc., and is almost thick-walled disc-shaped. It is a strain-generating body formed in This strain body 21 has a circular hole 22 protruding from the center thereof. A predetermined depth (in the case of the embodiment, the flexure element 21 is approximately halfway between the circular hole 22 and the outer periphery of the flexure element 21 from one surface side (the upper surface side in FIG. 1) of the flexure element 21 Constant width W 1 reaching a depth of about 1/3 of the plate thickness
An annular groove 23 (concentric with the circular hole 22) is formed. On the other hand, the other surface side of the strain body 21 (lower surface side in FIG. 1) also has a width W 2 wider than the groove 23 on the one surface side, which reaches a predetermined depth from the other surface side.
An annular groove 24 is formed. 2 like this
By forming the two annular grooves 23 and 24, a load applying portion 25 with a large thickness and high rigidity is formed between the circular hole 22 of the strain body 21 and the grooves 23 and 24. Furthermore, a rigid fixed base 26 which is similarly thickened in the thickness direction is formed between the grooves 23 and 24 and the outer periphery of the strain body 21, and the bottom surface of the groove 23 and the bottom surface of the groove 24 are A thin strain-generating portion 27 having a predetermined thickness depending on the rated capacity is formed between them.
このことを言い換えれば、荷重印加部25の他
面側(第1図における下面側)の外径D1、一面
側の外径D2、固定基部26の一面側の内径D3、
および固定基部26の他面側の内径D4の4つの
直径の間には、D1<D2<D3<D4なる関係があ
る。 In other words, the outer diameter D 1 of the other surface side (lower surface side in FIG. 1) of the load application section 25, the outer diameter D 2 of one surface side, the inner diameter D 3 of the one surface side of the fixed base 26,
and the four diameters of the inner diameter D 4 on the other surface side of the fixed base 26 have the following relationship: D 1 <D 2 <D 3 <D 4 .
荷重印加部25の一面(上面)は、荷重印加時
の変位を考慮して固定基部26の一面(上面)よ
りも幾分突出させてあり、反対に荷重印加部25
の他面は固定基部26の他面よりも引込ませてあ
る。 One surface (top surface) of the load application section 25 is made to protrude somewhat from one surface (top surface) of the fixed base 26 in consideration of displacement during load application;
The other surface is retracted from the other surface of the fixed base 26.
他面側の溝24の底部、即ち起歪部27の他面
上には、大きな曲げ応力の生じる荷重印加部25
寄りの部位と、固定基部26寄りの部位に、4
対、即ち第2図に示すように、90°間隔で4対の
ひずみゲージSG1〜SG8が接着、蒸着、スパツ
タリングその他の手段により添着されている。こ
のひずみゲージSG1〜SG8が添着されている他
面側の溝24の開口端近傍には、ひずみゲージ
SG1〜SG8の吸湿による絶縁抵抗の低下や酸化
による劣化を防止するため、剛性の低い円板状の
シール板28が嵌挿固定されている。 At the bottom of the groove 24 on the other side, that is, on the other side of the strain-generating portion 27, there is a load applying portion 25 where large bending stress occurs.
4 in the area closer to the fixed base 26 and the area closer to the fixed base 26.
As shown in FIG. 2, four pairs of strain gauges SG1 to SG8 are attached at 90[deg.] intervals by bonding, vapor deposition, sputtering, or other means. Near the open end of the groove 24 on the other side to which the strain gauges SG1 to SG8 are attached, the strain gauges are attached.
In order to prevent a decrease in insulation resistance due to moisture absorption of SG1 to SG8 and deterioration due to oxidation, a disk-shaped sealing plate 28 with low rigidity is inserted and fixed.
次に、このような構成よりなる本実施例の作用
につき説明する。 Next, the operation of this embodiment having such a configuration will be explained.
先ず、固定基部26の底面を例えば被測定対象
物の不動部材上に載置固定し、荷重印加部25の
上面を例えば被測定対象物の下部に当接または取
付け固定する。 First, the bottom surface of the fixed base 26 is placed and fixed on, for example, an immovable member of the object to be measured, and the upper surface of the load application section 25 is brought into contact with or fixedly attached to, for example, the lower part of the object to be measured.
荷重印加部25の面(一面)側から下面(他
面)側に向う方向に荷重が印加されると、荷重印
加部25が下方に変位し、これに伴つて起歪部2
7に曲げひずみが生じる。 When a load is applied in the direction from the surface (one surface) side of the load application section 25 to the lower surface (other surface) side, the load application section 25 is displaced downward, and along with this, the strain generating section 2
7, bending strain occurs.
