JPH04355727A - Liquid crystal display element - Google Patents
Liquid crystal display elementInfo
- Publication number
- JPH04355727A JPH04355727A JP13091591A JP13091591A JPH04355727A JP H04355727 A JPH04355727 A JP H04355727A JP 13091591 A JP13091591 A JP 13091591A JP 13091591 A JP13091591 A JP 13091591A JP H04355727 A JPH04355727 A JP H04355727A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- gap
- crystal display
- display element
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 25
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000011347 resin Substances 0.000 claims abstract description 22
- 229920005989 resin Polymers 0.000 claims abstract description 22
- 125000006850 spacer group Chemical group 0.000 claims abstract description 17
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 239000002775 capsule Substances 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims 1
- 239000000155 melt Substances 0.000 claims 1
- 239000011521 glass Substances 0.000 abstract description 18
- 229910045601 alloy Inorganic materials 0.000 abstract description 12
- 239000000956 alloy Substances 0.000 abstract description 12
- 239000010419 fine particle Substances 0.000 abstract description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 238000005476 soldering Methods 0.000 abstract description 3
- 239000003094 microcapsule Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 229910001000 nickel titanium Inorganic materials 0.000 description 8
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、液晶組成物を用いた液
晶表示素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display element using a liquid crystal composition.
【0002】0002
【従来の技術】液晶表示素子において、電極基板間距離
、いわゆるパネルギャップを高い精度で均一に保つこと
は、素子の表示性能を決めるうえで重要な役割を果たし
ている。このため従来、適当な直径を持った樹脂製微粒
子,ガラス製微粒子、もしくはガラスファイバーを、一
方の電極基板上に分散し、この電極基板と対向する電極
基板を互いに貼り合わせることで、パネルギャップを均
一に保つ方法が行なわれている。このときの分散密度は
、1mm2当り、樹脂製微粒子の場合で200から30
0個、ガラス製微粒子で50から150個程度である。2. Description of the Related Art In liquid crystal display devices, maintaining a uniform distance between electrodes and substrates, or the so-called panel gap, with high precision plays an important role in determining the display performance of the device. For this reason, in the past, resin particles, glass particles, or glass fibers with an appropriate diameter were dispersed on one electrode substrate, and this electrode substrate and the opposing electrode substrate were bonded together to close the panel gap. Methods are being used to maintain uniformity. The dispersion density at this time is 200 to 30 per mm2 in the case of resin particles.
0 particles, and about 50 to 150 glass particles.
【0003】0003
【発明が解決しようとする課題】従来の技術を用いて、
パネルギャップを高い精度で均一に保つことは、一般に
容易ではなく、特に大型パネルにおいては、はなはだ困
難である。パネルギャップが不均一となる原因として、
樹脂製,ガラス製のスペーサがパネル内で変形すること
、またスペーサを基板面内で均等に分散できないことな
どが考えられる。特に樹脂製微粒子は、電極基板を貼り
合わせる際に変形しやすく、その形状に復元性がないた
め素子が完成した後で、基板面内でパネルギャップに不
均一があっても、従来の技術では、パネルギャップを調
整することが困難であった。[Problem to be solved by the invention] Using conventional technology,
Maintaining a uniform panel gap with high precision is generally not easy, and is especially difficult for large panels. The causes of uneven panel gap are:
It is conceivable that the spacers made of resin or glass may be deformed within the panel, or that the spacers may not be evenly distributed within the plane of the substrate. In particular, resin particles are easily deformed when electrode substrates are bonded together, and their shape is not restorable, so even if the panel gap is uneven within the substrate surface after the element is completed, conventional technology cannot , it was difficult to adjust the panel gap.
【0004】パネルギャップの不均一は、素子の電気光
学特性の面内不均一につながり表示不良の原因となる。Non-uniformity in the panel gap leads to in-plane non-uniformity in the electro-optic properties of the device, causing display defects.
【0005】本発明は上記の欠点を解消し、素子完成後
に、基板面内のパネルギャップの不均一を調整できる液
晶表示素子を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a liquid crystal display element that can adjust the non-uniformity of the panel gap within the substrate plane after the element is completed.
【0006】[0006]
【課題を解決するための手段】この目的を達成するため
本発明は、スペーサとして形状記憶合金、または、液晶
組成物を封入したマイクロカプセルを用いるものである
。In order to achieve this object, the present invention uses a shape memory alloy or a microcapsule encapsulating a liquid crystal composition as a spacer.
