JPH04346816A - Treatment of exhaust gas - Google Patents

Treatment of exhaust gas

Info

Publication number
JPH04346816A
JPH04346816A JP3116185A JP11618591A JPH04346816A JP H04346816 A JPH04346816 A JP H04346816A JP 3116185 A JP3116185 A JP 3116185A JP 11618591 A JP11618591 A JP 11618591A JP H04346816 A JPH04346816 A JP H04346816A
Authority
JP
Japan
Prior art keywords
carbon dioxide
potassium
exhaust gas
sulfur oxides
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3116185A
Other languages
Japanese (ja)
Inventor
Toru Takashina
徹 高品
Naohiko Ugawa
直彦 鵜川
Susumu Okino
進 沖野
Masakazu Onizuka
鬼塚 雅和
Kenji Inoue
健治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3116185A priority Critical patent/JPH04346816A/en
Publication of JPH04346816A publication Critical patent/JPH04346816A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove simultaneously carbon dioxide and sulfur oxides from a exhaust gas by using potassium carbonate as a absorbent of carbon dioxide and by separating potassium salt of sulfur oxides, which is fixed with calcium ion, to suppress loss of potassium. CONSTITUTION:Carbon dioxide and sulfur oxides in an exhaust gas is brought into contact with the absorbing solution 3 containing potassium carbonate in the absorption column 2 and is absorbed thereinto. Sulfur oxides absorbed into potassium carbonate further reacts with oxygen in the exhaust gas to form potassium sulfate. The carbon dioxide and sulfur oxides absorbed absorbing solution is sent to the desorbing column 5 and heated by the heating medium 6 to exhaust carbon dioxide desorbed through the desorbing duct 7. On the other hand, a part of the absorbing solution containing crystalline potassium sulfate is introduced into the solid-liquid separater 8 where solid potassium sulfate is separated and furthermore reacts with calcium carbonate or calcium hydroxide at a reactor 9 to form calcium sulfate. Solid calcium sulfate is separated from the slurry introduced into the solid-liquid separater 10.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はボイラなどの排ガスから
硫黄酸化物と二酸化炭素を同時に除去する排ガスの処理
方法に関する。 【0002】 【従来の技術】本発明は近年急激にクローズアップして
きた二酸化炭素の大量排出による地球温暖化問題と硫黄
酸化物による酸性雨問題を考慮し、排ガスから二酸化炭
素と硫黄酸化物を同時に除去する方法の開発に関心がも
たれている。 【0003】二酸化炭素は従来無害であるとされ、それ
ゆえ排ガスからあえて除去するという技術は少なく、ま
してや硫黄酸化物と同時に除去する技術については産業
上利用できる段階には至っていないのが現状である。 【0004】従って、ここでは従来技術として二酸化炭
素と硫黄酸化物を別々に処理する技術について簡単に述
べる。排ガスから二酸化炭素を除去する技術としては現
在アミンなどの有機物吸収剤を利用した湿式の化学吸収
方法や吸着剤を利用した乾式の吸着方法などがある。一
方、排ガスから硫黄酸化物を除去する技術としては炭酸
カルシウムを吸収剤とする湿式の石灰石膏法が主流とな
っている。 【0005】なお、アミンなどの有機物吸収剤を利用し
た湿式の化学吸収方法でも原理的には二酸化炭素と硫黄
酸化物の同時処理が可能であると考えられるが、この場
合には次の問題点を有する。■  有機物吸収剤は一般
に硫黄酸化物の共存により分解し、吸収剤の損失が大き
い。■  一般に湿式の吸収方法は多くの排水をもたら
すが、有機物吸収剤を使用すると吸収剤もしくは吸収剤
の分解生成物に起因するCOD(化学的酸素要求量)成
分が排水中に含まれ、排水の性状を悪化させる。 【0006】さらに、炭酸カリウムでもアミンなどの有
機物吸収剤と同様に原理的には二酸化炭素と硫黄酸化物
の同時吸収は可能であるが、吸収された硫黄酸化物が吸
収剤であるカリウムとカリウム塩を生成し、吸収剤とし
ての能力を低下させ、カリウムの損失を大きくするとい
う問題を有する。 【0007】 【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、従来技術及び従来技術より考えられる方法の不
具合を解消しうる排ガス中の二酸化炭素と硫黄酸化物の
同時除去を可能とした方法を提供しようとするものであ
る。 【0008】 【課題を解決するための手段】上記のような状況におい
て、本発明者らは硫黄酸化物が共存しても安定であり、
かつ排水中にもCOD成分をもたらさない二酸化炭素吸
収剤である炭酸カリウムに着目し、さらにカリウムの損