このときの起歪部27のひずみゲージ添着面側
(溝24の底部)の半径方向ひずみ分布は、第3
図Bにおける符号Pでもつて示す曲線のようにな
る。即ち、起歪部27の荷重印加部25寄りの部
位においては、大きな引張りひずみが生じ、固定
基部26寄りの部位においては大きな圧縮ひずみ
が生じ起歪部27のほぼ中央部には、曲げひずみ
が生じない。従つて起歪部27の荷重印加部25
寄りの部位に添着されているひずみゲージSG1,
SG3,SG5,SG7の抵抗値は増大し、一方、
起歪部27の固定基部26の寄りの部位に添着さ
れたひずみゲージSG2,SG4,SG6,SG8の
抵抗値は減少する。 At this time, the radial strain distribution on the strain gauge attached surface side (bottom of the groove 24) of the strain generating part 27 is the third
The curve becomes like the curve indicated by the symbol P in Figure B. That is, a large tensile strain occurs in a portion of the strain generating portion 27 closer to the load application portion 25, a large compressive strain occurs in a portion closer to the fixed base 26, and a bending strain occurs approximately at the center of the strain generating portion 27. Does not occur. Therefore, the load application section 25 of the strain generating section 27
Strain gauge SG1 attached to the closer part,
The resistance values of SG3, SG5, and SG7 increase, while
The resistance values of the strain gauges SG2, SG4, SG6, and SG8 attached to portions of the strain generating portion 27 closer to the fixed base portion 26 decrease.
第3図Bにおいて符号Qでもつて示す曲線は、
起歪体21の一面側(上面側)の溝幅W1を、第
3図Aにおいて一点鎖線をもつて示すように、他
面側(下面側)の溝幅W2と同一とした場合にお
けるひずみ分布曲線である。 The curve also indicated by the symbol Q in Fig. 3B is
When the groove width W 1 on one surface side (upper surface side) of the flexure element 21 is the same as the groove width W 2 on the other surface side (lower surface side), as shown by the dashed line in FIG. 3A, This is a strain distribution curve.
このひずみ分布曲線PとQとを比較してみる
と、ひずみ分布曲線Qが起歪部27の内径端と外
径端とで+側と−側に大きなピーク値+εqmax,
−εqmaxを有しているのに対し、ひずみ分布曲
線Pは同じ部位でありながら+側と−側に小さな
ピーク値+εpmax,−εpmaxを有していることが
分る。そしてさらに注目すべきことは、本考案に
係るひずみ分布曲線Pのピーク値+εpmax,−
εpmaxが大幅に減少しているにかかわらず、ひ
ずみゲージSG1,SG3,SG5,SG7が添着さ
れた起歪部27上の荷重印加部25近傍部位にお
けるひずみ値+εpが、溝23と24の溝幅W1と
W2を同一幅とした場合における起歪部27の同
じ部位におけるひずみ値+εqと同じ程度の値と
なることである。このことは、ひずみゲージSG
2,SG4,SG6,SG8が添着された起歪部2
7上の固定基部26近傍部位におけるひずみ値−
εpにおいても同様にひずみ値−εqと同程度の値
となる。つまり、本実施例のように溝幅W1を溝
W2よりも幅狭とすることによつて、溝幅W1を溝
幅W2と同じくしたものに比べ、ひずみ感度を低
下させずに最大ひずみεpmaxおよび最大応力を
大幅に低下させることができたのである。 Comparing the strain distribution curves P and Q, it is found that the strain distribution curve Q has large peak values +εqmax,
-εqmax, whereas the strain distribution curve P has small peak values +εpmax and -εpmax on the + and - sides even though they are at the same location. What is more noteworthy is that the peak value of the strain distribution curve P according to the present invention +εpmax, -
Despite the significant decrease in εpmax, the strain value +εp in the vicinity of the load application part 25 on the strain generating part 27 to which the strain gauges SG1, SG3, SG5, and SG7 are attached is the same as the groove width of the grooves 23 and 24. W 1 and
This value is approximately the same as the strain value +εq at the same portion of the strain-generating portion 27 when W 2 is the same width. This means that the strain gauge SG
2. Strain part 2 with SG4, SG6, and SG8 attached
Strain value in the vicinity of the fixed base 26 on 7 -
Similarly, εp has a value comparable to the strain value -εq. In other words, as in this example, the groove width W 1 is
By making the width narrower than W 2 , the maximum strain εpmax and maximum stress can be significantly lowered without reducing strain sensitivity compared to a groove width W 1 that is the same as the groove width W 2 . It was.
