JPH0439371B2 - - Google Patents

Info

Publication number
JPH0439371B2
JPH0439371B2 JP59210465A JP21046584A JPH0439371B2 JP H0439371 B2 JPH0439371 B2 JP H0439371B2 JP 59210465 A JP59210465 A JP 59210465A JP 21046584 A JP21046584 A JP 21046584A JP H0439371 B2 JPH0439371 B2 JP H0439371B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
porous hollow
polyolefin
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59210465A
Other languages
Japanese (ja)
Other versions
JPS6190704A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21046584A priority Critical patent/JPS6190704A/en
Publication of JPS6190704A publication Critical patent/JPS6190704A/en
Publication of JPH0439371B2 publication Critical patent/JPH0439371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 発明の背景 技術分野 本発明は、中空糸膜に関するものである。詳し
く述べると、人工肺または血漿分離等に使用され
る中空糸膜に関するものである。特に、長期間使
用に際して血漿流出がなくかつ高ガス交換能を有
し、人工肺用に好適な多孔質中空糸膜に関するも
のである。 先行技術 一般に心臓手術等において、患者の血液を体外
に導き、これに酸素を添加しかつ炭酸ガスを除去
するために、体外循環回路内に中空糸膜型人工肺
が用いられている。このような人工肺において使
用される中空糸膜としては、均質膜と多孔質膜の
2種類がある。均質膜は、透過する気体の分子が
膜に溶解し、拡散することによつてガスの移動が
行なわれる。この代表的なものにシリコーンゴム
があり、コロボー膜型肺として製品化されてい
る。しかしながら、均質膜は、ガス透過性の点か
ら現在使用可能のものとしてはシリコーンゴムの
みしか知られておらず、また該シリコーンゴム膜
は強度的に膜厚100μm以下にすることはできな
い。このためガス透過に限界があり、特に炭酸ガ
スの透過が悪い。また、前記シリコーンゴムは高
価で、しかも加工性が悪いという欠点があつた。 一方、多孔質膜は、該膜の有する微細孔が透過
すべき気体分子に比べて著しく大きいため、体積
流として細孔を通過する。例えばマイクロポーラ
スポリプロピレン膜等の多孔質膜を使用した人工
肺が種々提案されている。例えばポリプロピレン
を中空糸製造用ノズルを用いて、紡糸温度210〜
270℃、ドラフト比180〜600で溶融紡糸し、つい
で155℃以下で第1段熱処理を行なつたのち、110
℃未満で30〜200%延伸し、しかるのちに第1段
熱処理温度以上155℃以下で第2段熱処理するこ
とにより多孔質ポリプロピレン中空糸を製造する
ことが提案されている(特公昭56−52123号)。し
かしながら、このようにして得られる多孔質中空
糸はポリプロピレン中空糸を延伸することにより
物理的に細孔を形成するので、該細孔は膜厚方向
にほぼ水平な直線状細孔であり、かつ延伸度に応
じて中空糸の軸線方向に亀裂を生じて生成する細
孔であるから断面がほぼ正方形ないし長方形であ
る。又、細孔はほぼ直線的に連続貫通し、かつ空
孔率が高い。このため、該多孔質中空糸は水蒸気
の透過性が高く、結露水によつて性能が低下する
だけでなく、長期間血液を循環させて使用する
と、血漿が漏出するという欠点があつた。 発明の目的 したがつて、本発明の目的は、新規な中空糸膜
を提供することにある。本発明の他の目的は、高
ガス交換能を有する多孔質中空糸膜を提供するこ
とにある。本発明のさらに他の目的は、長期間使
用に際して血漿流出がなくかつ高ガス交換能を有
し、人工肺用に好適な多孔質中空糸膜を提供する
ことにある。 これらの諸目的は、内径が150〜300μm、肉厚
が10〜150μmのほぼ真円形状のポリオレフイン
製中空糸膜であつて、該中空糸膜の内面側は比較
的緻密な層を呈し、外面側は平均粒径0.1〜10μm
の独立微粒子の集合体状を呈して前記内面側より
外面側まで微細な連通孔を形成し、かつ該中空糸
膜の外表面と内表面間は、内面側にすすむにつれ
て微粒子間〓が小さい緻密な層を呈する連続して
なる異方性膜構造を有することを特徴とする多孔
質中空糸膜により達成される。 さらに、本発明は、空孔率が5〜60%である多
孔質中空糸膜である。本発明は、O2ガスフラツ
クスが1.0×10-5〜2.0×103ml/min・cm2・atm、
好ましくは1.0×10-3〜1.0×103ml/min・cm2
atmである疎水性多孔質中空糸膜である。また、
本発明は外面側の独立微粒子の平均粒径が1〜
7μmである多孔質中空糸膜である。さらに本発
明は、内径が180〜250μm、肉厚が20〜100μmで
ある多孔質中空糸膜である。また、本発明は、ポ
リオレフインがポリエチレンまたはポリプロピレ
ン、好ましくはポリプロピレンである疎水性多孔
質中空糸膜である。 発明の具体的構成 つぎに、図面を参照しながら本発明を具体的に
説明する。すなわち、第1図は、本発明による中
空糸膜の模式的に画いた図であり、同図から明ら
かなように内径Dが150〜300μm、好ましくは
180〜250μm、肉厚Tが10〜150μm、好ましくは
20〜100μmであるほぼ真円状のポリオレフイン
製の中空糸膜1である。この中空糸膜1の内面側
には比較的緻密な層2が形成され、一方、外面側
には平均粒径dが10μm以下、好ましくは1〜7μ
mの多数の微粒子3の集合体状層4を呈してお
り、前記緻密層2内の微細孔5より該微粒子集合
体状層4内の微細孔6にまで連通して前記内面側
より外面側まで連通孔を形成してなる疎水性を有
する多孔質中空糸膜である。 このような疎水性多孔質中空糸膜は、例えばつ
ぎのようにして製造される。すなわち、第2図に
示すように、ポリオレフインと有機充填剤との配
合物11を、ホツパー12から混練機、例えば二
軸型スクリユ式押出機13に供給して、該配合物
を溶融混練し押出したのち、紡糸装置14に送
り、口金装置15の環状紡糸孔(図示せず)から
ガス状雰囲気、例えば空気中に吐出させ、同時に
ライン16より供給される不活性ガスを内部中央
部に導入し、このようにして形成される中空状物
17を冷却固化液18を収納した冷却槽19に導
入し、該冷却固化液18と接触させることにより
冷却固化させる。この場合、前記中空状物17と
冷却固化液18との接触は、第2図に示すよう
に、例えば前記冷却槽19の底部に貫通して下方
に向つて設けられた冷却固化液流通管20内に前
記冷却固化液18を流下させ、その流れに沿つて
前記中空状物17を並流接触させることが望まし
い。流下した冷却固化液18は固化槽21で受け
て貯蔵し、その中に前記中空状物17を導入し、
変向棒22により変向させて該冷却固化液18と
充分接触させて固化させたのち、巻取ボビン23
により巻取る。蓄積してくる冷却固化液は、ライ
ン24より排出させ、ポンプ25により前記冷却
槽19へ循環する。なお、冷却固化液が後述する
ように炭化水素類、ハロゲン炭化水素類等のよう
に高揮発性でかつ水不混和性である場合には、蒸
発防止のために上層として水等の層26を設けて
もよい。 このようにして冷却固化した中空状物18はボ
ビン23に巻取つたのち、所定の寸法に切断し、
ついで抽出液中に浸漬して前記切断中空状物18
から前記有機充填剤を抽出除去し、必要により乾
燥を行なうことにより中空糸膜が得られる。ま
た、このようにして得られた中空糸膜は、熱処理
を施すことによりさらに寸法安定性の良好な中空
糸膜が得られる。 本発明で原料として使用されるポリオレフイン