【0007】[0007]
【作用】形状記憶合金は、ある形状から大きく変形して
も、逆変態終了温度以上になると完全にもとの形に復元
する性質を持っている。このような合金を球状に加工す
ると、この合金が変形しても、逆変態終了温度以上にま
で加熱すると、もとの球状に復元する。[Operation] Shape memory alloys have the property that even if they are significantly deformed from a certain shape, they completely return to their original shape when the temperature reaches or exceeds the reverse transformation end temperature. When such an alloy is processed into a spherical shape, even if the alloy is deformed, it will return to its original spherical shape when heated to a temperature equal to or higher than the reverse transformation end temperature.
【0008】電極基板を貼り合わせるさいに、形状記憶
合金を含むスペーサが変形すると、基板面内でパネルギ
ャップが不均一になる。今、球状の形状記憶合金を、樹
脂製微粒子,ガラス製微粒子、または、ガラスファイバ
ーなどのスペーサとともに用いる。このとき電極基板を
貼り合わせた後のパネルギャップが不均一の場合、ギャ
ップが小さい箇所を局所的に外部から加熱すると、変形
した形状記憶合金が球状に復元し、その箇所のギャップ
が大きくなる。その結果、基板面内のギャップが均一に
なる。また球状の形状記憶合金を、圧縮変形し、その他
のスペーサとともに用いても、ギャップが小さい箇所を
局所的に外部から加熱すると、上と同等の効果がある。[0008] When the electrode substrates are bonded together, if the spacer containing the shape memory alloy is deformed, the panel gap becomes non-uniform within the plane of the substrates. Now, a spherical shape memory alloy is used together with spacers such as resin particles, glass particles, or glass fibers. At this time, if the panel gap after bonding the electrode substrates is non-uniform, if the area where the gap is small is locally heated from the outside, the deformed shape memory alloy will restore its spherical shape and the gap at that area will become larger. As a result, the gap within the substrate surface becomes uniform. Furthermore, even if a spherical shape memory alloy is compressed and deformed and used together with other spacers, the same effect as above can be obtained by locally heating the area where the gap is small from the outside.
【0009】パネルギャップの小さい箇所を大きくする
上記方法に対して、ギャップの大きい箇所を小さくする
場合は、以下のようにする。In contrast to the above-described method of enlarging areas where the panel gap is small, in order to reduce areas where the panel gap is large, the following method is used.
【0010】樹脂製マイクロカプセルに、レーザ光を照
射すると、マイクロカプセルがレーザ光を吸収してカプ
セルが溶融,崩壊する。このとき内部に液晶組成物を含
むマイクロカプセルをスペーサとして用いる。パネル面
内で、ギャップが大きい箇所に、局所的にレーザ光を照
射すると、照射した箇所のマイクロカプセルが溶融,崩
壊する。その結果、レーザ光を照射した箇所のギャップ
が小さくなり、基板面内のギャップが均一になる。When resin microcapsules are irradiated with laser light, the microcapsules absorb the laser light and melt and collapse. At this time, microcapsules containing a liquid crystal composition inside are used as spacers. When a laser beam is locally irradiated to a large gap area within the panel surface, the microcapsules at the irradiated area melt and collapse. As a result, the gap at the location where the laser beam is irradiated becomes smaller, and the gap within the substrate surface becomes uniform.
【0011】本発明の利点は、以上明らかなように、パ
ネルギャップの不均一を、電極基板を貼り合わせた後に
、基板面内で局所的に調整することでギャップを均一に
し、素子不良を減少させることにある。As is clear from the above, the advantage of the present invention is that unevenness in the panel gap can be made uniform by locally adjusting the panel gap within the substrate plane after bonding the electrode substrates, thereby reducing element defects. It's about letting people know.