これは、荷重を受ける面(上面)側の溝23の
溝幅W1を幅狭とし、荷重を受ける面とは反対面
(下面)側の溝24の溝幅W2を幅広としたことに
よつて応力の分散が図られたためと考えられる。
また、溝23の底部において、起歪部27と荷重
印加部25および固定基部26間が、比較的大き
な半径R1よりなる円弧面でそれぞれ連ねられて
いることも、応力の集中を減じることに寄与して
いる。本実施例においては一面側の溝23の底部
の円弧面の半径R1は大きく形成してある(具体
的には、R1は起歪部27の板厚の20%以上が望
ましい)が、他面側の溝24の底部の円弧面の半
径R2は、比較的小さく形成してある。これは、
他面側の溝24の底部の円弧面の半径R2を半径
R1と同程度に大きくした場合、応力集中の減少
には多少寄与するが、反面このようにすると、ひ
ずみゲージSG1〜SG8をひずみ量の小さい起歪
部27の中心方向に移動させざるを得なくなり、
これに伴つてひずみゲージSG1〜SG8より得ら
れる検出出力が低下してしまうことになるため、
R1>R2なる関係に設定したのである。 This is because the groove width W 1 of the groove 23 on the surface receiving the load (top surface) is made narrow, and the groove width W 2 of the groove 24 on the surface opposite to the surface receiving the load (bottom surface) is made wide. This is thought to be due to the stress being distributed.
Furthermore, at the bottom of the groove 23, the strain-generating portion 27, the load applying portion 25, and the fixed base 26 are connected by a circular arc surface with a relatively large radius R1 , which also reduces stress concentration. Contributing. In this embodiment, the radius R 1 of the arcuate surface at the bottom of the groove 23 on one side is formed to be large (specifically, R 1 is preferably 20% or more of the plate thickness of the strain-generating portion 27). The radius R 2 of the circular arc surface at the bottom of the groove 24 on the other side is formed to be relatively small. this is,
The radius R 2 of the arc surface at the bottom of the groove 24 on the other side is the radius
If it is made as large as R 1 , it will contribute to reducing stress concentration to some extent, but on the other hand, doing so will force the strain gauges SG1 to SG8 to move toward the center of the strain-generating portion 27 where the amount of strain is small. gone,
As a result, the detection output obtained from strain gauges SG1 to SG8 will decrease.
The relationship was set as R 1 > R 2 .
なお、本考案は、上述した実施例に限定される
ものではなく、その要旨を逸脱しない範囲内で
種々の変形実施が可能である。 Note that the present invention is not limited to the embodiments described above, and various modifications can be made without departing from the gist thereof.
例えば、一面側に形成される溝の底面の形状
は、円弧面でなくともよく、例えば、第4図に示
すように、2つの溝35,36のうち、一面側の
溝35の形状は、起歪体31の起歪部32の内径
端と荷重印加部33との間を傾斜面l1で連ね、ま
た外径端と固定基部34との間を傾斜面l2で連ね
るように形成してもよい。この場合、傾斜面l1と
l2の各端部のつなぎ部には小さな半径の円弧面を
設けることが望ましい。 For example, the shape of the bottom surface of the groove formed on one side does not have to be an arcuate surface. For example, as shown in FIG. 4, the shape of the groove 35 on the one side among the two grooves 35 and 36 is The inner diameter end of the strain generating part 32 of the strain generating body 31 and the load application part 33 are connected by an inclined surface l 1 , and the outer diameter end and the fixed base 34 are connected by an inclined surface l 2 . You can. In this case, the slope l 1 and
It is desirable to provide a circular arc surface with a small radius at the joint at each end of l 2 .
また、上記実施例のロードセルにおいては、荷
重印加部25の一面側を固定基部26の一面側よ
り突出せしめてあるが、被測定対象物のロードセ
ル取付面が、荷重印加部25の直径D2と同程度
であれば、上記突出量はゼロあるいはマイナスで
あつてもよい。 In addition, in the load cell of the above embodiment, one surface side of the load application section 25 is made to protrude from one surface side of the fixed base 26, but the load cell mounting surface of the object to be measured is different from the diameter D 2 of the load application section 25. The protrusion amount may be zero or negative as long as the protrusion amount is the same.
また、ひずみゲージSG1〜SG8は、実施例の
場合、そのゲージ軸をいずれも直径方向に合致さ
せて添着してあるが、一部のひずみゲージのゲー
ジ軸を円周方向に合致させて添着するようにして
もよい。 In addition, in the case of the embodiment, strain gauges SG1 to SG8 are attached with their gauge axes aligned in the diametrical direction, but some of the strain gauges are attached with their gauge axes aligned in the circumferential direction. You can do it like this.