としては、ポリプロピレン、ポリエチレン等があ
るが、そのメルトインデツクス(M.I.)が5〜70
のものが好ましく、特に、M.I.が10〜40のものが
好ましい。また、前記ポリオレフインのうち、特
にポリプロピレンが最も好ましい。 有機充填剤としては、前記ポリオレフインの溶
融下で該ポリオレフインに均一に分散することが
できかつ後述するように抽出液に対して易溶性の
ものであることが必要である。このような充填剤
としては、流動パラフイン(数平均分子量100〜
2000)、α−オレフインオリゴマー[例えば、エ
チレンオリゴマー(数平均分子量100〜2000)、プ
ロピレンオリゴマー(数平均分子量100〜2000)、
エチレン−プロピレンオリゴマー(数平均分子量
100〜2000)等]、パラフインワツクス(数平均分
子量200〜2500)、各種炭化水素等があり、好まし
くは流動パラフインである。 ポリオレフインと前記有機充填剤との配合割合
は、ポリオレフイン100重量部に対して有機充填
剤が35〜150重量部、好ましくは50〜100重量部で
ある。すなわち、有機充填剤が35重量部未満では
充分なガス透過能を有する多孔質の中空糸膜が得
られず、一方、150重量部を越えると、粘度が低
くなりすぎて中空状への成形加工性が低下するか
らである。このような原料配合は、例えば二軸型
押出機等の押出機を用いて所定の組成の混合物を
溶融混練し、押出したのち、ペレツト化するとい
う前混練方法により原料を調製(設計)する。こ
のようにして調製された原料配合物を、さらに二
軸押出機等の押出機を用いて、例えば160〜250
℃、好ましくは180〜220℃の温度で溶融して混練
し、紡糸装置の環状孔からガス雰囲気中に吐出さ
せ、同時にその内部中央部に窒素、炭酸ガス、ヘ
リウム、アルゴン、空気等の不活性ガスを導入す
ることにより中空状物を形成させ、この中空状物
を落下させ、ついで、冷却槽内の冷却固化液と接
触させる。この落下距離は5〜1000mmが好まし
く、特に10〜500mmが好ましい。すなわち、落下
距離が5mm未満の場合には脈動を生じて冷却固化
液に前記中空状物が進入する際に潰れることがあ
るからである。この冷却槽内で前記中空状物は未
だ充分に固化しておらず、しかも中央部は不活性
ガスであるために、外力により変形しやすいの
で、第2図に示すように、例えば冷却槽19の底
部に貫通して下方に向つて設けられた冷却固化液
流通管20内に前記冷却固化液18を流下させ、
その流れに沿つて前記中空状物を並流接触させる
ことにより前記中空状物を下方に強制的に移動さ
せ、かつ外力(流体圧等)による中空状物の変形
は防止できる。このときの冷却固化液の流速は自
然流下で充分である。また、このときの冷却温度
は10〜60℃、好ましくは20〜50℃である。すなわ
ち、10℃未満では冷却固化速度が速すぎて肉厚部
の大部分が緻密層となるためにガス交換能が低く
なる。一方、60℃を越えると、ポリオレフインの
結晶化速度が遅くなり外面側の微粒子の粒径が大
きくなりすぎて微細連通孔が大きくなりすぎるだ
けでなく、前記緻密層が極めて薄くなるか、ある
いはさらに高温になると全くなくなり、このため
例えば人工肺に使用した場合に目詰まりを生じた
り、あるいは血漿流出を生じたりする恐れがある
からである。しかし、このような膜であつても、
内面側又は外面側は親水化処理(例えば、アルコ
ール処理)により血漿分離内の中空糸膜に使用す
ることができる。 冷却固化液としては、ポリオレフインを溶解せ
ずかつ比較的沸点が高く、しかも前記有機充填剤
を溶解し得るものであればいずれも使用できる。
一例を挙げると、例えば、メタノール、エタノー
ル、プロパノール類、ブタノール類、ヘキサノー
ル類、オクタノール類、ラウリルアルコール等の
アルコール類、オレイン酸、パルミチン酸、ミリ
スチン酸、ステアリン酸等の液状脂肪酸類および
そのアルキルエステル類(例えばメチル、エチ
ル、イソプロピル、ブチル等のエステル類)、オ
クタン、ノナン、デカン、灯油、軽油、トルエ
ン、キシレン、メチルナフタレン等の液状炭化水
素類、1,1,2−トリクロロ−1,2,2−ト
リフルオロエタン、トリクロロフルオロメタン、
ジクロロフルオロメタン、1,1,2,2−テト
ラクロロ−1,2−ジフルオロエタン等のハロゲ
ン化炭化水素類、特に塩化弗化炭化水素類等があ
り、これらのうち、後述するように前記有機充填
剤を溶解し得るもの、例えばハロゲン化炭化水素
類が特に好ましい。すなわち、ハロゲン化炭化水
素類を使用した場合には固化槽で中空状物を固化
させる間にも有機充填剤の抽出がある程度行なわ
れるばかりでなく、後工程である抽出工程で使用
される抽出液と同じものを使用すれば、冷却固化
液の洗浄除去が不要となり、しかも抽出液を汚損
する心配がないからである。また、ハロゲン化炭
化水素類を使用すれば火災の心配もない。これら
のハロゲン化炭化水素類のうち、特に塩化弗化炭
化水素類は、人体に対し安全であるので好まし
い。 前記冷却固化液流通管を流通した冷却固化液は
下部に設けられた固化槽で受けて貯留し、この固
化槽中の冷却固化液中を通過させることにより前
記中空状物を完全に固化させる。ついで固化した
中空状物は巻取られる。 巻取られた中空状物は、所定の寸法、例えば20
〜50cmに切断されたのち、抽出液中に0〜50℃、
好ましくは20〜40℃の温度に1〜30分間、好まし
くは3〜20分間浸漬することにより中空糸膜が得
られる。この場合、抽出処理の全過程で長さを一
定にするいわゆる定長抽出が最も好ましい。 抽出液としては、中空糸膜を構成するポリオレ
フインを溶解せず、かつ有機充填剤を溶解抽出し
得るものであればいずれも使用できる。一例を挙
げると、例えば炭化水素類、1,1,2−トリク
ロロ−1,2,2−トリフルオロエタン、トリク
ロロフルオロメタン、ジクロロフルオロメタン、
1,1,2,2−テトラクロロ−1,2−ジフル
オロエタン等のハロゲン化炭化水素類等があり、
これらのうち有機充填剤に対する抽出能力の点か
らハロゲン化炭化水素類が好ましく、特に人体に
対する安全性の点から塩化弗化炭素類が好まし
い。 このようにして得られる中空糸膜は、さらに必
要により熱処理が施される。熱処理は、空気、窒
素、炭酸ガス等のガス状雰囲気中で50〜160℃、
好ましくは70〜140℃の温度で1〜120分間、好ま
しくは2〜60分間行なわれる。この熱処理により
中空糸膜の構造安定化がなされ、寸法安定性が高
くなる。また、この場合、熱処理前または熱処理
時に延伸を行なつてもよい。 このようにして得られる中空糸膜は、内径が
150〜300μm、好ましくは180〜250μm、肉厚が
10〜150μm、好ましくは20〜100μmの真円形の
ものである。その断面構造は、中空糸膜の製造条
件によつて変るが、前記のようにアルコール類や
ハロゲン化炭化水素類のごとき有機充填剤を溶解
し得る液体を冷却固化液として使用することによ
り、倍率1000倍の走査型電子顕微鏡写真である第
3〜6図から明らかなように内表面から外表面に
向うにしたがつてポリオレフインの微粒子が独立
に形成されていて、内表面部付近に緻密層を有
し、外表面部付近には多孔質層よりなるものが得
られる。この断面構造は冷却固化液の温度により
異なり、温度が高くなるにつれてポリオレフイン
の微粒子形成が内表面部方向に進行している。し
かし、いずれの場合も、内部付近の微粒子は緻密
であるのに対して、外面部付近では微粒子は独立
に存在した集合体となつている。しかして、冷却
固化液の温度は、第3図の場合は−1〜0℃、第
4図の場合は8℃、第5図の場合は17〜20℃、第
6図の場合は24〜27℃である。また第7〜10図
は、内表面の倍率3000倍の走査型電子顕微鏡写真
であり、該内表面はポリオレフインの粒子が部分
的に融着した亀甲形態をとり、しかも表面は比較
的平滑である。なお、冷却固化液の温度は、第7
図の場合は−1〜0℃、第8図の場合は8℃、第
9図の場合は17〜20℃、第10図の場合は24〜27
℃である。一方、第11〜14図は、外表面の倍
率3000倍の走査型電子顕微鏡写真であり、該外表
面はポリオレフインの微粒子が独立に形成されて
いて、微粒子間に多くの間〓を有している。な
お、冷却固化液の温度は、第11図の場合は−1
〜0℃、第12図の場合は8℃、第13図の場合