失を抑制するため、硫黄酸化物のカリウム塩を分離し、
カルシウムイオンで固定化する方法を見いだし、その結
果、本発明は以下の手段によって問題点を解決した。 【0009】すなわち、本発明は、硫黄酸化物と二酸化
炭素を含む排ガスを炭酸カリウムを含有する吸収液で処
理する方法において、 (1)排ガスより硫黄酸化物と二酸化炭素を除去する吸
収工程 (2)吸収工程より抜き出した吸収液を加熱して二酸化
炭素を放散する放散工程 (3)放散工程より抜き出した吸収液から固体化した硫
酸カリウムを分離する第1分離工程 (4)第1分離工程で得られた硫酸カリウムを水酸化カ
ルシウムおよび/または炭酸カルシウムと反応させ、生
成した硫酸カルシウムを分離する第2分離工程(5)第
2分離工程で得られる母液を吸収工程で再利用する工程
よりなることを特徴とする排ガスの処理方法である。 【0010】 【作用】図1に本発明の実施態様例を示し、これにより
本発明の作用を説明する。入口ダクト1より導かれた排
ガス中の二酸化炭素と硫黄酸化物は吸収塔2で炭酸カリ
ウムを含有する吸収液3と接触し以下の反応式で吸収さ
れる。 (二酸化炭素) CO2 +K2 CO3 +H2 O  →  2KH
CO3 (硫黄酸化物) SO2 +2K2 CO3 +H2 O  →K2 S
O3 +2KHCO3  K2 SO3 + 1/2O2   →  K2SO4
 【0011】硫黄酸化物は炭酸カリウムに吸収される
と亜硫酸カリウムを生成し、さらに排ガス中の酸素と反
応して硫酸カリウムを生成する。もし、排ガス中の酸素
濃度が低いか、あるいは硫黄酸化物の濃度が高いなどの
理由により亜硫酸カリウムが十分に酸化されない場合に
は、吸収液中に系外より空気あるいは酸素などを添加し
て亜硫酸カリウムを酸化することもありうる。吸収処理
された排ガスは出口ダクト4より排出される。 【0012】二酸化炭素と硫黄酸化物を吸収した吸収液
は放散塔5に送られ、蒸気などの加熱媒体6により加熱
される。加熱された吸収液からは以下の反応式で二酸化
炭素が放散され、放散ダクト7を介して排出される。し
かし、硫酸カリウムは分圧をもたないので放散されない
。 2KHCO3   →  CO2 +K2 CO3 +
H2 O【0013】一方、この時吸収液の硫酸カウム
はその溶解度以上の濃度に保たれるように運転され、吸
収液中には硫酸カリウムの結晶が存在する。これは図2
に示すように硫酸カリウムの溶解度が炭酸カリウムある
いは重炭酸カリウムに比較して、溶解度が小さいことを
巧みに利用したものである。 【0014】硫酸カリウムの結晶を含有した吸収液の一
部は固液分離器8に導かれ、固体の硫酸カリウムが分離
され、母液は放散塔5へ戻される。分離された硫酸カリ
ウムは反応器9で炭酸カルシウムあるいは水酸化カルシ
ウムよりもたらされるカルシウムイオンと以下のように
反応して硫酸カルシウムを生成する。 K2 SO4 +Ca2+  →  CaSO4 +2
K+ 【0015】硫酸カルシウムは溶解度が小さいた
め結晶化する。このスラリーを再び固液分離器10に導
き固体の硫酸カルシウム11を分離する。母液は放散塔
5へ戻される。なお、固液分離器8および固液分離器1
0からの母液は、この実施態様例では放散塔5へ戻して
いるが、吸収塔2へ戻しても原理的、性能的に大きな変
化はない。 【0016】 【実施例】以下、具体的な実施例をあげ、そこに使用さ
れる装置の諸元を示す。 (a)吸収塔2        内径0.13m×高さ
8.0m(有効接触部6.0m)(b)放散塔5   
     内径0.13m×高さ8.0m(加圧蒸気加
熱)(c)固液分離器8    遠心分離方式;処理量
20リットル/h(d)固液分離器10  遠心分離方
式;処理量20リットル/h【0017】以下に実施例
の運転状態の一例を示す。 ・排ガス性状1    流量;200m3 N/h(乾
燥)                  組成;CO
2 :14.5vol%(乾燥)          
              SO2 :800ppm
(乾燥)                     
   O2   :4.5vol%(乾燥)・吸収塔2
        循環流量  ;  3.5m3 /h
                  温  度   
 ;  55℃                  
圧  力    ;  大気圧           
       カリウム濃度;2.3kgmol/m3
 ・放散塔5        供給流量  ;  3.
5m3 /h                  温
  度    ;  100℃           
       圧  力    ;  大気圧【001
8】上記の装置および運転状態において、排ガスからの
二酸化炭素の除去率は35%以上であり、かつ硫黄酸化
物の除去率は99%以上であった。また、使用したカル
シウム成分の量は炭酸カルシウムの場合で0.7kg/
h、水酸化カルシウムの場合で0.5kg/hであった
。さらに、副生物として回収される二酸化炭素ガスは9
m3 N/h、硫酸カルシウムは1.3kg/hであっ
た。 【0019】 【発明の効果】以上、実施例で具体的に述べたように、
本発明は硫黄酸化物が共存しても安定であり、かつ排水
中にもCOD成分をもたらさない二酸化炭素吸収剤であ
る炭酸カリウムを使用して、さらにカリウムの損失を抑
制するため硫黄酸化物のカリウム塩を分離し、カルシウ
ムイオンで固定化する方法であり、従来産業上実用化さ
れていなかった排ガスからの二酸化炭素と硫黄酸化物の
同時除去を可能とした。
Description: FIELD OF THE INVENTION The present invention relates to an exhaust gas treatment method for simultaneously removing sulfur oxides and carbon dioxide from the exhaust gas of a boiler or the like. [0002] The present invention takes into consideration the problem of global warming caused by large amounts of carbon dioxide emissions and the problem of acid rain caused by sulfur oxides, which have been drawing attention rapidly in recent years. There is interest in developing methods to remove it. [0003] Carbon dioxide has traditionally been considered to be harmless, and therefore there are few technologies that dare to remove it from exhaust gas, and at present, the technology