(e) 効果
以上詳述したように本考案によれば、構成が簡
単で製作が容易であり、ひずみ検出感度を低下さ
せることなく、応力集中による最大ひずみを大幅
に低減化でき、低容量から高容量に至るものが容
易に製作でき、またひずみゲージを多数起歪部に
添着せずとも、荷重印加部に偏つて印加される荷
重をひずみゲージにより該荷重に正確に対応する
電気信号に変換して検出し得る薄形ロードセルを
提供することができる。(e) Effects As detailed above, according to the present invention, the structure is simple and easy to manufacture, and the maximum strain due to stress concentration can be significantly reduced without reducing strain detection sensitivity. A device with a high capacity can be easily manufactured, and the load applied unevenly to the load application section can be converted into an electrical signal that accurately corresponds to the load using the strain gauge, without the need to attach many strain gauges to the strain-generating section. It is possible to provide a thin load cell that can be detected by
第1図は、本考案の一実施例である薄形ロード
セルの縦断面図、第2図は、第1図のX−X線矢
視方向断面図、第3図AおよびBは、上記第1図
と第2図に示す薄形ロードセルの起歪部近傍の構
成の詳細を示す拡大断面図および起歪部各部のひ
ずみ量の大きさを表わす線図、第4図は、第1図
ないし第3図に示す薄形ロードセルとは異なる他
の実施例の要部を示す断面図、第5図は、従来の
円筒形ロードセルの一例を示す断面図、第6図
は、従来の円板形のロードセルの一例を示す断面
図である。
21,31……起歪体、22……円形孔、2
3,24,35,36……溝、25,33……荷
重印加部、26,34……固定基部、27,32
……起歪部、28……シール板、SG1〜SG8…
…ひずみゲージ。
FIG. 1 is a longitudinal sectional view of a thin load cell that is an embodiment of the present invention, FIG. 2 is a sectional view taken along the line X--X in FIG. 1, and FIGS. 1 and 2 are enlarged cross-sectional views showing the details of the configuration near the strain-generating part of the thin load cell, and diagrams showing the magnitude of strain in each part of the strain-generating part, and Figure 4 are similar to those shown in Figures 1 to 2. FIG. 3 is a cross-sectional view showing the main parts of another embodiment different from the thin load cell shown in FIG. 3. FIG. 5 is a cross-sectional view showing an example of a conventional cylindrical load cell. FIG. 2 is a sectional view showing an example of a load cell. 21, 31... Strain body, 22... Circular hole, 2
3, 24, 35, 36... Groove, 25, 33... Load application section, 26, 34... Fixed base, 27, 32
...Strain part, 28...Seal plate, SG1 to SG8...
...strain gauge.
Claims (1)
設され荷重が印加されると弾性変形する起歪体
の起歪部にひずみゲージが添着され、該印加荷
重を該ひずみゲージにより電気信号に変換して
検出する薄形ロードセルにおいて、前記円形孔
と前記起歪体の外周との間に、前記起歪体の一
面側より所定の深さに達する幅狭の環状の溝を
形成すると共に前記起歪体の他面側より所定の
深さに達する前記一面側の溝よりも幅広の環状
の溝を形成することによつて、前記起歪体の前
記円形孔と前記両溝との間に荷重印加部を、前
記両溝と前記起歪体の外周との間に固定基部
を、前記一面側の溝の底面と前記他面側の溝の
底面との間に薄肉の起歪部を、それぞれ設け、
前記起歪部の他面側にひずみゲージを添着した
ことを特徴とする薄形ロードセル。 (2) ひずみゲージは、幅広の他面側の溝の底面に
おける荷重印加部寄りの部位と固定基部寄りの
部位に複数添着されていることを特徴とする実
用新案登録請求の範囲第1項記載の薄形ロード
セル。 (3) 荷重印加部の外周面と固定基部の内周面と
は、その一面側は比較的大きな円弧面を介して
起歪部の内径端と外径端とに連なり、その他面
側は比較的小さな円弧面を介して起歪部の内径
端と外径端とに連なつていることを特徴とする
実用新案登録請求の範囲第1項記載の薄形ロー
ドセル。[Claims for Utility Model Registration] (1) A strain gauge is attached to the strain-generating part of a strain-generating body that has a thick disk-like external shape, has a circular hole protruding from the center, and deforms elastically when a load is applied. In a thin load cell that detects the applied load by converting it into an electric signal using the strain gauge, a predetermined depth is provided between the circular hole and the outer periphery of the strain body from one side of the strain body. By forming a narrow annular groove reaching a predetermined depth from the other surface of the strain generating body and a wider annular groove wider than the groove on the one surface side reaching a predetermined depth from the other surface of the strain generating body, a load applying part between the circular hole of the body and the both grooves, a fixed base between the both grooves and the outer periphery of the strain body, and a bottom surface of the groove on the one side and a groove on the other side. A thin strain-generating portion is provided between the bottom surface of each