は17〜20℃、第14図の場合は24〜27℃である。
このようにして外面部に形成されるポリオレフイ
ンの微粒子の平均粒径は0.1〜10μm、好ましくは
1〜7μmであり、中空糸膜製造条件により、こ
れらの微粒子の分布度が異なり、それによつて粒
子間〓の微小空孔を大きさと割合を異になる膜構
造体が得られる。また、ドラフト比は20〜1000、
好ましくは50〜500であり、さらにガスフラツク
スは1.0×10-5〜2.0×103ml/min・cm2・atm、好
ましくは1.0×10-3〜1.0×103ml/min・cm2・atm
である。 つぎに、実施例を挙げて本発明をさらに詳細に
説明する。 実施例 1〜8 M.I.が23のポリプロピレン100重量部当り40重
量%の流動パラフイン(数平均分子量324)を仕
込み、二軸型押出機(池貝鉄工株式会社製PCM
−30−25)により溶融混練し、押出ししたのちペ
レツト化した。このペレツトを第2図に示す装置
を用いて、二軸型押出機(池貝鉄工株式会社
PCM−30−25)13を用いて200〜210℃で溶融
し、芯径1.0mm、内径2.9mm、外径3.7mm、ランド長
15.0mmの環状紡糸孔15より14.8g/minの吐出
量で空気中に吐出させるとともに、窒素ガスを内
部中央部に8.5ml/minの割合で導入して溶融中
空状物17を落下させた。落下距離355mmで冷却
槽19内の1,1,2−トリクロロ−1,2,2
−トリフルオロエタン(以下、フレオン113とい
う。)と接触させたのち、冷却固化液流通管20
内を自然流下するフリオン113と並流接触させて
冷却した。このときのフリオン113の液温は第1
表に示すとおりであつた。ついで、前記中空状物
17を固化槽18内のフレオン113中に導入した
のち、変向棒22により変向させてほぼ水平に約
3m走行させて完全に固化させ、ついでボビン2
3により巻取つた。このときの巻取速度およびド
ラフト比は第1表に示すとおりであつた。ボビン
に巻取られた中空状物を長さ30cmに切断したの
ち、液温23℃のフレオン113中に5分間2回浸漬
して定長抽出を行ない、ついで140℃空気中で2
分間熱処理を行なつたところ、第1表に示す性質
を有する中空糸膜が得られた。 実施例 9〜14 実施例1と同様の方法において、流動パラフイ
ンの代りに水添ポリ−α−オレフイン型合成抽出
(数平均分子量480)を使用し、第1表に示す条件
下に紡糸を行なつた以外は同様な方法を行なつた
ところ、第1表の結果が得られた。 実施例15〜16および比較例1 実施例1と同様の方法において流動パラフイン
の仕込量および紡糸条件を第2表に示すように
種々変えて中空糸膜を製造したところ、第2表の
結果が得られた。 比較例 2 市販の人工肺用ポリプロピレン中空糸膜につい
て、実施例15〜17と同様な試験を行なつたとこ
ろ、第2表の結果が得られた。 比較例 3 実施例15と同様の方法において、冷却固化液と
して水を使用した以外は同様の方法を行なつて中
空糸膜を製造したところ、第2表の結果が得られ
た。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION Technical Field The present invention relates to hollow fiber membranes. More specifically, the invention relates to hollow fiber membranes used in artificial lungs, plasma separation, and the like. In particular, the present invention relates to a porous hollow fiber membrane that does not cause plasma outflow during long-term use, has a high gas exchange capacity, and is suitable for use in an oxygenator. Prior Art In general, in cardiac surgery and the like, a hollow fiber membrane oxygenator is used in an extracorporeal circulation circuit to lead a patient's blood outside the body, add oxygen to it, and remove carbon dioxide. There are two types of hollow fiber membranes used in such oxygenators: homogeneous membranes and porous membranes. In a homogeneous membrane, gas movement occurs when the molecules of the gas that permeates dissolve in the membrane and diffuse. A typical example of this is silicone rubber, which has been commercialized as the Korobo membrane lung. However, from the point of view of gas permeability, only silicone rubber is currently known as a homogeneous membrane that can be used, and the thickness of the silicone rubber membrane cannot be reduced to less than 100 μm due to its strength. For this reason, gas permeation is limited, and carbon dioxide gas permeation is particularly poor. Furthermore, the silicone rubber has the drawbacks of being expensive and having poor processability. On the other hand, in a porous membrane, the fine pores of the membrane are significantly larger than the gas molecules to be passed through, so that the gas passes through the pores as a volumetric flow. For example, various artificial lungs using porous membranes such as microporous polypropylene membranes have been proposed. For example, polypropylene is spun using a hollow fiber manufacturing nozzle at a spinning temperature of 210~210°C.
After melt spinning at 270℃ and draft ratio of 180 to 600, and then first heat treatment at 155℃ or less,
