JPH04303566A - Solid electrolyte fuel cell - Google Patents
Solid electrolyte fuel cellInfo
- Publication number
- JPH04303566A JPH04303566A JP3089415A JP8941591A JPH04303566A JP H04303566 A JPH04303566 A JP H04303566A JP 3089415 A JP3089415 A JP 3089415A JP 8941591 A JP8941591 A JP 8941591A JP H04303566 A JPH04303566 A JP H04303566A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel
- gas
- electrode
- manifold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 73
- 239000007784 solid electrolyte Substances 0.000 title claims description 4
- 239000002737 fuel gas Substances 0.000 claims abstract description 69
- 239000007789 gas Substances 0.000 claims abstract description 60
- 239000011261 inert gas Substances 0.000 claims description 51
- 239000003792 electrolyte Substances 0.000 claims description 30
- 238000007599 discharging Methods 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 14
- 238000007789 sealing Methods 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- 238000005192 partition Methods 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 27
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- -1 oxygen ions Chemical class 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 210000003771 C cell Anatomy 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は燃料の有する化学エネル
ギーを直接電気エネルギーに変換させるエネルギー部門
で用いる燃料電池のうち、特に、固体電解質を用いた平
板型の固体電解質型燃料電池に関するものである。[Field of Industrial Application] The present invention relates to fuel cells used in the energy sector for directly converting the chemical energy of fuel into electrical energy, and particularly to a flat solid oxide fuel cell using a solid electrolyte. .
【0002】0002
【従来の技術】固体電解質型燃料電池は、第二世代の溶
融炭酸塩型燃料電池に代る第三世代の燃料電池として、
現在、その開発に向け検討が進められている。[Prior Art] Solid oxide fuel cells are a third generation fuel cell that replaces second generation molten carbonate fuel cells.
Studies are currently underway for its development.
【0003】現在検討が進められている固体電解質型燃
料電池には、平板型のものとか、円筒型のもの等があり
、そのうち、平板型の固体電解質型燃料電池は、図6に
一例を示す如く、たとえば、イットリア安定化ジルコニ
ア系イオン導電体を適用した電解質板1の両面側に、空
気極2と燃料極3とを重ねて配置し、空気極2側と燃料
極3側にガス通路4aと5aを形成するためのガス通路
形成体4,5を配置し、空気極2のガス通路4aには空
気(O2 ガス)を、又、燃料極3のガス通路5aには
燃料ガス(H2 ガス)を流すようにして、空気極2側
での反応により生じた酸素イオンO−−を電解質板1を
通して燃料極3側へ到達させるようにし、一方、燃料極
3側では、上記燃料ガスH2 と上記酸素イオンO−−
が反応し、水H2 Oとして出されるようにしたものを
1セルCとし、かかるセルCをセパレータ6を介して多
層に積層してスタックとした構成のものがある。[0003] Solid oxide fuel cells that are currently being studied include flat plate types and cylindrical types. Among these, an example of a flat plate type solid oxide fuel cell is shown in Fig. 6. For example, an air electrode 2 and a fuel electrode 3 are stacked on both sides of an electrolyte plate 1 to which an yttria-stabilized zirconia-based ionic conductor is applied, and a gas passage 4a is provided on the air electrode 2 side and the fuel electrode 3 side. Gas passage forming bodies 4 and 5 are arranged to form gas passages 5a and 5a, and air (O2 gas) is supplied to the gas passage 4a of the air electrode 2, and fuel gas (H2 gas) is supplied to the gas passage 5a of the fuel electrode 3. ) so that the oxygen ions O-- generated by the reaction on the air electrode 2 side reach the fuel electrode 3 side through the electrolyte plate 1. On the other hand, on the fuel electrode 3 side, the above-mentioned fuel gas H2 and The above oxygen ion O--
There is a structure in which one cell C is made up of a cell C in which H2 O is released as water H2O, and such a cell C is laminated in multiple layers with a separator 6 interposed therebetween to form a stack.
【0004】上記の如き平板型の固体電解質型燃料電池
は、小さい容積で大電力が取り出せ、且つセルCの厚さ
を薄くすればするほど積層したときにコンパクトにでき
、その上、大電力が得られるという特徴があり、特に、
電解質板1は薄いほど酸素イオンO−−の通りがよくな
り、性能をアップさせることができる。[0004] The above-mentioned flat plate type solid oxide fuel cell can produce a large amount of electric power with a small volume, and the thinner the cell C is, the more compact it can be when stacked. There is a characteristic that it can be obtained, especially,
The thinner the electrolyte plate 1 is, the better the passage of oxygen ions O-- can improve performance.