A thin load cell characterized in that a strain gauge is attached to the other surface of the strain generating part. (2) Claim 1 of the Utility Model Registration Claim characterized in that a plurality of strain gauges are attached to the bottom surface of the groove on the other wide side, at a portion closer to the load application portion and a portion closer to the fixed base. Thin load cell. (3) The outer circumferential surface of the load application part and the inner circumferential surface of the fixed base are connected to the inner diameter end and outer diameter end of the strain generating part via a relatively large circular arc surface on one side, and the other side is The thin load cell according to claim 1, wherein the load cell is connected to an inner diameter end and an outer diameter end of the strain-generating portion via a small circular arc surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15818786U JPH0439553Y2 (en) | 1986-10-17 | 1986-10-17 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15818786U JPH0439553Y2 (en) | 1986-10-17 | 1986-10-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6363733U JPS6363733U (en) | 1988-04-27 |
JPH0439553Y2 true JPH0439553Y2 (en) | 1992-09-16 |
Family
ID=31081442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15818786U Expired JPH0439553Y2 (en) | 1986-10-17 | 1986-10-17 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0439553Y2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009069267A1 (en) * | 2007-11-27 | 2009-06-04 | Ntn Corporation | Sensor-equipped bearing for wheel |
JP2009128265A (en) * | 2007-11-27 | 2009-06-11 | Ntn Corp | Wheel bearing with sensor |
JP2009128264A (en) * | 2007-11-27 | 2009-06-11 | Ntn Corp | Wheel bearing with sensor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2508060Y2 (en) * | 1988-07-29 | 1996-08-21 | 日精樹脂工業 株式会社 | Injection device with washer-type load cell |
US7819017B2 (en) * | 2004-07-07 | 2010-10-26 | Robert Bosch Gmbh | Dynamometer element |
JP6966930B2 (en) * | 2017-11-17 | 2021-11-17 | Kyb株式会社 | Load detector |
-
1986
- 1986-10-17 JP JP15818786U patent/JPH0439553Y2/ja not_active Expired
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009069267A1 (en) * | 2007-11-27 | 2009-06-04 | Ntn Corporation | Sensor-equipped bearing for wheel |
JP2009128265A (en) * | 2007-11-27 | 2009-06-11 | Ntn Corp | Wheel bearing with sensor |
JP2009128264A (en) * | 2007-11-27 | 2009-06-11 | Ntn Corp | Wheel bearing with sensor |
Also Published As
Publication number | Publication date |
---|---|
JPS6363733U (en) | 1988-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2677678B2 (en) | Pressure or force sensor | |
US4089036A (en) | Capacitive load cell | |
JPH0439553Y2 (en) | ||
US20120180574A1 (en) | Load cell for monitoring torsion and having overload protection | |
JPH0349060B2 (en) | ||
US7284444B2 (en) | Hermetically sealed displacement sensor apparatus | |
US2992556A (en) | Force measuring instrument | |
US4453422A (en) | Strain gage load cell having improved sensitivity | |
US3303451A (en) | Beam-type transducers | |
JP2704173B2 (en) | Load transducer with pedestal | |
JP2527551B2 (en) | Thin load cell | |
WO2019171810A1 (en) | Torque sensor | |
JPWO2007057943A1 (en) | Straining body, capacitive force sensor and capacitive acceleration sensor | |
CN117553945A (en) | Force sensor and force sensor | |
JP2005106487A (en) | Dynamics sensor and dynamo-electric brake | |
JP6492257B2 (en) | Force transducer and strain gauge used therefor | |
US3460382A (en) | Coaxial load cell | |
JP6980568B2 (en) | Torque sensor | |
KR102245528B1 (en) | Pressure sensor | |
US3505874A (en) | Pressure gauge incorporating semi-conductor transducer | |
JPH0540424Y2 (en) | ||
JP7038320B2 (en) | Pressure sensor | |
JPS6052369B2 (en) | Screw axial force measuring device | |
US12038336B2 (en) | Force sensor | |
JP7587041B2 (en) | Torque Sensor |