that removes it at the same time as sulfur oxides has not yet reached the stage where it can be used industrially. . [0004] Therefore, as a prior art, a technology for treating carbon dioxide and sulfur oxides separately will be briefly described here. Current techniques for removing carbon dioxide from exhaust gas include a wet chemical absorption method using an organic absorbent such as amine, and a dry adsorption method using an adsorbent. On the other hand, the mainstream technology for removing sulfur oxides from exhaust gas is a wet lime plaster method using calcium carbonate as an absorbent. [0005] In principle, it is possible to simultaneously treat carbon dioxide and sulfur oxides using a wet chemical absorption method using an organic absorbent such as an amine, but in this case, the following problems arise. has. ■ Organic absorbents generally decompose in the presence of sulfur oxides, resulting in large losses of the absorbent. ■ In general, wet absorption methods produce a large amount of wastewater, but when organic absorbents are used, COD (chemical oxygen demand) components resulting from the absorbent or the decomposition products of the absorbent are contained in the wastewater. worsen the condition. Furthermore, although it is theoretically possible to simultaneously absorb carbon dioxide and sulfur oxides with potassium carbonate in the same way as with organic absorbents such as amines, the absorbed sulfur oxides absorb potassium and potassium from the absorbent. It has the problem of forming salts, reducing its ability as an absorbent and increasing potassium loss. SUMMARY OF THE INVENTION In view of the above-mentioned state of the art, the present invention makes it possible to simultaneously remove carbon dioxide and sulfur oxides from exhaust gas, which can eliminate the problems of the prior art and methods conceivable from the prior art. This paper aims to provide a method for doing so. [Means for Solving the Problems] In the above-mentioned situation, the present inventors have discovered that a sulfur oxide is stable even in the coexistence of sulfur oxide,
In addition, we focused on potassium carbonate, which is a carbon dioxide absorbent that does not cause COD components in wastewater, and in order to further suppress the loss of potassium, we separated the potassium salt of sulfur oxide.
A method of immobilizing calcium ions was discovered, and as a result, the present invention solved the problems by the following means. That is, the present invention provides a method for treating exhaust gas containing sulfur oxides and carbon dioxide with an absorption liquid containing potassium carbonate, including: (1) an absorption step for removing sulfur oxides and carbon dioxide from the exhaust gas; ) Diffusion step of heating the absorption liquid extracted from the absorption step to diffuse carbon dioxide (3) A first separation step of separating solidified potassium sulfate from the absorption liquid extracted from the diffusion step (4) In the first separation step A second separation step of reacting the obtained potassium sulfate with