It has been proposed to produce porous polypropylene hollow fibers by stretching 30 to 200% at a temperature below 150°C, followed by a second heat treatment at a temperature above the first heat treatment temperature and below 155°C (Japanese Patent Publication No. 56-52123). issue). However, in the porous hollow fibers obtained in this way, pores are physically formed by stretching the polypropylene hollow fibers, so the pores are linear pores that are approximately horizontal in the film thickness direction, and Since the pores are generated by cracking in the axial direction of the hollow fiber depending on the degree of stretching, the cross section is approximately square or rectangular. In addition, the pores are continuous and penetrate almost linearly, and the porosity is high. For this reason, the porous hollow fibers have a high permeability to water vapor, and not only do their performance deteriorate due to condensed water, but they also have the disadvantage that plasma leaks when used with blood circulating for a long period of time. OBJECT OF THE INVENTION Therefore, an object of the present invention is to provide a novel hollow fiber membrane. Another object of the present invention is to provide a porous hollow fiber membrane having high gas exchange capacity. Still another object of the present invention is to provide a porous hollow fiber membrane that does not cause plasma outflow during long-term use, has a high gas exchange capacity, and is suitable for use in an artificial lung. These objectives are to provide a hollow fiber membrane made of polyolefin having an almost perfect circular shape with an inner diameter of 150 to 300 μm and a wall thickness of 10 to 150 μm, the inner surface of the hollow fiber membrane exhibiting a relatively dense layer, and the outer surface of the hollow fiber membrane having a relatively dense layer. Average particle size on the side is 0.1-10μm
The hollow fiber membrane has an aggregate shape of independent fine particles, forming fine communicating pores from the inner surface to the outer surface, and the space between the outer surface and the inner surface of the hollow fiber membrane is dense with the distance between the fine particles becoming smaller as it progresses toward the inner surface. This is achieved by a porous hollow fiber membrane characterized by having an anisotropic membrane structure consisting of continuous layers. Furthermore, the present invention is a porous hollow fiber membrane having a porosity of 5 to 60%. In the present invention, the O 2 gas flux is 1.0×10 -5 to 2.0×10 3 ml/min・cm 2・atm,
Preferably 1.0×10 -3 to 1.0×10 3 ml/min・cm 2
It is a hydrophobic porous hollow fiber membrane that is ATM. Also,
In the present invention, the average particle diameter of independent fine particles on the outer surface side is 1 to 1.
It is a porous hollow fiber membrane with a diameter of 7 μm. Furthermore, the present invention is a porous hollow fiber membrane having an inner diameter of 180 to 250 μm and a wall thickness of 20 to 100 μm. The present invention also provides a hydrophobic porous hollow fiber membrane in which the polyolefin is polyethylene or polypropylene, preferably polypropylene. Specific Configuration of the Invention Next, the present invention will be specifically explained with reference to the drawings. That is, FIG. 1 is a schematic drawing of the hollow fiber membrane according to the present invention, and as is clear from the figure, the inner diameter D is 150 to 300 μm, preferably
180 to 250 μm, wall thickness T is 10 to 150 μm, preferably
This is a hollow fiber membrane 1 made of polyolefin and having a substantially perfect circular shape with a diameter of 20 to 100 μm. A relatively dense layer 2 is formed on the inner surface of the hollow fiber membrane 1, while the average particle diameter d is 10 μm or less, preferably 1 to 7 μm on the outer surface.