【0012】0012
【実施例】(実施例1)図1は本発明の第1の実施例に
おける液晶表示素子の断面を示す。下部ガラス基板1上
に透明電極2、次いで絶縁層として酸化シリコン3を蒸
着し、更に配向膜としてポリイミド4を塗布した。酸化
シリコン3は、ニチノール合金製微粒子7と透明電極2
を互いに絶縁する効果がある。上部ガラス基板5上にも
同様に、透明電極2,酸化シリコン3を蒸着し、ポリイ
ミド4を塗布した。上記ポリイミド4を、ナイロン不織
布で擦った。上記の操作を施した下部ガラス基板1上に
スペーサとして、直径5ミクロンの樹脂製微粒子6、及
び直径5ミクロンのニチノール合金製微粒子7を分散し
た。このときニチノール合金製微粒子7は、当初から圧
縮変形した物を用いた。分散は、個数比1対1で、1m
m2当り合計200個分散した。なお、ニチノール合金
製微粒子を、球形のまま分散しても同様の効果が期待で
きる。また、表面に樹脂コートした形状記憶合金を、圧
縮変形して用いると、樹脂部とポリイミド4が接着し、
基板上での形状記憶合金の流動を抑える効果が期待でき
る。また前記、樹脂製微粒子の代わりにガラス製微粒子
、またはガラスファイバを用いても同様の効果がある。
9は液晶組成物である。EXAMPLE 1 FIG. 1 shows a cross section of a liquid crystal display element according to a first example of the present invention. On the lower glass substrate 1, a transparent electrode 2 was deposited, then silicon oxide 3 was deposited as an insulating layer, and polyimide 4 was further applied as an alignment film. Silicon oxide 3 includes Nitinol alloy fine particles 7 and transparent electrode 2.
It has the effect of insulating each other. Similarly, a transparent electrode 2 and silicon oxide 3 were deposited on the upper glass substrate 5, and polyimide 4 was applied thereto. The polyimide 4 was rubbed with a nylon nonwoven fabric. Resin fine particles 6 with a diameter of 5 microns and nitinol alloy fine particles 7 with a diameter of 5 microns were dispersed as spacers on the lower glass substrate 1 subjected to the above operation. At this time, the Nitinol alloy fine particles 7 used were ones that had been compressively deformed from the beginning. Dispersion is 1m with a number ratio of 1:1
A total of 200 pieces were dispersed per m2. Note that the same effect can be expected even if the Nitinol alloy fine particles are dispersed in a spherical form. In addition, when a shape memory alloy whose surface is coated with a resin is compressed and deformed, the resin part and the polyimide 4 adhere to each other.
It can be expected to have the effect of suppressing the flow of the shape memory alloy on the substrate. Further, the same effect can be obtained by using glass particles or glass fibers instead of the resin particles. 9 is a liquid crystal composition.
【0013】用いたニチノール合金は、形状記憶合金で
あり、80℃で球状に復元するように設計してある。な
お、復元温度として、素子使用時のパネル温度以上の任
意の温度を設定しても良い。上部ガラス基板5にシール
樹脂8を印刷した後、常法に従い下部ガラス基板1と貼
り合わせた。その後、パネル面内のギャップのばらつき
を、測定機(キャノン(株)製TM−230N)を用い
て測定した。図2(a)に測定結果を示す。The nitinol alloy used is a shape memory alloy and is designed to restore its spherical shape at 80°C. Note that the restoring temperature may be set to any temperature higher than the panel temperature when the element is used. After printing the sealing resin 8 on the upper glass substrate 5, it was bonded to the lower glass substrate 1 according to a conventional method. Thereafter, the variation in the gap within the panel surface was measured using a measuring device (TM-230N manufactured by Canon Inc.). Figure 2(a) shows the measurement results.
【0014】ハンダゴテ10を用いて、パネルギャップ
の小さい箇所のガラス基板を加熱し、ニチノール合金製
微粒子7を80℃以上にした。このときニチノール合金
製微粒子7が、球形に復元し、ギャップの不均一が改善
された。図2(b)に加熱後のギャップの面内分布を示
した。[0014] Using a soldering iron 10, the glass substrate at a location where the panel gap was small was heated to bring the temperature of the Nitinol alloy fine particles 7 to 80°C or higher. At this time, the Nitinol alloy fine particles 7 were restored to a spherical shape, and the non-uniformity of the gap was improved. FIG. 2(b) shows the in-plane gap distribution after heating.
【0015】(実施例2)図3は、樹脂製マイクロカプ
セル11の断面図である。樹脂製マイクロカプセル11
の直径は5ミクロンである。このとき樹脂として、ポリ
エチレン樹脂を用いた。このときカプセル内部の液晶組
成物12として、素子基板間の液晶組成物9と同一組成
の液晶材料を用いた。(Embodiment 2) FIG. 3 is a sectional view of a resin microcapsule 11. Resin microcapsule 11
Its diameter is 5 microns. At this time, polyethylene resin was used as the resin. At this time, a liquid crystal material having the same composition as the liquid crystal composition 9 between the element substrates was used as the liquid crystal composition 12 inside the capsule.
【0016】図4に素子断面図を示す。上部ガラス基板
1と下部ガラス5に、実施例1と同様の処置を施した。
上記の樹脂製マイクロカプセル11を、直径5ミクロン
のガラス製微粒子13とともに、スペーサとして用いた
。スペーサの分散は個数比2対1で1mm2当り合計1
00個分散した。パネルギャップの大きい箇所に、CO
2レーザ光14を照射した。このとき樹脂製マイクロカ
プセル11が溶融,崩壊した。その結果、CO2レーザ
光14を照射した箇所のパネルギャップが小さくなり、
ギャップの不均一が改善された。崩壊した後のポリエチ
レン樹脂は、表示品位を低下させることはなかった。C
O2レーザ光14を照射する前と後でのパネルギャップ
の面内分布を図5(a)と図5(b)にそれぞれ示した
。FIG. 4 shows a cross-sectional view of the device. The same treatment as in Example 1 was performed on the upper glass substrate 1 and the lower glass 5. The resin microcapsule 11 described above was used as a spacer together with glass fine particles 13 having a diameter of 5 microns. Dispersion of spacers is 2:1, total 1 per 1mm2.
00 pieces were dispersed. CO in areas with large panel gaps.
2 laser beams 14 were irradiated. At this time, the resin microcapsules 11 melted and collapsed. As a result, the panel gap at the point irradiated with the CO2 laser beam 14 becomes smaller.
Gap unevenness has been improved. The polyethylene resin after disintegration did not deteriorate display quality. C
The in-plane distribution of the panel gap before and after irradiation with the O2 laser beam 14 is shown in FIG. 5(a) and FIG. 5(b), respectively.
【0017】[0017]
【発明の効果】以上のように、本発明は形状記憶合金、
または液晶組成物を内部に含む樹脂製マイクロカプセル
を、液晶表示素子のスペーサとして用いたものであり、
基板を貼り合わせた後に、パネルギャップの不均一を解
消することができ、その実用的価値は極めて大きい。[Effects of the Invention] As described above, the present invention provides shape memory alloys,
Or, a resin microcapsule containing a liquid crystal composition inside is used as a spacer for a liquid crystal display element,
After the substrates are bonded together, the non-uniformity of the panel gap can be eliminated, and its practical value is extremely large.
【図1】本発明の実施例1の液晶表示素子の断面図FIG. 1 is a cross-sectional view of a liquid crystal display element according to Example 1 of the present invention.
【図
2】(a)加熱前のパネルギャップの面内分布図(b)
加熱後のパネルギャップの面内分布図[Figure 2] (a) In-plane distribution diagram of panel gap before heating (b)
In-plane distribution map of panel gap after heating
【図3】実施例2
のマイクロカプセルの断面図[Figure 3] Example 2
Cross-sectional view of microcapsules
【図4】実施例2の液晶表
示素子の断面図[Figure 4] Cross-sectional view of the liquid crystal display element of Example 2
【図5】(a)レーザ光照射前のパネル
ギャップの面内分布図
(b)レーザ光照射後のパネルギャップの面内分布図[Figure 5] (a) In-plane distribution diagram of panel gaps before laser beam irradiation (b) In-plane distribution diagram of panel gaps after laser beam irradiation
1 下部ガラス基板 2 透明電極 3 酸化シリコン 4 ポリイミド 5 上部ガラス基板 6 樹脂製微粒子 7 ニチノール合金製微粒子 8 シール樹脂 9 液晶組成物 10 ハンダゴテ 11 樹脂製マイクロカプセル 12 液晶組成物 13 ガラス製微粒子 14 CO2レーザ光 1 Lower glass substrate 2 Transparent electrode 3 Silicon oxide 4 Polyimide 5 Upper glass substrate 6. Resin fine particles 7 Nitinol alloy fine particles 8 Seal resin 9 Liquid crystal composition 10 Soldering iron 11 Resin microcapsule 12 Liquid crystal composition 13 Glass particles 14 CO2 laser light
Claims (4)
に、液晶組成物とスペーサを有し、前記スペーサが少な
くとも、形状記憶合金を含むことを特徴とする液晶表示
素子。1. A liquid crystal display element comprising a liquid crystal composition and a spacer between a pair of electrode substrates, at least one of which is transparent, the spacer containing at least a shape memory alloy.
任意の形状から球状に変形する形状記憶合金を用いるこ
とを特徴とする請求項1記載の液晶表示素子。2. The liquid crystal display element according to claim 1, wherein at least a shape memory alloy that deforms from an arbitrary shape into a spherical shape due to temperature change is used as the spacer.
に、液晶組成物とスペーサを有し、前記スペーサが少な
くとも、液晶組成物を内部に含む球状カプセルを含むこ
とを特徴とする液晶表示素子。3. A liquid crystal display element having a liquid crystal composition and a spacer between a pair of electrode substrates, at least one of which is transparent, and wherein the spacer includes at least a spherical capsule containing the liquid crystal composition inside. .
融,崩壊する樹脂製カプセルであることを特徴とする請
求項3記載の液晶表示素子。4. The liquid crystal display element according to claim 3, wherein the spherical capsule is a resin capsule that melts and collapses upon absorption of laser light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13091591A JPH04355727A (en) | 1991-06-03 | 1991-06-03 | Liquid crystal display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13091591A JPH04355727A (en) | 1991-06-03 | 1991-06-03 | Liquid crystal display element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04355727A true JPH04355727A (en) | 1992-12-09 |
Family
ID=15045715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13091591A Pending JPH04355727A (en) | 1991-06-03 | 1991-06-03 | Liquid crystal display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04355727A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103323982A (en) * | 2013-06-20 | 2013-09-25 | 北京京东方光电科技有限公司 | Liquid crystal display panel and manufacturing method thereof |
JP2018005166A (en) * | 2016-07-08 | 2018-01-11 | 株式会社リコー | Electrochromic device |
CN111308795A (en) * | 2020-03-13 | 2020-06-19 | Tcl华星光电技术有限公司 | Spacer, manufacturing method and display device |
-
1991
- 1991-06-03 JP JP13091591A patent/JPH04355727A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103323982A (en) * | 2013-06-20 | 2013-09-25 | 北京京东方光电科技有限公司 | Liquid crystal display panel and manufacturing method thereof |
US20150226991A1 (en) * | 2013-06-20 | 2015-08-13 | Boe Technology Group Co., Ltd. | Liquid Crystal Display Panel and Manufacturing Method Thereof |
US10288951B2 (en) | 2013-06-20 | 2019-05-14 | Boe Technology Group Co., Ltd. | Liquid crystal display panel and manufacturing method thereof |
JP2018005166A (en) * | 2016-07-08 | 2018-01-11 | 株式会社リコー | Electrochromic device |
CN111308795A (en) * | 2020-03-13 | 2020-06-19 | Tcl华星光电技术有限公司 | Spacer, manufacturing method and display device |
CN111308795B (en) * | 2020-03-13 | 2021-02-26 | Tcl华星光电技术有限公司 | Spacer, manufacturing method and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2654940B2 (en) | Manufacturing method of electro-optical element | |
JPH05127179A (en) | Production of liquid crystal display element | |
JPS5978320A (en) | Nanufacture of electrooptic element | |
JPH04355727A (en) | Liquid crystal display element | |
JPH11109372A (en) | Production of substrate for liquid crystal display element, production of liquid crystal display element, substrate for liquid crystal display element and liquid crystal display element | |
JP2002040443A (en) | Method for manufacturing liquid crystal display device | |
JPH02157825A (en) | Electrooptical device made by using ferroelectric liquid crystal | |
JPH06347805A (en) | Production of liquid crystal display device | |
JP2003114624A (en) | Flat panel display device, method for manufacturing the same and device for formation of spacer | |
JPS63200126A (en) | Liquid crystal display element | |
JPH0990372A (en) | Liquid crystal display element and its production | |
JPS61173223A (en) | Formation of liquid crystal display device | |
JPH049011A (en) | Manufacture of liquid crystal panel | |
JP2609087B2 (en) | Liquid crystal display device | |
JPH02139518A (en) | Production of liquid crystal panel | |
JPH0854633A (en) | Liquid crystal display device | |
JPH04243230A (en) | Liquid crystal display element and production thereof | |
JPH06258621A (en) | Liquid crystal film and liquid crystal display device | |
JPS60172027A (en) | Production of liquid crystal display element | |
JPH0320717A (en) | Liquid crystal display panel | |
JPS58100122A (en) | Manufacture of liquid crystal cell | |
KR100437594B1 (en) | Liquid crystal display | |
JPH07294944A (en) | Liquid crystal display device and its production | |
JPS62134626A (en) | Structure for arranging spacer material in liquid crystal display body | |
JPS62257129A (en) | Liquid crystal display device and its manufacture |