calcium hydroxide and/or calcium carbonate and separating the produced calcium sulfate (5) A step of reusing the mother liquor obtained in the second separation step in the absorption step. This is a method for treating exhaust gas characterized by the following. [Operation] FIG. 1 shows an embodiment of the present invention, and the operation of the present invention will be explained with reference to FIG. Carbon dioxide and sulfur oxides in the exhaust gas led from the inlet duct 1 come into contact with an absorption liquid 3 containing potassium carbonate in an absorption tower 2, and are absorbed according to the following reaction formula. (Carbon dioxide) CO2 +K2 CO3 +H2 O → 2KH
CO3 (sulfur oxide) SO2 +2K2 CO3 +H2 O →K2 S
O3 +2KHCO3 K2 SO3 + 1/2O2 → K2SO4
[0011] Sulfur oxides produce potassium sulfite when absorbed by potassium carbonate, and further react with oxygen in the exhaust gas to produce potassium sulfate. If potassium sulfite is not oxidized sufficiently due to reasons such as low oxygen concentration in exhaust gas or high sulfur oxide concentration, add air or oxygen from outside the system to the absorption liquid to remove sulfur dioxide. It may also oxidize potassium. The absorbed exhaust gas is discharged from the outlet duct 4. The absorption liquid that has absorbed carbon dioxide and sulfur oxides is sent to a stripping tower 5 and heated by a heating medium 6 such as steam. Carbon dioxide is diffused from the heated absorption liquid according to the following reaction formula, and is discharged through the diffusion duct 7. However, since potassium sulfate has no partial pressure, it is not dissipated. 2KHCO3 → CO2 +K2 CO3 +
On the other hand, at this time, the concentration of potassium sulfate in the absorption liquid is maintained at a concentration higher than its solubility, and crystals of potassium sulfate are present in the absorption liquid. This is figure 2
As shown in Figure 2, this technique cleverly takes advantage of the fact that potassium sulfate has a lower solubility than potassium carbonate or potassium bicarbonate. A portion of the absorption liquid containing crystals of potassium sulfate is led to a solid-liquid separator 8, where solid potassium sulfate is separated, and the mother liquor is returned to the stripping tower 5. The separated potassium sulfate reacts with calcium ions provided by calcium carbonate or calcium hydroxide in the reactor 9 as follows to produce calcium sulfate. K2 SO4 +Ca2+ → CaSO4 +2
K+ Calcium sulfate crystallizes because of its low solubility. This slurry is again introduced into the solid-liquid separator 10 to separate solid calcium sulfate 11. The mother liquor is returned to the stripping tower 5. Note that the solid-liquid separator 8 and the solid-liquid separator 1
In this embodiment, the mother liquor from 0 is returned to the stripping tower 5, but even if it is returned to the absorption tower 2, there is no major change in principle or performance. [Example] Specific examples will be given below, and the specifications of the apparatus used therein will be shown. (a) Absorption tower 2 Inner diameter 0.13m x height 8.0m (effective contact area 6.0m) (b) Stripping tower 5
Inner diameter 0.13 m x height 8.0 m (pressurized steam heating) (c) Solid-liquid separator 8 Centrifugal separation method; throughput 20 liters/h (d) Solid-liquid separator 10 Centrifugal separation method; throughput 20 liters /h [0017] An example of the operating state of the embodiment is shown below.・Exhaust gas properties 1 Flow rate: 200m3 N/h (dry) Composition: CO
2: 14.5vol% (dry)
SO2: 800ppm
(dry)
O2: 4.5 vol% (dry)・Absorption tower 2
Circulation flow rate: 3.5m3/h
temperature
; 55℃
Pressure; atmospheric pressure
Potassium concentration: 2.3 kgmol/m3
- Stripping tower 5 supply flow rate; 3.
5m3/h Temperature: 100℃
Pressure; Atmospheric pressure [001
8] With the above apparatus and operating conditions, the removal rate of carbon dioxide from exhaust gas was 35% or more, and the removal rate of sulfur oxides was 99% or more. In addition, the amount of calcium component used was 0.7 kg/in the case of calcium carbonate.
In the case of calcium hydroxide, it was 0.5 kg/h. Furthermore, the carbon dioxide gas recovered as a by-product is 9
m3 N/h, and calcium sulfate was 1.3 kg/h. [Effects of the Invention] As specifically described in the examples above,
The present invention uses potassium carbonate, which is a carbon dioxide absorbent that is stable even when sulfur oxides coexist and does not produce COD components in wastewater. This method separates potassium salts and immobilizes them with calcium ions, making it possible to simultaneously remove carbon dioxide and sulfur oxides from exhaust gas, which had not been commercially practical in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  硫黄酸化物と二酸化炭素を含む排ガス
を炭酸カリウムを含有する吸収液で処理する方法におい
て、 (1)排ガスより硫黄酸化物と二酸化炭素を除去する吸
収工程 (2)吸収工程より抜き出した吸収液を加熱して二酸化
炭素を放散する放散工程 (3)放散工程より抜き出した吸収液から固体化した硫
酸カリウムを分離する第1分離工程 (4)第1分離工程で得られた硫酸カリウムを水酸化カ
ルシウムおよび/または炭酸カルシウムと反応させ、生
成した硫酸カルシウムを分離する第2分離工程(5)第
2分離工程で得られる母液を吸収工程で再利用する工程
よりなることを特徴とする排ガスの処理方法。
Claim 1: A method for treating exhaust gas containing sulfur oxides and carbon dioxide with an absorption liquid containing potassium carbonate, comprising: (1) an absorption step for removing sulfur oxides and carbon dioxide from the exhaust gas; (2) an absorption step. Diffusion step of heating the extracted absorption liquid to diffuse carbon dioxide (3) First separation step of separating solidified potassium sulfate from the absorption liquid extracted from the diffusion step (4) Sulfuric acid obtained in the first separation step A second separation step of reacting potassium with calcium hydroxide and/or calcium carbonate and separating the produced calcium sulfate (5) A step of reusing the mother liquor obtained in the second separation step in the absorption step. How to treat exhaust gas.
JP3116185A 1991-05-21 1991-05-21 Treatment of exhaust gas Pending JPH04346816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3116185A JPH04346816A (en) 1991-05-21 1991-05-21 Treatment of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3116185A JPH04346816A (en) 1991-05-21 1991-05-21 Treatment of exhaust gas

Publications (1)

Publication Number Publication Date
JPH04346816A true JPH04346816A (en) 1992-12-02

Family

ID=14680922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3116185A Pending JPH04346816A (en) 1991-05-21 1991-05-21 Treatment of exhaust gas

Country Status (1)

Country Link
JP (1) JPH04346816A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038788A1 (en) * 1999-11-19 2001-05-31 Kabushiki Kaisha Maruki Stack structure
WO2005072851A1 (en) * 2004-01-30 2005-08-11 Kabushiki Kaisha Toshiba System and method for recovering carbon dioxide in exhaust gas
JP2006035059A (en) * 2004-07-26 2006-02-09 Toshiba Corp System and method for recovering carbon dioxide in exhaust gas
EP1733782A1 (en) * 2005-06-15 2006-12-20 Kvaerner Power Oy A method and an apparatus for removing carbon dioxide from sulphur dioxide containing flue gases
CN104474878A (en) * 2014-12-21 2015-04-01 赵民 Double-tower double-medium energy-saving high-efficiency flue gas desulfurization dust-removal combined device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038788A1 (en) * 1999-11-19 2001-05-31 Kabushiki Kaisha Maruki Stack structure
WO2005072851A1 (en) * 2004-01-30 2005-08-11 Kabushiki Kaisha Toshiba System and method for recovering carbon dioxide in exhaust gas
JP2006035059A (en) * 2004-07-26 2006-02-09 Toshiba Corp System and method for recovering carbon dioxide in exhaust gas
EP1733782A1 (en) * 2005-06-15 2006-12-20 Kvaerner Power Oy A method and an apparatus for removing carbon dioxide from sulphur dioxide containing flue gases
US7910079B2 (en) 2005-06-15 2011-03-22 Metso Power Oy Method and an apparatus for removing carbon dioxide from sulphur dioxide containing flue gases
CN104474878A (en) * 2014-12-21 2015-04-01 赵民 Double-tower double-medium energy-saving high-efficiency flue gas desulfurization dust-removal combined device

Similar Documents

Publication Publication Date Title
JP5000557B2 (en) Wet flue gas desulfurization equipment
JP3349346B2 (en) Desulfurization and decarboxylation process
JP2678697B2 (en) Method of removing acid gas from combustion exhaust gas
CA1193073A (en) Process for removal of sulfur oxides from hot gases
US5827488A (en) Process for removing SO2 and NOx from a gaseous stream
JPS5829251B2 (en) Wet flue gas desulfurization gypsum recovery method
JPH04346816A (en) Treatment of exhaust gas
JPH0686911A (en) Method for simultaneous treatment of desulfurization and decarbonation
JP4507291B2 (en) Method and apparatus for treating flue gas desulfurization waste
JPH06228573A (en) Treatment of tail gas in coal gasification plant
JP2020089804A (en) Detoxification method of exhaust gas containing sulfur dioxide
US6086842A (en) Recycling of sodium hydroxide and production of gypsum from dry flue gas desulfurization
JPS62225226A (en) Wet stack-gas desulfurization facility
JPH06210129A (en) Waste gas treatment
CN114159950A (en) Flue gas desulfurization and decarburization coupled treatment system and method
JPH0338219A (en) Removing and recovering method for carbon dioxide gas out of exhaust gas
JP3786786B2 (en) Flue gas desulfurization method
JP3645675B2 (en) Exhaust gas desulfurization method
JPS5857213B2 (en) Flue gas desulfurization method
JPH05111614A (en) Treatment of exhaust gas
JPS618115A (en) Desulfurization treatment of waste gas by liquid
JPS5939328A (en) Desulfurization of exhaust gas
JPS5939327A (en) Wet type desulfurization of exhaust gas
FI84434C (en) Process and plant for the recovery of sulfur and / or nitrogen oxides from gases containing these
CN114159961A (en) Absorbent simultaneously used for flue gas desulfurization and decarburization and preparation and application methods thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990824