【0005】しかし、図6に示した従来の平板型の固体
電解質型燃料電池は、空気極2と燃料極3の各表面にガ
ス通路4aと5aを形成した構成としてあるため、空気
極2、燃料極3、電解質板1を薄肉にして、セルCの厚
みを薄くしようとすると、ガス通路4a,5aを流れる
ガスの流れが悪くなると共に、空気極2及び燃料極3と
電解質板1との接触が悪くて、電子(又は電流)の導電
性が悪くなり、又、酸素イオンO−−の導通性を向上さ
せる目的で電解質板1を100μm 以下に薄くすると
、その支持が必要となるため、電解質板1を支持する空
気極2、燃料極3は強度を有していることが要求される
が、従来の方式では、空気極2も燃料極3も凹凸面を電
解質板1と接触させる構造としているため、電解質板1
を支持して強度をもたせることができない、等の問題が
ある。However, the conventional flat plate solid oxide fuel cell shown in FIG. 6 has a structure in which gas passages 4a and 5a are formed on each surface of the air electrode 2 and the fuel electrode 3. If an attempt is made to reduce the thickness of the cell C by making the fuel electrode 3 and the electrolyte plate 1 thinner, the flow of gas through the gas passages 4a and 5a will deteriorate, and the connection between the air electrode 2 and the fuel electrode 3 and the electrolyte plate 1 will deteriorate. If the contact is poor, the conductivity of electrons (or current) will be poor, and if the electrolyte plate 1 is made thinner than 100 μm for the purpose of improving the conductivity of oxygen ions O--, it will need to be supported. The air electrode 2 and fuel electrode 3 that support the electrolyte plate 1 are required to have strength, but in conventional systems, both the air electrode 2 and the fuel electrode 3 have a structure in which the uneven surfaces are in contact with the electrolyte plate 1. Therefore, electrolyte plate 1
There are problems such as the inability to support and provide strength.
【0006】かかる問題を解消するためには、空気極2
又は燃料極3を多孔質体としてその内部をガスが通過で
きるようにするか、あるいは、空気極2及び燃料極3の
内部に多数の貫通孔を並列に設けて該貫通孔をガス通路
とするようにして、上記各電極の外表面を平滑面とする
ようにすれば、100〜200μm の薄膜とした電解
質板1を確実に支持することができる。[0006] In order to solve this problem, the air electrode 2
Alternatively, the fuel electrode 3 is made porous so that gas can pass therethrough, or a large number of through holes are provided in parallel inside the air electrode 2 and the fuel electrode 3, and the through holes are used as gas passages. By making the outer surface of each electrode smooth in this manner, the electrolyte plate 1, which is a thin film of 100 to 200 μm, can be reliably supported.
【0007】[0007]
【発明が解決しようとする課題】ところが、多孔質体の
電極にガスを流すことはガスの流れが悪い問題があり、
一方、空気極2及び燃料極3の内部に貫通孔を並列に設
ける場合は、厚さ1〜2mmの空気極2及び燃料極3の
内部に孔をあけることが難しいばかりでなく、各電極ご
とに一端にヘッダー部を設ける必要があるが、これも難
しく、更に、空気極2側のヘッダー部は電池の外側に設
けた空気の供給用マニホールドに、又、燃料極3側のヘ
ッダー部は同じく電池の外側に設けた燃料ガスの供給用
マニホールドにそれぞれ接続させるようにする必要があ
ることから、電極の製作性に問題があると共に、マニホ
ールドの構造も複雑となり、又、ガス通路が確保されて
いないとガスの流配が良好に行われなくなって、発電性
能の向上も図りにくい、等の問題がある。更に、この種
固体電解質型燃料電池では、空気と燃料としての水素と
を流すので、これらのガスが流路よりリークして互に接
触する事態が生じると、燃焼、爆発のおそれがある。[Problems to be Solved by the Invention] However, there is a problem in flowing gas through a porous electrode, and the gas flow is poor.
On the other hand, when providing through holes in parallel inside the air electrode 2 and fuel electrode 3, it is not only difficult to make holes inside the air electrode 2 and fuel electrode 3 with a thickness of 1 to 2 mm, but also for each electrode. It is necessary to provide a header part at one end of the battery, but this is also difficult, and furthermore, the header part on the air electrode 2 side is attached to the air supply manifold installed outside the battery, and the header part on the fuel electrode 3 side is also attached to the air supply manifold. Since it is necessary to connect each to the fuel gas supply manifold provided outside the battery, there are problems with the fabrication of the electrodes, the structure of the manifold is complicated, and gas passages are not secured. Otherwise, there are problems such as poor gas distribution and difficulty in improving power generation performance. Furthermore, in this type of solid oxide fuel cell, air and hydrogen as fuel flow, so if these gases leak from the flow path and come into contact with each other, there is a risk of combustion or explosion.
【0008】そこで、本発明は、薄膜構造の電解質板の
支持を確実に且つ強固にできる構造であって、ガスの流
配を良好にして発電性能を向上させることができ、且つ
製作容易で、しかもマニホールド部の構造を単純にでき
るようにし、更に、マニホールド部でのガスリークが生
じても空気と燃料ガスが接触することを防止して安全性
を保持できるようにした平板型の固体電解質型燃料電池
を提供しようとするものである。Therefore, the present invention provides a structure that can reliably and firmly support an electrolyte plate having a thin film structure, improves power generation performance by improving gas flow distribution, and is easy to manufacture. In addition, the structure of the manifold part is simplified, and even if a gas leak occurs in the manifold part, the flat plate type solid electrolyte fuel can be maintained by preventing contact between air and fuel gas. The aim is to provide batteries.
【0009】[0009]
【課題を解決するための手段】本発明は、上記課題を解
決するために、電解質板を空気極と燃料極で両面から挟
み、空気極側に空気を、燃料極側に燃料ガスをそれぞれ
流すようにしてあるものを1セルとし、各セルをセパレ
ータを介して多層に積層するようにしてある構成におい
て、上記セル及びセパレータの周辺部一側と他側の両方
に、空気と燃料ガスの給排用マニホールドをそれぞれ形
成すると共に、不活性ガス封入用のマニホールドをそれ
ぞれ形成し、且つ上記各セルの空気極とセパレータとの
間に、空気の供給用マニホールドと排出用マニホールド
とを連通させるガス通路を形成し、一方、上記各セルの
燃料極とセパレータとの間に、燃料ガスの供給用マニホ
ールドと排出用マニホールドとを連通させるガス通路を
形成し、更に、上記各セルの空気極の表裏における各燃
料ガス給排用マニホールド周辺と、上記各セルの燃料極
の表裏における各空気の給排用マニホールド周辺に、そ
れぞれ不活性ガス封入用溝を囲繞形成し、該各不活性ガ
ス封入用溝を、上記不活性ガスの封入用のマニホールド
に連通させ、不活性ガスの封入圧力を、上記空気及び燃
料ガスの圧力よりも高くしておくようにする。[Means for Solving the Problems] In order to solve the above problems, the present invention sandwiches an electrolyte plate between an air electrode and a fuel electrode from both sides, and allows air to flow to the air electrode side and fuel gas to flow to the fuel electrode side. In a configuration in which each cell is stacked in multiple layers with a separator in between, air and fuel gas are supplied to both one side and the other side of the periphery of the cell and separator. A gas passage that forms a discharge manifold and a manifold for filling inert gas, and connects the air supply manifold and the discharge manifold between the air electrode and the separator of each cell. On the other hand, a gas passage is formed between the fuel electrode and the separator of each of the cells to communicate the fuel gas supply manifold and the exhaust manifold, and a gas passage is formed between the front and back of the air electrode of each of the cells. An inert gas filling groove is formed surrounding each fuel gas supply/discharge manifold and each air supply/discharge manifold on the front and back sides of the fuel electrode of each cell, and each inert gas filling groove is , and communicates with the manifold for charging the inert gas, so that the pressure of the inert gas is higher than the pressure of the air and fuel gas.
【0010】上記ガス通路は、空気極及び燃料極の各セ
パレータ側の面に溝を設けることによって形成してもよ
く、あるいは、セパレータの両面側に凹凸を設けること
によって形成するようにしてもよい。[0010] The gas passages may be formed by providing grooves on the surfaces of the air and fuel electrodes on the separator side, or may be formed by providing unevenness on both surfaces of the separators. .
【0011】[0011]
【作用】内部マニホールド型であるため、空気は空気供
給用マニホールドから空気極とセパレータ間のガス通路
を流れて反対側の排出用マニホールドより排出される。
一方、燃料ガスは燃料ガス供給用マニホールドから燃料
極とセパレータ間のガス通路を流れて反対側の排出用マ
ニホールドより排出される。空気極の燃料ガス給排用マ
ニホールドの周辺と燃料極の空気給排用マニホールドの
周辺には、不活性ガスを高圧で封入した溝があるので、
燃料電池の運転中にシール性の劣化等で空気又は燃料ガ
スの給排用マニホールド部で空気又は燃料ガスのリーク
が生じた場合でも、圧力の高い不活性ガスが空気又は燃
料ガスの側へ流れることにより空気と燃料ガスの接触を
防止することができる。又、同時に不活性ガスが流出し
て不活性ガスの封入圧力が下がることによりリークを検
出することが可能となる。[Operation] Since it is an internal manifold type, air flows from the air supply manifold through the gas passage between the air electrode and the separator and is discharged from the discharge manifold on the opposite side. On the other hand, the fuel gas flows from the fuel gas supply manifold through the gas passage between the fuel electrode and the separator and is discharged from the discharge manifold on the opposite side. There are grooves filled with inert gas under high pressure around the air electrode fuel gas supply and discharge manifold and the fuel electrode air supply and discharge manifold.
Even if air or fuel gas leaks from the air or fuel gas supply/discharge manifold due to deterioration of sealing properties during fuel cell operation, high-pressure inert gas will flow to the air or fuel gas side. This can prevent contact between air and fuel gas. Furthermore, at the same time, the inert gas flows out and the sealing pressure of the inert gas decreases, making it possible to detect a leak.
【0012】各セルを流れる空気及び燃料ガスは、各々
上記ガス通路を通過するので、ガスの流れは良好であり
、しかも空気極及び燃料極の平滑な外表面を電解質板に
接触させて支持させることができて、空気極からの電子
(電気)の電解質板への通りがよくなることから、反応
が促進されて電気化学性能(発電性能)を向上させるこ
とが可能となる。Since the air and fuel gas flowing through each cell pass through the gas passages, the gas flow is good, and the smooth outer surfaces of the air electrode and fuel electrode are brought into contact with and supported by the electrolyte plate. This improves the passage of electrons (electricity) from the air electrode to the electrolyte plate, promoting reactions and improving electrochemical performance (power generation performance).
【0013】[0013]
【実施例】以下、本発明の実施例を図面を参照して説明
する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.
【0014】図1乃至図5は本発明の一実施例を示すも
ので、100〜200μm の厚さを有する薄膜構造の
電解質板1を、空気極2と燃料極3で両面から挟み、空
気極2側に空気を供給するようにすると共に燃料極3側
に燃料ガスを供給するようにしてあるものを1セルCと
し、各セルCをセパレータ6を介して多層に積層するよ
うにしてある構成において、上記電解質板1の周辺部の
一側に、空気Aの供給用マニホールド7と燃料ガスFの
供給用マニホールド8を設けると共に、周辺部の他側に
、空気の排出用マニホールド9と燃料ガスの排出用マニ
ホールド10を設け、更に、上記周辺部の一側のマニホ
ールド7と8の間と周辺部の他側のマニホールド9と1
0の間に、各々不活性ガス(窒素ガス又はアルゴンガス
)封入用のマニホールド11と12を設ける。又、上記
空気極2と燃料極3はセラミックスの焼結体で多孔質体
としてあり、その各周辺部の一側と他側に、上記電解質
板1に設けた空気と燃料ガスの各給排用マニホールド7
,8,9,10と不活性ガス封入用マニホールド11,
12に対応させて、空気の給排用マニホールド7,9と
、燃料ガスの給排用マニホールド8,10と、不活性ガ
ス封入用マニホールド11,12を設けると共に、セル
Cを仕切るセパレータ6の周辺部の一側と他側にも同様
に空気の給排用マニホールド7,9と、燃料ガスの給排
用マニホールド8,10と、不活性ガス封入用マニホー
ルド11,12を設け、セルCをセパレータ6を介し積
層したときに各マニホールド7,8,9,10及び11
,12が積層方向に連通されて一連の流路が形成される
ようにする。上記空気極2の電解質板1に接する面とは
反対側の面(セパレータ6側の面)には、中央部に一側
から他側へ平行に延びるように設けた多数本の溝13a
と、両端部で空気の供給用マニホールド7と排出用マニ
ホールド9に集中するよう屈曲させて設けた屈曲溝13
bとから上記マニホールド7と9を連通するガス通路1
3を形成し、同様に、燃料極3の電解質板1に接する面
とは反対側の面(セパレータ6側の面)には、中央部に
一側から他側へ平行に延びるように設けた多数本の溝1
4aと、両端部で燃料ガスの供給用マニホールド8と排
出用マニホールド10に集中するよう屈曲させて設けた
屈曲溝14bとから上記マニホールド8と10を連通す
るガス通路14を形成し、空気極2側の空気Aと燃料極
3側の燃料ガスFが中央部分で平行流となるようにし、
更に、上記空気極2の表裏両面における燃料ガス給排用
マニホールド8と10の周辺部に、該マニホールド8,
10を取り囲むように不活性ガス封入用溝15aと15
bを囲繞形成すると共に、上記燃料極3の表裏両面にお
ける空気の給排用マニホールド7と9の周辺部に、該マ
ニホールド7,9を取り囲むように不活性ガス封入用溝
16aと16bを囲繞形成し、上記不活性ガス封入用溝
15aと16aを不活性ガス封入用のマニホールド11
に、又、不活性ガス封入用溝15bと16bを不活性ガ
ス封入用のマニホールド12にそれぞれ連通させ、各不
活性ガス封入用溝15a,15b,16a,16bには
、空気Aや燃料ガスFの圧力よりも高い圧力で不活性ガ
スを封入しておくようにし、スタックの外に不活性ガス
の封入圧計測装置(図示せず)を設置する。1 to 5 show an embodiment of the present invention, in which an electrolyte plate 1 having a thin film structure having a thickness of 100 to 200 μm is sandwiched between an air electrode 2 and a fuel electrode 3 from both sides. One cell C is configured to supply air to the 2 side and fuel gas to the fuel electrode 3 side, and each cell C is stacked in multiple layers with a separator 6 in between. , a manifold 7 for supplying air A and a manifold 8 for supplying fuel gas F are provided on one side of the periphery of the electrolyte plate 1, and a manifold 9 for discharging air and a manifold 9 for discharging fuel gas are provided on the other side of the periphery. A discharge manifold 10 is provided, and a discharge manifold 10 is provided between manifolds 7 and 8 on one side of the periphery and manifolds 9 and 1 on the other side of the periphery.
0, manifolds 11 and 12 for sealing inert gas (nitrogen gas or argon gas) are provided. The air electrode 2 and the fuel electrode 3 are porous ceramic sintered bodies, and air and fuel gas supply/discharge ports provided on the electrolyte plate 1 are provided on one side and the other side of their respective peripheries. Manifold 7
, 8, 9, 10 and an inert gas filling manifold 11,
12, manifolds 7 and 9 for supplying and discharging air, manifolds 8 and 10 for supplying and discharging fuel gas, and manifolds 11 and 12 for filling in inert gas are provided, and around the separator 6 that partitions the cell C. Similarly, manifolds 7 and 9 for supplying and discharging air, manifolds 8 and 10 for supplying and discharging fuel gas, and manifolds 11 and 12 for filling in inert gas are provided on one side and the other side of the cell C as a separator. Each manifold 7, 8, 9, 10 and 11 when stacked through 6
, 12 are communicated in the stacking direction to form a series of flow paths. On the surface of the air electrode 2 opposite to the surface in contact with the electrolyte plate 1 (the surface on the separator 6 side), a large number of grooves 13a are provided in the center so as to extend in parallel from one side to the other.
and a bent groove 13 which is bent at both ends so as to concentrate the air in the supply manifold 7 and the discharge manifold 9.
A gas passage 1 connecting the manifolds 7 and 9 from
3, and similarly, on the surface of the fuel electrode 3 opposite to the surface in contact with the electrolyte plate 1 (the surface on the separator 6 side), a plate was provided in the center so as to extend in parallel from one side to the other side. Multiple grooves 1
4a and bent grooves 14b which are bent at both ends so that the fuel gas is concentrated in the supply manifold 8 and the discharge manifold 10, forming a gas passage 14 that communicates the manifolds 8 and 10, and Air A on the side and fuel gas F on the fuel electrode 3 side flow in parallel at the center,
Furthermore, around the manifolds 8 and 10 for supplying and discharging fuel gas on both the front and back surfaces of the air electrode 2, the manifolds 8,
Inert gas filling grooves 15a and 15 surround 10.
At the same time, inert gas filling grooves 16a and 16b are formed around the manifolds 7 and 9 for supplying and discharging air on both the front and back surfaces of the fuel electrode 3 so as to surround the manifolds 7 and 9. Then, the inert gas filling grooves 15a and 16a are connected to the inert gas filling manifold 11.
Furthermore, the inert gas filling grooves 15b and 16b are communicated with the inert gas filling manifold 12, and each inert gas filling groove 15a, 15b, 16a, 16b is filled with air A or fuel gas F. An inert gas is sealed at a pressure higher than that of the stack, and an inert gas filling pressure measuring device (not shown) is installed outside the stack.
【0015】空気極2へ供給される空気(O2 ガス)
Aは、空気供給用マニホールド7からガス通路13に導
入され、該ガス通路13を流される間に反応により酸素
を減少して空気排出用マニホールド9に集中させられ、
該排出用マニホールド9より排出される。この間に多孔
質体としての空気極2内を通って電解質板1に達した空
気(O2 ガス)から反応により生成された酸素イオン
O−−は電解質板1を通して燃料極3へと到達させられ
る。一方、燃料極3側では、燃料ガス(H2 ガス)F
が燃料ガス供給用マニホールド8からガス通路14へ導
入され、該ガス通路14を流れる間に酸素イオンO−−
と反応させられた後、水(一部未反応水素を含む)とし
て排出用マニホールド10より排出させられる。Air (O2 gas) supplied to the air electrode 2
A is introduced into the gas passage 13 from the air supply manifold 7, and while flowing through the gas passage 13, oxygen is reduced by reaction and concentrated in the air discharge manifold 9,
It is discharged from the discharge manifold 9. During this time, oxygen ions O-- generated by reaction from air (O2 gas) that has passed through the air electrode 2 as a porous body and reached the electrolyte plate 1 are allowed to reach the fuel electrode 3 through the electrolyte plate 1. On the other hand, on the fuel electrode 3 side, fuel gas (H2 gas) F
is introduced from the fuel gas supply manifold 8 into the gas passage 14, and while flowing through the gas passage 14, oxygen ions O--
After being reacted with, the water is discharged from the discharge manifold 10 as water (containing some unreacted hydrogen).
【0016】上記において、電解質板1を空気極2と燃
料極3で挟んでなるセルCをセパレータ6を介して多層
に積層した場合は、図2の如く、空気Aの給排用マニホ
ールド7,9、燃料ガスFの給排用マニホールド8,1
0は積層方向に連続した流路となり、セルCごとに空気
Aは供給用マニホールド7からガス通路13を通って排
出用マニホールド9へ導かれ、燃料ガスFは供給用マニ
ホールド8からガス通路14を通って排出用マニホール
ド10へ導かれるが、空気の給排用マニホールド7と9
の部分又は燃料ガスの給排用マニホールド8と10の部
分でリークが生じ、空気と燃料ガスとが接触が生じると
、燃焼、爆発のおそれがあるため、マニホールド部のシ
ール性は重要である。固体電解質型燃料電池の運転中に
おいてシール性劣化等で空気の給排用マニホールド7,
9の部分又は燃料ガスの給排用マニホールド8,10の
部分で空気又は燃料ガスのリークが発生したとすると、
これまでに提案されている固体電解質型燃料電池ではリ
ークによる空気と燃料ガスの混合の問題があるが、本発
明では、空気極2側には燃料ガスFの給排用マニホール
ド8と10の周りに不活性ガス封入用溝15a,15b
を設け、且つ燃料極3側には空気Aの給排用マニホール
ド7と9の周りに不活性ガス封入用溝16a,16bを
設けた構成としてあり、且つ封入した不活性ガスの圧力
を空気や燃料ガスの圧力よりも高くしてあることから、
シール性劣化等で空気又は燃料ガスのリークが生じたと
しても、リークによる空気と燃料ガスの混合を未然に防
止することができる。すなわち、空気極2側で燃料ガス
が給排用マニホールド8,10の部分にてリークした場
合は、不活性ガス封入用溝15a,15bに封入されて
いる窒素、アルゴンの如き不活性ガスが圧力差により燃
料ガスのマニホールド8,10側へ流れることになって
、燃料ガスと空気の混合を防止することができ、又、燃
料極3側で空気がリークした場合でも、同様に空気のマ
ニホールド7,9の周りの不活性ガス封入用溝16a,
16bに封入した不活性ガスが逆に空気のマニホールド
7,9へ流入することになって、空気と燃料ガスの混合
を防止することができる。これによりリークによる燃料
ガスと空気の混合による燃焼、爆発のおそれを未然に防
止することができる。又、上記空気又は燃料ガスのリー
ク時には、封入されている不活性ガスが空気又は燃料ガ
スのマニホールドに流入して、封入ガス圧の低下がもた
らされるので、このガス圧力低下をスタックの外に設置
する図示しない不活性ガス封入圧計測装置にて検出する
ことにより、空気又は燃料ガスのリーク発生を検出する
ことができる。In the above, when the cell C consisting of the electrolyte plate 1 sandwiched between the air electrode 2 and the fuel electrode 3 is stacked in multiple layers with the separator 6 in between, as shown in FIG. 9. Fuel gas F supply/discharge manifold 8,1
0 is a continuous flow path in the stacking direction, and for each cell C, air A is guided from the supply manifold 7 through the gas passage 13 to the discharge manifold 9, and fuel gas F is guided from the supply manifold 8 through the gas passage 14. The air is guided to the exhaust manifold 10 through the air supply and exhaust manifolds 7 and 9.
The sealability of the manifold part is important because if a leak occurs at the part or the part of the manifolds 8 and 10 for supplying and discharging fuel gas, and if air and fuel gas come into contact, there is a risk of combustion or explosion. During the operation of the solid oxide fuel cell, the air supply and exhaust manifold 7,
If an air or fuel gas leak occurs at the part 9 or the fuel gas supply/discharge manifolds 8 and 10,
Solid oxide fuel cells that have been proposed so far have the problem of mixing air and fuel gas due to leakage, but in the present invention, the air electrode 2 side has a structure around the manifolds 8 and 10 for supplying and discharging fuel gas F. Inert gas filling grooves 15a and 15b
In addition, inert gas filling grooves 16a and 16b are provided around the air A supply/discharge manifolds 7 and 9 on the fuel electrode 3 side, and the pressure of the sealed inert gas is adjusted to the air or Since the pressure is higher than that of the fuel gas,
Even if air or fuel gas leaks due to deterioration of sealing performance or the like, mixing of air and fuel gas due to the leak can be prevented. That is, if fuel gas leaks from the supply/discharge manifolds 8, 10 on the air electrode 2 side, the inert gas such as nitrogen or argon sealed in the inert gas filling grooves 15a, 15b will become under pressure. Due to the difference, the fuel gas flows to the manifolds 8 and 10 side, which prevents mixing of fuel gas and air.Also, even if air leaks on the fuel electrode 3 side, the air flows to the manifold 7 side. , 9 around the inert gas filling groove 16a,
The inert gas sealed in 16b will instead flow into the air manifolds 7 and 9, and mixing of air and fuel gas can be prevented. This can prevent combustion and explosion caused by mixture of fuel gas and air due to leakage. In addition, when the air or fuel gas leaks, the sealed inert gas flows into the air or fuel gas manifold, resulting in a drop in the sealed gas pressure. The occurrence of leakage of air or fuel gas can be detected by detecting it with an inert gas filling pressure measuring device (not shown).
【0017】なお、上記した実施例において、不活性ガ
ス封入用溝15a,16a及び15b,16bへの不活
性ガスの封入は、セルCの数層間ごとで行うようにする
こと、上記の実施例ではガス通路13と14を空気極2
と燃料極3の各片面に形成した場合を示したが、セパレ
ータ6の表裏両面に別々に形成するようにしたものでも
よいこと、又、本発明で採用したガスリーク対策は、固
体電解質型燃料電池のほかに、水素製造装置やその他水
素と酸素が混合するおそれがあるところに適用して有効
であること、等は勿論である。[0017] In the above embodiment, the inert gas is filled in the inert gas filling grooves 15a, 16a and 15b, 16b every several layers of the cell C. Now, connect the gas passages 13 and 14 to the air electrode 2.
Although the above example shows the case in which these are formed on each side of the fuel electrode 3, it is also possible to form them separately on both the front and back sides of the separator 6, and the gas leak countermeasure adopted in the present invention is suitable for use in solid oxide fuel cells. Of course, it is also effective when applied to hydrogen production equipment and other places where hydrogen and oxygen may mix.
【0018】[0018]
【発明の効果】以上述べた如く、本発明の固体電解質型
燃料電池によれば、電解質板を空気極と燃料極とで両面
から挟んでなるセルをセパレータを介して多層に積層す
るようにしてある構成において、上記セル及びセパレー
タの周辺部の一側と他側に空気と燃料ガスの各給排用マ
ニホールド及び不活性ガス封入用マニホールドをそれぞ
れ形成し、且つ空気極とセパレータとの間に、空気の供
給用マニホールドと排出用マニホールドとを連通するガ
ス通路を形成して、ガス通路が両端部分で上記給排用マ
ニホールドに集中させられるようにし、同様に、燃料極
とセパレータとの間に、燃料ガスの供給用マニホールド
と排出用マニホールドとを連通するガス通路を形成して
、該ガス通路も両端部で給排用マニホールドに集中させ
られるようにすると共に、上記空気極に形成された燃料
ガスの供給用と排出用の各マニホールドの周辺、及び上
記燃料極に形成された空気の供給用と排出用の各マニホ
ールドの周辺に、各々不活性ガス封入用溝を囲繞形成し
、上記不活性ガス封入用マニホールドから不活性ガス封
入用溝に、空気又は燃料ガスの圧力よりも高い圧力の不
活性ガスを封入しておくようにした構成としてあるので
、次の如き優れた効果を奏し得る。
(i) 運転中のシール性劣化等に伴い空気、燃料ガス
がマニホールド部でリークし、空気極側又は燃料極側で
リークによる空気と燃料ガスが混合するおそれが生じた
場合は、不活性ガス封入用溝に封入しておいた不活性ガ
スが圧力差で空気又は燃料ガスのマニホールド側へ流入
することにより空気と燃料ガスの混合を防止でき、両者
の混合により燃焼、爆発のおそれを未然に防止できる。
(ii)不活性ガス封入用溝に封入した不活性ガスが、
リークを生じた空気又は燃料ガスのマニホールド側へ流
入することにより、封入した不活性ガスの圧力低下を来
たすので、この不活性ガスの圧力低下によって燃料電池
スタックのリークを検出できる。
(iii) 電解質板に対して空気極と燃料極を全面に
わたって密着させることができて良好な接触性を確保で
きるようにしてあるため、空気極側からの酸素イオンが
電解質板を通過して燃料極へ到達する際の電子(電気)
の導通性を良くすることができると共に、ガス通路も確
保できてガスの流通性を良くすることができて、反応を
促進させて性能を向上させることができる。
(iv)上記(iii) における電解質板と電極との
接触性が良くなることから、電解質板を薄膜としてもそ
の支持を強固に行わせることができると共に、ガス通路
を電極の内部に形成することがないことから、電極の製
作性を向上させることができる。
(v) 周辺部にマニホールドを設けて、ガス通路をマ
ニホールドに集中させるようにしてあるので、マニホー
ルド部の構造を単純化させることができる。[Effects of the Invention] As described above, according to the solid oxide fuel cell of the present invention, the cell is formed by sandwiching an electrolyte plate between an air electrode and a fuel electrode from both sides, and is stacked in multiple layers with a separator in between. In one configuration, air and fuel gas supply/discharge manifolds and inert gas filling manifolds are formed on one side and the other side of the periphery of the cell and the separator, and between the air electrode and the separator, A gas passage communicating between an air supply manifold and an air discharge manifold is formed so that both ends of the gas passage are concentrated in the supply and discharge manifold, and similarly, between the fuel electrode and the separator, A gas passage is formed that communicates the fuel gas supply manifold and the discharge manifold, and the gas passage is also concentrated at both ends in the supply and discharge manifold, and the fuel gas formed in the air electrode is Inert gas filling grooves are formed surrounding each manifold for supplying and discharging air, and around each manifold for supplying and discharging air formed in the fuel electrode, and the inert gas Since the structure is such that an inert gas having a pressure higher than that of air or fuel gas is sealed from the filling manifold to the inert gas filling groove, the following excellent effects can be achieved. (i) If air or fuel gas leaks from the manifold due to deterioration of sealing performance during operation, and there is a risk that air and fuel gas may mix due to the leak on the air electrode side or fuel electrode side, use an inert gas The inert gas sealed in the sealing groove flows into the air or fuel gas manifold side due to the pressure difference, which prevents air and fuel gas from mixing, and prevents the risk of combustion or explosion due to the mixing of the two. It can be prevented. (ii) The inert gas sealed in the inert gas filling groove is
When the leaked air or fuel gas flows into the manifold side, the pressure of the enclosed inert gas decreases, so that a leak in the fuel cell stack can be detected by this pressure decrease of the inert gas. (iii) Since the air electrode and fuel electrode can be brought into close contact with the electrolyte plate over the entire surface to ensure good contact, oxygen ions from the air electrode side pass through the electrolyte plate and are absorbed into the fuel. Electrons (electricity) as they reach the poles
Not only can the conductivity of the gas be improved, but also gas passages can be ensured to improve gas circulation, which can promote reactions and improve performance. (iv) Since the contact between the electrolyte plate and the electrode in (iii) above is improved, even if the electrolyte plate is a thin film, it can be strongly supported, and gas passages can be formed inside the electrode. Since there is no porosity, the manufacturability of the electrode can be improved. (v) Since the manifold is provided in the peripheral portion and the gas passages are concentrated in the manifold, the structure of the manifold portion can be simplified.
【図1】本発明の固体電解質型燃料電池の一実施例を示
す斜視図である。FIG. 1 is a perspective view showing one embodiment of a solid oxide fuel cell of the present invention.
【図2】図1を分解して示す斜視図である。FIG. 2 is an exploded perspective view of FIG. 1;
【図3】空気極の平面図である。FIG. 3 is a plan view of the air electrode.
【図4】電解質板の平面図である。FIG. 4 is a plan view of an electrolyte plate.
【図5】燃料極の平面図である。FIG. 5 is a plan view of the fuel electrode.
【図6】従来の固体電解質型燃料電池の概略斜視図であ
る。FIG. 6 is a schematic perspective view of a conventional solid oxide fuel cell.
1 電解質板
2 空気極
3 燃料極
6 セパレータ
7 空気供給用マニホールド
8 燃料ガス供給用マニホールド
9 空気排出用マニホールド
10 燃料ガス排出用マニホールド
11,12 不活性ガス封入用マニホールド13,1
4 ガス通路
15a,15b,16a,16b 不活性ガス封入用
溝C セル
A 空気
F 燃料ガス1 Electrolyte plate 2 Air electrode 3 Fuel electrode 6 Separator 7 Air supply manifold 8 Fuel gas supply manifold 9 Air discharge manifold 10 Fuel gas discharge manifold 11, 12 Inert gas filling manifold 13, 1
4 Gas passages 15a, 15b, 16a, 16b Inert gas filling groove C Cell A Air F Fuel gas
Claims (1)
挟み、空気極側に空気を、燃料極側に燃料ガスをそれぞ
れ流すようにしてあるものを1セルとし、各セルをセパ
レータを介して多層に積層するようにしてある固体電解
質型燃料電池において、上記セル及びセパレータの周辺
部一側と他側の両方に、空気と燃料ガスの各給排用マニ
ホールドを形成すると共に、不活性ガス封入用のマニホ
ールドを形成し、且つ上記各セルの空気極とセパレータ
との間に空気の供給用マニホールドと排出用マニホール
ドとを連通するガス通路を、又、上記各セルの燃料極と
セパレータとの間に燃料ガスの供給用マニホールドと排
出用マニホールドとを連通するガス通路をそれぞれ形成
し、更に、上記各セルの空気極に形成された燃料ガスの
給排用の各マニホールド周辺と、各セルの燃料極に形成
された空気の給排用の各マニホールド周辺に、それぞれ
不活性ガス封入用溝を囲繞形成し、該各不活性ガス封入
用溝を不活性ガス封入用マニホールドに連通させて、不
活性ガスを空気、燃料ガスより高圧で封入させた構成を
有することを特徴とする固体電解質型燃料電池。[Claim 1] An electrolyte plate is sandwiched between an air electrode and a fuel electrode from both sides, and air is allowed to flow to the air electrode side, and fuel gas is allowed to flow to the fuel electrode side, respectively, as one cell, and each cell is separated by a separator. In a solid oxide fuel cell that is stacked in multiple layers, manifolds for supplying and discharging air and fuel gas are formed on both one side and the other side of the periphery of the cell and separator, as well as manifolds for supplying and discharging inert gas. A gas passage is formed between the air electrode of each cell and the separator to communicate the air supply manifold and the exhaust manifold; A gas passage is formed in between to communicate the fuel gas supply manifold and the discharge manifold, and furthermore, a gas passage is formed between each of the fuel gas supply and discharge manifolds formed at the air electrode of each cell, and each cell. An inert gas filling groove is formed surrounding each manifold formed in the fuel electrode for supplying and discharging air, and each inert gas filling groove is communicated with the inert gas filling manifold to fill the inert gas. A solid electrolyte fuel cell characterized by having a configuration in which active gas is sealed at a higher pressure than air and fuel gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03089415A JP3102052B2 (en) | 1991-03-29 | 1991-03-29 | Solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03089415A JP3102052B2 (en) | 1991-03-29 | 1991-03-29 | Solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04303566A true JPH04303566A (en) | 1992-10-27 |
JP3102052B2 JP3102052B2 (en) | 2000-10-23 |
Family
ID=13970022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03089415A Expired - Fee Related JP3102052B2 (en) | 1991-03-29 | 1991-03-29 | Solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3102052B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000041260A3 (en) * | 1998-12-30 | 2000-11-30 | Ballard Power Systems | Fuel cell fluid flow field plate and methods of making fuel cell flow field plates |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005117179A1 (en) * | 2004-05-28 | 2005-12-08 | Nihon University | Solid oxide fuel cell and method for sealing same |
FR3030893B1 (en) * | 2014-12-18 | 2017-01-20 | Commissariat Energie Atomique | ELEMENTARY PATTERN FOR ELECTROLYSIS OR CO-ELECTROLYSIS REACTOR (SOEC) OR FUEL CELL (SOFC) WITH PRESSURE OPERATION |
-
1991
- 1991-03-29 JP JP03089415A patent/JP3102052B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000041260A3 (en) * | 1998-12-30 | 2000-11-30 | Ballard Power Systems | Fuel cell fluid flow field plate and methods of making fuel cell flow field plates |
Also Published As
Publication number | Publication date |
---|---|
JP3102052B2 (en) | 2000-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4344484B2 (en) | Solid polymer cell assembly | |
JP4516229B2 (en) | Solid polymer cell assembly | |
JP4505204B2 (en) | Fuel cell system | |
JP4630529B2 (en) | Fuel cell system | |
JPH08222237A (en) | Separator for fuel cell | |
JP2004119121A (en) | Fuel cell | |
JPH0536417A (en) | Hollow thin plate type solid electrolytic fuel cell | |
JP2004014446A (en) | Fuel cell | |
JPS63119166A (en) | Fuel battery | |
JPH04303566A (en) | Solid electrolyte fuel cell | |
JPH09167623A (en) | Solid polymer electrolyte type fuel cell | |
JP2003100322A (en) | Fuel cell | |
JP2018206475A (en) | Electrochemical reaction cell stack | |
JPH0227670A (en) | Fuel cell | |
JPH0613099A (en) | Fuel cell | |
CN110249463B (en) | Electrochemical reaction unit and electrochemical reaction battery | |
JP5249177B2 (en) | Fuel cell system | |
JP3496819B2 (en) | Polymer electrolyte fuel cell | |
JP2005183132A (en) | Fuel cell | |
JP2816477B2 (en) | Solid electrolyte fuel cell | |
JPH01183070A (en) | Separator for fuel cell | |
JPH06196198A (en) | Solid electrolyte type fuel cell | |
JP2004014299A (en) | Fuel cell | |
JP2004303666A (en) | Supporting membrane type solid oxide fuel cell | |
JP4228895B2 (en) | Solid oxide fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070825 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070825 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080825 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |