JPH04367277A - Thin film transistor and manufacture thereof - Google Patents

Thin film transistor and manufacture thereof

Info

Publication number
JPH04367277A
JPH04367277A JP16899891A JP16899891A JPH04367277A JP H04367277 A JPH04367277 A JP H04367277A JP 16899891 A JP16899891 A JP 16899891A JP 16899891 A JP16899891 A JP 16899891A JP H04367277 A JPH04367277 A JP H04367277A
Authority
JP
Japan
Prior art keywords
film
type
amorphous silicon
silicon nitride
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16899891A
Other languages
Japanese (ja)
Inventor
Osamu Sukegawa
統 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16899891A priority Critical patent/JPH04367277A/en
Publication of JPH04367277A publication Critical patent/JPH04367277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To restrain the electronic conduction in amorphous silicon interface for reducing the off-current by a method wherein, in an inverse stagger structured amorphous thin film transistor, the amorphous silicon interface on the opposite side to that of a gate electrode is converted to p type. CONSTITUTION:A gate electrode 1, a silicon nitride film (gate insulating film) 3, an a-Si film 4, an n<+> type a-Si film 5, a drain electrode 6 and a source electrode 7 are formed on a glass substrate 1 and then the n<+> type a-Si film 5 is etched away using the drain electrode 6 and the source electrode 7 as masks to expose the surface of the a-Si film 4. Next, in order to perform the formation step by plasma CVD process, the plasma gas is mixed with B2H6 to deposit a B doped silicon nitride film 8. Finally, a p type conversion layer 9 is formed on the surface of the a-Si film 4 by proper annealing step.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、薄膜トランジスタおよ
びその製造方法に関し、特にアモルファスシリコンを活
性層とする逆スタガ型の薄膜トランジスタとその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor and a method for manufacturing the same, and more particularly to an inverted staggered thin film transistor having an active layer of amorphous silicon and a method for manufacturing the same.

【0002】0002

【従来の技術】従来のアモルファスシリコン薄膜トラン
ジスタの製造方法を図4を参照して説明する。ガラス基
板1上にクロムを膜厚140nmに成膜し、パターニン
グすることによりゲート電極2を形成する。次に、ゲー
ト絶縁膜となる窒化シリコン膜3を膜厚400nmに、
動作層となるノンドープアモルファスシリコン膜(以下
、a−Si膜と記す)4を膜厚300nmに、オーミッ
クコンタクトを得るためのリン(P)ドープアモルファ
スシリコン膜(以下、n+型a−Si膜と記す)5を膜
厚50nmにそれぞれプラズマCVD法により成膜し、
素子部以外のアモルファスシリコンを除去する。
2. Description of the Related Art A conventional method for manufacturing an amorphous silicon thin film transistor will be described with reference to FIG. A gate electrode 2 is formed by forming a chromium film to a thickness of 140 nm on a glass substrate 1 and patterning it. Next, a silicon nitride film 3 that will become a gate insulating film is formed to a thickness of 400 nm.
A non-doped amorphous silicon film (hereinafter referred to as an a-Si film) 4 serving as an active layer has a thickness of 300 nm, and a phosphorus (P) doped amorphous silicon film (hereinafter referred to as an n+ type a-Si film) for obtaining ohmic contact is used. ) 5 to a film thickness of 50 nm by plasma CVD method,
Amorphous silicon other than the element portion is removed.

【0003】その後、膜厚200nmにクロム膜を成膜
し、これをパターニングすることにより、ドレイン電極
6、ソース電極7を形成する。次に、ドレイン電極6、
ソース電極7間のn+ 型a−Siをエッチング除去す
ることにより、両電極の分離を行う。
Thereafter, a chromium film is formed to a thickness of 200 nm and patterned to form a drain electrode 6 and a source electrode 7. Next, the drain electrode 6,
By etching away the n+ type a-Si between the source electrodes 7, the two electrodes are separated.

【0004】次に、ドレイン電極6、ソース電極7間の
、エッチングにより露出したa−Si4の表面、即ち、
バックチャネル部を不動態化するために、プラズマCV
D法により全面に窒化シリコン膜11を形成する。
Next, the surface of the a-Si4 exposed by etching between the drain electrode 6 and source electrode 7, ie,
Plasma CV to passivate the back channel part
A silicon nitride film 11 is formed on the entire surface by method D.

【0005】この薄膜トランジスタでは、ドレイン電極
6とソース電極7に対するコンタクト領域としてn+ 
型a−Siを用いているため、電流は電子の伝導による
ものであり、正孔はコンタクト部でブロックされ、チャ
ネル部には注入されない。
[0005] In this thin film transistor, n +
Since type a-Si is used, current is caused by electron conduction, and holes are blocked at the contact portion and are not injected into the channel portion.

【0006】[0006]

【発明が解決しようとする課題】この従来のアモルファ
スシリコン薄膜トランジスタでは、動作層のa−Siが
弱いn型半導体であるため、保護膜となる窒化シリコン
中または保護膜上部に正の電荷が存在すると、バックチ
ャネル界面に電子が誘起され、ここがより電子濃度の高
いn型に変換される。このためトランジスタのオフ状態
においてもバックチャネル部に電流が流れ、リーク不良
となる。
[Problems to be Solved by the Invention] In this conventional amorphous silicon thin film transistor, since the a-Si in the active layer is a weak n-type semiconductor, if positive charges exist in the silicon nitride that serves as the protective film or on the upper part of the protective film, , electrons are induced at the back channel interface, which is converted to n-type with higher electron concentration. Therefore, even when the transistor is in the off state, current flows through the back channel portion, resulting in a leakage defect.

【0007】[0007]

【課題を解決するための手段】本発明の薄膜トランジス
タは、ゲート電極上にゲート絶縁膜を介してアモルファ
スシリコン層が形成され、該アモルファスシリコン層上
に絶縁性保護膜が形成されたものであって、前記絶縁性
保護膜にはIII 族元素がドープされかつ該絶縁性保
護膜下のアモルファスシリコン層の表面がp型化されて
いることを特徴としている。
[Means for Solving the Problems] A thin film transistor of the present invention includes an amorphous silicon layer formed on a gate electrode via a gate insulating film, and an insulating protective film formed on the amorphous silicon layer. , the insulating protective film is doped with a group III element, and the surface of the amorphous silicon layer under the insulating protective film is p-type.

【0008】また、その製造方法は、絶縁性基板上にゲ
ート電極を形成する工程と、前記ゲート電極を覆うゲー
ト絶縁膜を形成する工程と、前記ゲート絶縁膜上に活性
層となるアモルファスシリコン層を形成する工程と、I
II 族元素が含まれるプラズマガスにより前記アモル
ファスシリコン層上に絶縁膜を成膜する工程と、熱処理
を行って前記アモルファスシリコン層の表面をp型化す
る工程と、を含んでいる。
The manufacturing method also includes a step of forming a gate electrode on an insulating substrate, a step of forming a gate insulating film covering the gate electrode, and a step of forming an amorphous silicon layer as an active layer on the gate insulating film. a step of forming I
The method includes a step of forming an insulating film on the amorphous silicon layer using a plasma gas containing a group II element, and a step of performing heat treatment to make the surface of the amorphous silicon layer p-type.

【0009】[0009]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は、本発明の第1の実施例を示す断面
図である。同図において、1はガラス基板、2はクロム
からなるゲート電極、3はゲート絶縁膜となる窒化シリ
コン膜、4はa−Si膜、5はn+ 型a−Si膜、6
、7はそれぞれドレイン電極とソース電極、8は保護膜
となるB(ボロン)ドープ窒化シリコン膜、9はa−S
i膜4の表面に形成されたp型変換層である。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a first embodiment of the present invention. In the figure, 1 is a glass substrate, 2 is a gate electrode made of chromium, 3 is a silicon nitride film serving as a gate insulating film, 4 is an a-Si film, 5 is an n+ type a-Si film, 6
, 7 is a drain electrode and a source electrode, 8 is a B (boron) doped silicon nitride film serving as a protective film, and 9 is an a-S
This is a p-type conversion layer formed on the surface of the i-film 4.

【0010】次に、本実施例の製造方法について説明す
る。ドレイン電極6、ソース電極7をマスクにn+ 型
a−Si膜5をエッチング除去してa−Si膜4の表面
を露出させる迄の工程は従来通りであるのでその説明は
省略する。
Next, the manufacturing method of this embodiment will be explained. The steps up to etching and removing the n+ type a-Si film 5 using the drain electrode 6 and source electrode 7 as masks to expose the surface of the a-Si film 4 are the same as in the prior art, and therefore their explanation will be omitted.

【0011】ドレイン電極6−ソース電極7間のa−S
i膜4の表面を露出させた後、バックチャネル保護膜と
してBドープ窒化シリコン膜8を膜厚4000Åにプラ
ズマCVD法により成長させる。
A-S between drain electrode 6 and source electrode 7
After exposing the surface of the i-film 4, a B-doped silicon nitride film 8 is grown as a back channel protective film to a thickness of 4000 Å by plasma CVD.

【0012】窒化シリコン膜の代表的な成長条件は、シ
ラン(SiH4 ):アンモニア(NH3 ):窒素(
N2 )=1:2:20の流量比、圧力=100Pa、
温度=250℃、パワー密度=0.1W/cm2 であ
るが、本実施例では、これにジボラン(B2 H6 )
を流量比で10−3程度混合させてBドープ窒化シリコ
ン膜を成膜した。
Typical growth conditions for a silicon nitride film are silane (SiH4): ammonia (NH3): nitrogen (
N2) = 1:2:20 flow rate ratio, pressure = 100 Pa,
Temperature = 250°C, power density = 0.1 W/cm2, but in this example, diborane (B2 H6)
A B-doped silicon nitride film was formed by mixing them at a flow rate ratio of about 10-3.

【0013】図2は、窒化シリコン膜のBドーピング特
性を導電率で示したものである(Munekata e
t.al,Proc. 3rd Photovolta
ic Science and Engineerin
g May,1982)。同図に示されるように、10
−3程度B2 H6 を混合することにより、窒化シリ
コン膜の導電率は低下し、絶縁膜としての機能は強化さ
れる。
FIG. 2 shows the B doping characteristics of the silicon nitride film in terms of conductivity (Munekata et al.
t. al, Proc. 3rd Photovolta
ic Science and Engineering
g May, 1982). As shown in the figure, 10
By mixing approximately -3 B2 H6, the electrical conductivity of the silicon nitride film is reduced and its function as an insulating film is strengthened.

【0014】Bドープ窒化シリコン膜8を成膜した後、
250〜300℃でアニール処理を行うとBがa−Si
膜4中に拡散し、バックチャネル界面はp型に変換され
る。結晶Siでの不純物拡散は、〜1000℃程度の高
温処理で達成されるが、アモルファスシリコンの場合は
膜の構造的な不均一性のため、比較的低温で元素の移動
がおこり、上述したアニール処理によってa−Siのp
型変換が可能である。
After forming the B-doped silicon nitride film 8,
When annealing is performed at 250 to 300°C, B changes to a-Si.
It diffuses into the membrane 4 and the back channel interface is converted to p-type. Impurity diffusion in crystalline Si is achieved by high-temperature treatment at ~1000°C, but in the case of amorphous silicon, element migration occurs at relatively low temperatures due to the structural non-uniformity of the film, and the above-mentioned annealing process p of a-Si by treatment
Type conversion is possible.

【0015】図3は本発明の第2の実施例の断面図であ
る。この実施例を作成するには、a−Si膜4を成膜し
た後にBドープ窒化シリコン8を成膜し、バックチャネ
ル保護を行う。この後、バックチャネル部以外のBドー
プ窒化シリコン8および素子部以外のa−Si膜4を除
去する。
FIG. 3 is a cross-sectional view of a second embodiment of the invention. To create this embodiment, after forming the a-Si film 4, B-doped silicon nitride 8 is formed to protect the back channel. Thereafter, the B-doped silicon nitride 8 other than the back channel portion and the a-Si film 4 other than the element portion are removed.

【0016】次に、n+ 型a−Si膜5を成膜し、こ
れをパターニングした後、クロム膜の成膜とそのパター
ニングによってドレイン電極6、ソース電極7を形成し
、さらに保護膜としての窒化シリコン膜10を形成する
Next, after forming an n+ type a-Si film 5 and patterning it, a chromium film is formed and patterned to form a drain electrode 6 and a source electrode 7, and a nitride film is further formed as a protective film. A silicon film 10 is formed.

【0017】この実施例においては、a−Si膜4の形
成直後にバックチャネル保護膜となるBドープ窒化シリ
コン膜8を形成するため、a−Si膜4と窒化シリコン
膜8の界面は、エッチング等のダメージ汚染を受ける履
歴を経ない。そのため、この実施例ではバックチャネル
のp型変換の効果が安定して得られる。
In this embodiment, since the B-doped silicon nitride film 8 serving as a back channel protective film is formed immediately after the formation of the a-Si film 4, the interface between the a-Si film 4 and the silicon nitride film 8 is etched. No history of damage or contamination. Therefore, in this embodiment, the effect of back channel p-type conversion can be stably obtained.