It exhibits an aggregate-like layer 4 of a large number of fine particles 3 of m, and the fine pores 5 in the dense layer 2 communicate with the fine pores 6 in the fine particle aggregate-like layer 4, so that the inner surface side is moved from the inner surface side to the outer surface side. This is a porous hollow fiber membrane having hydrophobic properties and having communicating pores formed therein. Such a hydrophobic porous hollow fiber membrane is manufactured, for example, as follows. That is, as shown in FIG. 2, a blend 11 of polyolefin and an organic filler is supplied from a hopper 12 to a kneader, for example, a twin-screw extruder 13, and the blend is melt-kneaded and extruded. Thereafter, it is sent to the spinning device 14 and discharged from the annular spinning hole (not shown) of the spinneret device 15 into a gaseous atmosphere, for example, air, and at the same time an inert gas supplied from the line 16 is introduced into the center of the interior. The hollow object 17 thus formed is introduced into a cooling tank 19 containing a cooling solidification liquid 18, and brought into contact with the cooling solidification liquid 18 to be cooled and solidified. In this case, as shown in FIG. 2, the hollow object 17 and the cooled solidified liquid 18 are brought into contact with each other through a cooled solidified liquid distribution pipe 20, which is provided downwardly through the bottom of the cooling tank 19, for example. It is desirable that the cooled and solidified liquid 18 is caused to flow down into the hollow body 17 and brought into cocurrent contact with the hollow body 17 along the flow. The cooled solidified liquid 18 that has flowed down is received and stored in a solidification tank 21, into which the hollow object 17 is introduced,
After the direction is changed by the direction change rod 22 and brought into sufficient contact with the cooling solidification liquid 18 to solidify it, the winding bobbin 23
Wind it up. The accumulated cooled solidified liquid is discharged from the line 24 and circulated to the cooling tank 19 by the pump 25. Note that, as described later, when the cooled and solidified liquid is highly volatile and immiscible with water, such as hydrocarbons and halogenated hydrocarbons, a layer 26 of water or the like is added as an upper layer to prevent evaporation. It may be provided. The hollow material 18 cooled and solidified in this manner is wound onto a bobbin 23, and then cut into predetermined dimensions.
Then, the cut hollow object 18 is immersed in an extraction solution.
A hollow fiber membrane is obtained by extracting and removing the organic filler from the membrane and drying if necessary. Further, by heat-treating the hollow fiber membrane thus obtained, a hollow fiber membrane with even better dimensional stability can be obtained. Polyolefins used as raw materials in the present invention include polypropylene, polyethylene, etc., and their melt index (MI) is 5 to 70.
Those having an MI of 10 to 40 are particularly preferred. Among the polyolefins, polypropylene is particularly preferred. The organic filler must be able to be uniformly dispersed in the polyolefin while the polyolefin is melting, and be easily soluble in the extract as described below. Such fillers include liquid paraffin (number average molecular weight 100~
2000), α-olefin oligomers [e.g., ethylene oligomers (number average molecular weight 100 to 2000), propylene oligomers (number average molecular weight 100 to 2000),
Ethylene-propylene oligomer (number average molecular weight
100-2000), paraffin wax (number average molecular weight 200-2500), various hydrocarbons, etc., and liquid paraffin is preferred. The blending ratio of the polyolefin and the organic filler is 35 to 150 parts by weight, preferably 50 to 100 parts by weight, per 100 parts by weight of the polyolefin. In other words, if the organic filler is less than 35 parts by weight, a porous hollow fiber membrane with sufficient gas permeability cannot be obtained, whereas if it exceeds 150 parts by weight, the viscosity becomes too low and it is difficult to form the membrane into a hollow shape. This is because the quality decreases. Such raw material formulations are prepared (designed) by a pre-kneading method in which a mixture of a predetermined composition is melt-kneaded using an extruder such as a twin-screw extruder, extruded, and then pelletized. The raw material mixture prepared in this way is further processed using an extruder such as a twin-screw extruder to
℃, preferably at a temperature of 180 to 220℃, and discharged into the gas atmosphere from the annular hole of the spinning device, and at the same time, an inert gas such as nitrogen, carbon dioxide, helium, argon, air, etc. is added to the center of the spinning device. A hollow object is formed by introducing gas, and this hollow object is allowed to fall and is then brought into contact with the cooled solidified liquid in the cooling tank. This falling distance is preferably 5 to 1000 mm, particularly preferably 10 to 500 mm. That is, if the falling distance is less than 5 mm, pulsation may occur and the hollow object may be crushed when it enters the cooled and solidified liquid. The hollow object has not yet solidified sufficiently in this cooling tank, and since the central part is filled with inert gas, it is easily deformed by external force. The cooled solidified liquid 18 is allowed to flow down into a cooled solidified liquid distribution pipe 20 provided downwardly through the bottom of the cooling solidified liquid 18,
By bringing the hollow objects into co-current contact with the flow, the hollow objects can be forcibly moved downward and deformation of the hollow objects due to external forces (such as fluid pressure) can be prevented. At this time, the flow rate of the cooled and solidified liquid is sufficient under natural flow. Further, the cooling temperature at this time is 10 to 60°C, preferably 20 to 50°C. That is, if the temperature is less than 10°C, the cooling solidification rate is too fast and most of the thick wall portion becomes a dense layer, resulting in a low gas exchange ability. On the other hand, if the temperature exceeds 60°C, the crystallization rate of the polyolefin will slow down, the particle size of the fine particles on the outer surface will become too large, and the microscopic pores will not only become too large, but also the dense layer will become extremely thin or even worse. This is because it disappears completely at high temperatures, which may cause clogging or plasma outflow when used in an artificial lung, for example. However, even with such a film,
The inner side or the outer side can be used as a hollow fiber membrane in plasma separation by a hydrophilic treatment (for example, alcohol treatment). As the cooling solidification liquid, any liquid can be used as long as it does not dissolve the polyolefin, has a relatively high boiling point, and can dissolve the organic filler.