【0018】なお、窒化シリコン膜8の成膜工程におい
て、ガスにB2 H6 を混合するのは必ずしも全成膜
工程に渡る必要はなく、成膜工程の初期の段階だけであ
ってもよい。
In the process of forming the silicon nitride film 8, it is not necessary to mix B2 H6 into the gas during the entire film forming process, but may be done only at the initial stage of the film forming process.

【0019】[0019]

【発明の効果】以上説明したように、本発明は、100
0ppm程度にBを含んだ窒化シリコン膜を薄膜トラン
ジスタのバックチャネル部の保護膜として用い、バック
チャネル界面を弱いp型としたものであるので、本発明
によれば、バックチャネルのn型変換のしきい値を増加
させ、オフ時のリーク電流を低減させることができる。
Effects of the Invention As explained above, the present invention provides 100
According to the present invention, a silicon nitride film containing approximately 0 ppm of B is used as a protective film for the back channel portion of a thin film transistor, and the back channel interface is made into a weak p-type. It is possible to increase the threshold value and reduce leakage current during off-time.

【0020】また、バックチャネル界面のp型化は、プ
ラズマCVD法による成膜とアニール処理によって達成
するものであるので、特別な工程の追加を伴うことなく
p型化を実現できる。またBのドーピングがプラズマC
VD装置を用いて行われるものであるため、広い面積に
渡って均等なドーピングを行うことができる。
Furthermore, since the back channel interface is made to be p-type by forming a film by plasma CVD and annealing, it is possible to make the back-channel interface p-type without adding any special process. Also, B doping is plasma C
Since it is performed using a VD device, uniform doping can be performed over a wide area.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の第1の実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】  窒化シリコン成膜時のガス混合比と導電率
の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between gas mixture ratio and conductivity during silicon nitride film formation.

【図3】  本発明の第2の実施例を示す断面図。FIG. 3 is a sectional view showing a second embodiment of the present invention.

【図4】  従来例の断面図。FIG. 4 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1…ガラス基板、    2…ゲート電極、    3
…窒化シリコン膜、    4…ノンドープアモルファ
スシリコン膜(a−Si膜)、    5…Pドープア
モルファスシリコン膜(n+ 型a−Si膜)、   
 6…ドレイン電極、    7…ソース電極、   
 8…Bドープ窒化シリコン膜、    9…p型変換
層、    10、11…窒化シリコン膜。
1... Glass substrate, 2... Gate electrode, 3
...silicon nitride film, 4...non-doped amorphous silicon film (a-Si film), 5...P-doped amorphous silicon film (n+ type a-Si film),
6...Drain electrode, 7...Source electrode,
8... B-doped silicon nitride film, 9... p-type conversion layer, 10, 11... silicon nitride film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ゲート電極上にゲート絶縁膜を介して
アモルファスシリコン層が形成され、該アモルファスシ
リコン層上に絶縁性保護膜が形成されている薄膜トラン
ジスタにおいて、前記絶縁性保護膜にはIII 族元素
がドープされかつ該絶縁性保護膜下の前記アモルファス
シリコン層の表面はp型化されていることを特徴とする
薄膜トランジスタ。
1. A thin film transistor in which an amorphous silicon layer is formed on a gate electrode via a gate insulating film, and an insulating protective film is formed on the amorphous silicon layer, the insulating protective film containing a group III element. A thin film transistor characterized in that the surface of the amorphous silicon layer under the insulating protective film is doped with p-type.
【請求項2】  絶縁性基板上にゲート電極を形成する
工程と、前記ゲート電極を覆うゲート絶縁膜を形成する
工程と、前記ゲート絶縁膜上に活性層となるアモルファ
スシリコン層を形成する工程と、III 族元素が含ま
れるプラズマガスにより前記アモルファスシリコン層上
に絶縁膜を成膜する工程と、熱処理を行って前記アモル
ファスシリコン層の表面をp型化する工程と、を含む薄
膜トランジスタの製造方法。
2. A step of forming a gate electrode on an insulating substrate, a step of forming a gate insulating film covering the gate electrode, and a step of forming an amorphous silicon layer serving as an active layer on the gate insulating film. , a method for manufacturing a thin film transistor, comprising the steps of: forming an insulating film on the amorphous silicon layer using a plasma gas containing a Group III element; and performing heat treatment to make the surface of the amorphous silicon layer p-type.
JP16899891A 1991-06-14 1991-06-14 Thin film transistor and manufacture thereof Pending JPH04367277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16899891A JPH04367277A (en) 1991-06-14 1991-06-14 Thin film transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16899891A JPH04367277A (en) 1991-06-14 1991-06-14 Thin film transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04367277A true JPH04367277A (en) 1992-12-18

Family

ID=15878461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16899891A Pending JPH04367277A (en) 1991-06-14 1991-06-14 Thin film transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04367277A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561074A (en) * 1994-04-22 1996-10-01 Nec Corporation Method for fabricating reverse-staggered thin-film transistor
US5739886A (en) * 1993-12-20 1998-04-14 Nec Corporation Liquid crystal display with reverse staggered thin film transistors and opposite electrode, and fabrication method thereof
EP1017108A2 (en) * 1998-12-25 2000-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2009260044A (en) * 2008-04-17 2009-11-05 Hitachi Displays Ltd Display device
GB2471128A (en) * 2009-06-18 2010-12-22 Rec Solar As Surface passivation of silicon wafers
JP2014131052A (en) * 2008-11-07 2014-07-10 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2017168854A (en) * 2012-06-29 2017-09-21 株式会社半導体エネルギー研究所 Manufacturing method for semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739886A (en) * 1993-12-20 1998-04-14 Nec Corporation Liquid crystal display with reverse staggered thin film transistors and opposite electrode, and fabrication method thereof
US5561074A (en) * 1994-04-22 1996-10-01 Nec Corporation Method for fabricating reverse-staggered thin-film transistor
EP1017108A2 (en) * 1998-12-25 2000-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
EP1017108A3 (en) * 1998-12-25 2001-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices and methods of manufacturing the same
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7491655B2 (en) 1999-01-14 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2009260044A (en) * 2008-04-17 2009-11-05 Hitachi Displays Ltd Display device
JP2014131052A (en) * 2008-11-07 2014-07-10 Semiconductor Energy Lab Co Ltd Semiconductor device
US8980665B2 (en) 2008-11-07 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9231110B2 (en) 2008-11-07 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
GB2471128A (en) * 2009-06-18 2010-12-22 Rec Solar As Surface passivation of silicon wafers
JP2017168854A (en) * 2012-06-29 2017-09-21 株式会社半導体エネルギー研究所 Manufacturing method for semiconductor device
US10811521B2 (en) 2012-06-29 2020-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US11393918B2 (en) 2012-06-29 2022-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US9735270B2 (en) Semiconductor transistor having a stressed channel
US5470763A (en) Method for manufacturing thin film transistor with short hydrogen passivation time
KR100307635B1 (en) SiGe-channel MOS transistor and method for fabricating thereof
JPH04150017A (en) Manufacture of semiconductor device
KR20010110769A (en) SEMICONDUCTOR DEVICE WITH AN INTEGRATED CMOS CIRCUIT WITH MOS TRANSISTORS HAVING SILICON-GERMANIUM (Si1-xGex) GATE ELECTRODES, AND METHOD OF MANUFACTURING SAME
KR900005123B1 (en) Bipolar transistor manufacturing method
KR0180323B1 (en) Method for fabricating reverse-staggered thin-film transistor
US5846869A (en) Method of manufacturing semiconductor integrated circuit device
US6891232B2 (en) Semiconductor device having an injection substance to knock against oxygen and manufacturing method of the same
JPH04367277A (en) Thin film transistor and manufacture thereof
JP3209731B2 (en) Semiconductor device and manufacturing method thereof
JPH04367276A (en) Thin film transistor and manufacture thereof
JP2523679B2 (en) Thin film transistor and manufacturing method thereof
JPH10303207A (en) Semiconductor wafer, its manufacture, and semiconductor integrated circuit device
JP3300645B2 (en) Semiconductor device and manufacturing method thereof
JP3329628B2 (en) Method for manufacturing semiconductor device
JPH04348533A (en) Thin-film transistor and manufacture thereof
JPH0653491A (en) Fabrication of semiconductor device
JPH01108772A (en) Manufacture of bipolar transistor
JPH05102173A (en) Manufacture of semiconductor substrate
JPH1050820A (en) Semiconductor device and its manufacture
JPH05259449A (en) Mis type field effect transistor and manufacture thereof
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPH05183131A (en) Thin film transistor
JPS61139063A (en) Semiconductor device and manufacture thereof