Examples include alcohols such as methanol, ethanol, propanols, butanols, hexanols, octanols, and lauryl alcohol; liquid fatty acids such as oleic acid, palmitic acid, myristic acid, and stearic acid; and alkyl esters thereof. (e.g. esters such as methyl, ethyl, isopropyl, butyl), octane, nonane, decane, kerosene, light oil, liquid hydrocarbons such as toluene, xylene, methylnaphthalene, 1,1,2-trichloro-1,2 , 2-trifluoroethane, trichlorofluoromethane,
There are halogenated hydrocarbons such as dichlorofluoromethane and 1,1,2,2-tetrachloro-1,2-difluoroethane, especially chlorofluorinated hydrocarbons, among which, as described below, the organic filler Particularly preferred are those that can dissolve the agent, such as halogenated hydrocarbons. In other words, when halogenated hydrocarbons are used, not only is the organic filler extracted to some extent while the hollow material is solidified in the solidification tank, but also the extraction liquid used in the subsequent extraction process is If the same material is used, there is no need to wash and remove the cooled and solidified liquid, and there is no risk of contaminating the extract. Furthermore, if halogenated hydrocarbons are used, there is no risk of fire. Among these halogenated hydrocarbons, chlorofluorinated hydrocarbons are particularly preferred because they are safe for the human body. The cooled solidified liquid flowing through the cooled solidified liquid distribution pipe is received and stored in a solidification tank provided at the bottom, and the hollow object is completely solidified by passing through the cooled solidified liquid in this solidification tank. The solidified hollow material is then rolled up. The rolled hollow object has a predetermined dimension, e.g.
After being cut into ~50cm pieces, it was placed in the extract solution at 0~50℃.
A hollow fiber membrane is obtained by immersing the membrane preferably at a temperature of 20 to 40°C for 1 to 30 minutes, preferably 3 to 20 minutes. In this case, so-called constant length extraction is most preferable, in which the length is kept constant throughout the extraction process. Any extract can be used as long as it does not dissolve the polyolefin constituting the hollow fiber membrane and can dissolve and extract the organic filler. For example, hydrocarbons, 1,1,2-trichloro-1,2,2-trifluoroethane, trichlorofluoromethane, dichlorofluoromethane,
There are halogenated hydrocarbons such as 1,1,2,2-tetrachloro-1,2-difluoroethane,
Among these, halogenated hydrocarbons are preferred from the viewpoint of extraction ability for organic fillers, and chlorofluorocarbons are particularly preferred from the viewpoint of safety to the human body. The hollow fiber membrane thus obtained is further subjected to heat treatment if necessary. Heat treatment is performed at 50 to 160℃ in a gaseous atmosphere such as air, nitrogen, or carbon dioxide.
It is preferably carried out at a temperature of 70 to 140°C for 1 to 120 minutes, preferably 2 to 60 minutes. This heat treatment stabilizes the structure of the hollow fiber membrane and increases its dimensional stability. Further, in this case, stretching may be performed before or during the heat treatment. The hollow fiber membrane obtained in this way has an inner diameter of
150-300μm, preferably 180-250μm, wall thickness
It has a perfect circular shape of 10 to 150 μm, preferably 20 to 100 μm. The cross-sectional structure changes depending on the manufacturing conditions of the hollow fiber membrane, but as mentioned above, by using a liquid that can dissolve organic fillers such as alcohols and halogenated hydrocarbons as a cooling solidification liquid, the magnification can be increased. As is clear from Figures 3 to 6, which are 1000x scanning electron micrographs, polyolefin fine particles are formed independently from the inner surface to the outer surface, with a dense layer near the inner surface. The result is a porous layer near the outer surface. This cross-sectional structure varies depending on the temperature of the cooled and solidified liquid, and as the temperature increases, the formation of fine particles of polyolefin progresses toward the inner surface. However, in either case, the fine particles near the interior are dense, whereas the fine particles near the outer surface form an aggregate that exists independently. Therefore, the temperature of the cooled and solidified liquid is -1 to 0°C in the case of Fig. 3, 8°C in the case of Fig. 4, 17 to 20°C in the case of Fig. 5, and 24 to 0°C in the case of Fig. 6. It is 27℃. Figures 7 to 10 are scanning electron micrographs of the inner surface at a magnification of 3,000 times, and the inner surface has a hexagonal shape in which polyolefin particles are partially fused, and the surface is relatively smooth. . Note that the temperature of the cooled and solidified liquid is
-1 to 0℃ in the case of figure 8, 8℃ in case of figure 9, 17 to 20℃ in case of figure 9, 24 to 27 in case of figure 10
It is ℃. On the other hand, Figures 11 to 14 are scanning electron micrographs of the outer surface at a magnification of 3000 times, showing that the outer surface has polyolefin fine particles formed independently, with many gaps between the fine particles. There is. Note that the temperature of the cooled solidified liquid is -1 in the case of Fig. 11.
-0°C, 8°C in the case of Fig. 12, 17 - 20°C in the case of Fig. 13, and 24 - 27°C in the case of Fig. 14.
The average particle size of the polyolefin fine particles formed on the outer surface in this way is 0.1 to 10 μm, preferably 1 to 7 μm, and the degree of distribution of these fine particles varies depending on the hollow fiber membrane manufacturing conditions. Membrane structures with different sizes and ratios of micropores between the membranes can be obtained. Also, the draft ratio is 20-1000,
Preferably it is 50 to 500, and the gas flux is 1.0×10 -5 to 2.0×10 3 ml/min・cm 2・atm, preferably 1.0×10 −3 to 1.0×10 3 ml/min・cm 2・atm
It is. Next, the present invention will be explained in more detail by giving examples. Examples 1 to 8 40 wt.
-30-25), extruded and pelletized. The pellets were processed using a twin-screw extruder (Ikegai Iron Works Co., Ltd.) using the device shown in Figure 2.
PCM-30-25) 13 is melted at 200-210℃, core diameter 1.0mm, inner diameter 2.9mm, outer diameter 3.7mm, land length.
The molten hollow material 17 was discharged into the air at a rate of 14.8 g/min from the 15.0 mm annular spinning hole 15, and nitrogen gas was introduced into the center of the interior at a rate of 8.5 ml/min to cause the molten hollow material 17 to fall. 1,1,2-trichloro-1,2,2 in the cooling tank 19 at a falling distance of 355 mm.
- After contacting with trifluoroethane (hereinafter referred to as Freon 113), the cooling solidified liquid distribution pipe 20
It was cooled by bringing it into co-current contact with Furion 113 flowing down inside. At this time, the liquid temperature of Furion 113 is the first
It was as shown in the table. Next, the hollow object 17 is introduced into the Freon 113 in the solidification tank 18, and then the direction is changed by the change-of-direction rod 22, and the object is run almost horizontally for about 3 m to completely solidify it, and then the bobbin 2
3. The winding speed and draft ratio at this time were as shown in Table 1. After cutting the hollow material wound on a bobbin to a length of 30 cm, it was immersed in Freon 113 at a liquid temperature of 23°C twice for 5 minutes to perform constant length extraction, and then placed in air at 140°C for 20 minutes.
After heat treatment for 1 minute, a hollow fiber membrane having the properties shown in Table 1 was obtained. Examples 9 to 14 In the same manner as in Example 1, hydrogenated poly-α-olefin type synthetic extraction (number average molecular weight 480) was used instead of liquid paraffin, and spinning was carried out under the conditions shown in Table 1. When the same method was carried out except for Natsuta, the results shown in Table 1 were obtained. Examples 15 to 16 and Comparative Example 1 Hollow fiber membranes were produced in the same manner as in Example 1 by changing the amount of liquid paraffin charged and the spinning conditions as shown in Table 2, and the results shown in Table 2 were obtained. Obtained. Comparative Example 2 The same tests as in Examples 15 to 17 were conducted on commercially available polypropylene hollow fiber membranes for artificial lungs, and the results shown in Table 2 were obtained. Comparative Example 3 A hollow fiber membrane was produced in the same manner as in Example 15, except that water was used as the cooling solidification liquid, and the results shown in Table 2 were obtained.

【表】【table】

【表】【table】

【表】 発明の具体的効果 以上述べたように、本発明は、内径が150〜
300μm、肉厚が10〜150μmのほぼ真円形状のポ
リオレフイン製中空糸膜であつて、該中空糸膜の
内面側は比較的緻密な層を呈し、外面側は平均粒
径0.1〜10μmの独立微粒子の集合体状層を呈して
前記内面側より外面側まで微細な連通孔を形成
し、かつ該中空糸膜の前記内面側と前記外面側は
内面側にすすむにつれて微粒子間〓が小さい緻密
な層を呈する連続してなる異方性膜構造を有する
ことを特徴とする疎水性多孔質中空糸膜であるか
ら、前記微細連通孔は膜厚方向に直線的に貫通し
たのではなく、外表面から内部に向かつて前記微
粒子間に形成されかつ互いにつながつた多数の微
小空孔からなつているため、均一性が非常に高
い。このため、前記中空糸膜を、例えば人工肺に
使用した場合、長期間使用しても血漿流出がなく
かつ高いガス交換能を有している。 また、空孔率30〜60%である場合には、血漿流
出阻止能およびガス交換能が大である。したがつ
て、該中空糸膜は人工肺用膜として極めて有用で
ある。
[Table] Specific effects of the invention As stated above, the present invention has an inner diameter of 150~
It is a hollow fiber membrane made of polyolefin having an almost perfect circular shape with a diameter of 300 μm and a wall thickness of 10 to 150 μm.The inner surface of the hollow fiber membrane has a relatively dense layer, and the outer surface has independent layers with an average particle size of 0.1 to 10 μm. The hollow fiber membrane exhibits an aggregate-like layer of fine particles, forming fine communicating pores from the inner surface to the outer surface, and the inner surface and the outer surface of the hollow fiber membrane have a dense layer in which the distance between the particles becomes smaller as the membrane progresses toward the inner surface. Since this is a hydrophobic porous hollow fiber membrane characterized by having an anisotropic membrane structure consisting of continuous layers, the microscopic communication pores do not penetrate linearly in the membrane thickness direction, but extend through the outer surface. Since it is composed of a large number of micropores that are formed between the particles and are connected to each other from the inside toward the inside, the uniformity is very high. Therefore, when the hollow fiber membrane is used, for example, in an oxygenator, there is no plasma outflow even after long-term use, and it has a high gas exchange capacity. Further, when the porosity is 30 to 60%, the plasma outflow prevention ability and gas exchange ability are high. Therefore, the hollow fiber membrane is extremely useful as a membrane for oxygenator lungs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による疎水性多孔質中空糸膜の
膜式的断面図、第2図は本発明による中空糸膜の
製造に使用する装置の概略断面図であり、また第
3〜14図は本発明による中空糸膜の組織を表わ
す電子顕微鏡写真である。 1…中空糸膜、2…緻密層、3…微粒子、4…
微粒子集合体状層、5,6…微細孔、11…原料
ペレツト、12…ホツパー、13…抽出機、14
…紡糸装置、15…口金装置、16…不活性ガス
供給ライン、17…中空状物、18…冷却固化
液、19…冷却槽、20…冷却固化液流通管、2
1…固化槽、22…変向棒、23…ボビン、24
…冷却固化液循環ライン、25…循環ポンプ、2
6…蒸発紡糸水槽。
FIG. 1 is a cross-sectional view of the hydrophobic porous hollow fiber membrane according to the present invention, FIG. 2 is a schematic cross-sectional view of the apparatus used for manufacturing the hollow fiber membrane according to the present invention, and FIGS. is an electron micrograph showing the structure of the hollow fiber membrane according to the present invention. 1...Hollow fiber membrane, 2...Dense layer, 3...Fine particles, 4...
Fine particle aggregate layer, 5, 6... Micropore, 11... Raw material pellet, 12... Hopper, 13... Extractor, 14
... Spinning device, 15... Spinneret device, 16... Inert gas supply line, 17... Hollow object, 18... Cooled solidified liquid, 19... Cooling tank, 20... Cooled solidified liquid distribution pipe, 2
1... Solidification tank, 22... Direction changing rod, 23... Bobbin, 24
...Cooled solidified liquid circulation line, 25...Circulation pump, 2
6...Evaporation spinning water tank.

Claims (1)

【特許請求の範囲】 1 内径が150〜300μm、肉厚が10〜150μmのほ
ぼ真円形状のポリオレフイン製中空糸膜であつ
て、該中空糸膜の内面側は比較的緻密な層を呈
し、外面側は平均粒径0.1〜10μmの独立微粒子の
集合体状層を呈して前記内面側より外面側まで微
細な連通孔を形成し、かつ該中空糸膜の前記内面
側と前記外面側間は内面側にすすむにつれて微粒
子間〓が小さい緻密な層を呈する連続してなる異
方性膜構造を有することを特徴とする多孔質中空
糸膜。 2 空孔率が5〜60%である特許請求の範囲第1
項に記載の多孔質糸膜。 3 O2ガスフラツクスが1.0×10-5〜2.0×103ml/
min・cm2・atmである特許請求の範囲第1項また
は第2項に記載の多孔質中空糸膜。 4 O2ガスフラツクスが1.0×10-3〜1.0×103ml/
min・cm2・atmである特許請求の範囲第1項また
は第2項に記載の多孔質中空糸膜。 5 外面側の独立微粒子の平均粒径が1〜7μm
である特許請求の範囲第1項ないし第4項のいず
れか一つに記載の多孔質中空糸膜。 6 内径が180〜250μm、肉厚が20〜100μmであ
る特許請求の範囲第1項ないし第5項のいずれか
一つに記載の多孔質中空糸膜。 7 ポリオレフインがポリエチレンである特許請
求の範囲第1項ないし第5項のいずれか一つに記
載の多孔質中空糸膜。 8 ポリオレフインがポリプロピレンである特許
請求の範囲第1項ないし第6項のいずれか一つに
記載の多孔質中空糸膜。
[Scope of Claims] 1. A polyolefin hollow fiber membrane having an almost perfect circular shape with an inner diameter of 150 to 300 μm and a wall thickness of 10 to 150 μm, the inner surface of the hollow fiber membrane exhibiting a relatively dense layer, The outer surface side exhibits an aggregate-like layer of independent fine particles with an average particle size of 0.1 to 10 μm, and fine communicating pores are formed from the inner surface side to the outer surface side, and the space between the inner surface side and the outer surface side of the hollow fiber membrane is 1. A porous hollow fiber membrane characterized by having a continuous anisotropic membrane structure exhibiting a dense layer with smaller interparticles as it progresses toward the inner surface. 2 Claim 1 in which the porosity is 5 to 60%
The porous thread membrane described in . 3 O2 gas flux is 1.0×10 -5 to 2.0×10 3 ml/
The porous hollow fiber membrane according to claim 1 or 2, which has a particle size of min·cm 2 ·atm. 4 O2 gas flux is 1.0×10 -3 to 1.0×10 3 ml/
The porous hollow fiber membrane according to claim 1 or 2, which has a particle size of min·cm 2 ·atm. 5 The average particle size of independent fine particles on the outer surface side is 1 to 7 μm
A porous hollow fiber membrane according to any one of claims 1 to 4. 6. The porous hollow fiber membrane according to any one of claims 1 to 5, having an inner diameter of 180 to 250 μm and a wall thickness of 20 to 100 μm. 7. The porous hollow fiber membrane according to any one of claims 1 to 5, wherein the polyolefin is polyethylene. 8. The porous hollow fiber membrane according to any one of claims 1 to 6, wherein the polyolefin is polypropylene.
JP21046584A 1984-10-09 1984-10-09 Hollow yarn membrane Granted JPS6190704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21046584A JPS6190704A (en) 1984-10-09 1984-10-09 Hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21046584A JPS6190704A (en) 1984-10-09 1984-10-09 Hollow yarn membrane

Publications (2)

Publication Number Publication Date
JPS6190704A JPS6190704A (en) 1986-05-08
JPH0439371B2 true JPH0439371B2 (en) 1992-06-29

Family

ID=16589781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21046584A Granted JPS6190704A (en) 1984-10-09 1984-10-09 Hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPS6190704A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775984B2 (en) * 1999-09-21 2011-09-21 旭化成ケミカルズ株式会社 Method for melting and forming hollow fiber porous membrane
JP4605840B2 (en) * 1999-09-21 2011-01-05 旭化成ケミカルズ株式会社 Method for forming hollow fiber porous membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
JPS5749467A (en) * 1980-07-15 1982-03-23 Akzo Nv Manufacture of porous hollow fiber-shaped thin membrane for carrying out blood plasma
JPS5998707A (en) * 1982-09-30 1984-06-07 エクストラコ−ポリアル・メデイカル・スペシヤルテイ−ズ・インコ−ポレイテツド Semipermeable membrane composition and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560537A (en) * 1978-10-30 1980-05-07 Teijin Ltd Preparation of porous membrane
JPS5749467A (en) * 1980-07-15 1982-03-23 Akzo Nv Manufacture of porous hollow fiber-shaped thin membrane for carrying out blood plasma
JPS5998707A (en) * 1982-09-30 1984-06-07 エクストラコ−ポリアル・メデイカル・スペシヤルテイ−ズ・インコ−ポレイテツド Semipermeable membrane composition and production thereof

Also Published As

Publication number Publication date
JPS6190704A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
JPH0513687B2 (en)
US5102590A (en) Process for hollow fiber membrane for artificial lung
AU748844B2 (en) Integrally asymmetrical polyolefin membrane
US6074718A (en) Self supporting hollow fiber membrane and method of construction
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
JPS61268615A (en) Medicinal composition
US5250240A (en) Process for the preparation of porous polyolefin separation membranes via thermally-induced phase separation
JP2009279585A (en) Hollow fiber porous membrane from perfluorinated thermoplastic polymer
US4900444A (en) A porous membrane for blood components and method for manufacturing thereof
JP2002535131A (en) Skinned hollow fiber membrane and method for producing the same
JPS6134736B2 (en)
JPH0439371B2 (en)
JPH0235918A (en) Polypropylene porous hollow yarn membrane and its manufacture
JPH0439370B2 (en)
JPH10296839A (en) Manufacture of polyolefin porous film
US11766640B2 (en) Method for preparing block copolymer hollow fiber membrane by melt spinning-stretching and selective swelling
JPH0563212B2 (en)
JP2932189B2 (en) Porous hollow fiber membrane and hollow fiber membrane oxygenator
JPH02174921A (en) Porous membrane and its production
JPH05220361A (en) Production of porous polysulfone hollow-fiber membrane
JPH0523816B2 (en)
JPH0563211B2 (en)
JPH10298340A (en) Production of microporous polyolefin membrane
JPH0371168B2 (en)
JPH0521617B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees