JPH04301707A - Noncontact type volume measuring device - Google Patents

Noncontact type volume measuring device

Info

Publication number
JPH04301707A
JPH04301707A JP3089018A JP8901891A JPH04301707A JP H04301707 A JPH04301707 A JP H04301707A JP 3089018 A JP3089018 A JP 3089018A JP 8901891 A JP8901891 A JP 8901891A JP H04301707 A JPH04301707 A JP H04301707A
Authority
JP
Japan
Prior art keywords
slit
volume
image
calculated
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3089018A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suganuma
孫之 菅沼
Koshi Kuno
耕嗣 久野
Kazuya Nakajima
和也 中島
Yukihiko Sakamoto
幸彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3089018A priority Critical patent/JPH04301707A/en
Publication of JPH04301707A publication Critical patent/JPH04301707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To enable accurate measurement of the volume of an uneven part in a noncontact manner by achieving the three dimensional processing of the uneven part volume of a part or the like by means of a range finder (comprised of a laser slit light source and a CCD TV camera). CONSTITUTION:A laser slit light 2 is projected from a laser slit light source 9 on an object 3. The projected light 2 makes the image of the uneven surface matched with the actual surface shape to be risen over the object 3. The light 2 over the surface of the object 3 is taken in as a slit image by means of a CCD TV camera 10, and stored in an image memory in an image processing device 7. The three dimensional coordinates data from the specified coordinate are calculated for respective points of the slit image in the device 7, and these data are transferred to a microcomputer 6. The volume of one slit on the slit projection position is calculated from these data by means of the microcomputer 6. Then, a slight movement is made of an X-axis table 4 is made through the microcomputer control. The volume of the respective slit is calculated for the whole top surface of the object 3, and the volume of a recessed part is obtained through integration of one slit volume.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この出願の発明は、部品等の凹部
又は凸部の容積(例えばピストン燃焼室容積)や容器の
内容積等を非接触で測定することができる非接触容積測
定装置に関するものである。
[Field of Industrial Application] The invention of this application relates to a non-contact volume measuring device that can measure the volume of concave or convex parts of parts (for example, the volume of a piston combustion chamber), the internal volume of a container, etc. It is something.

【0002】0002

【従来の技術】従来より容器の内容積を正確に測定する
方法として、例えば液体(特に水)を容器に入れ、容器
が満たされるまでに入れた水の量をもってその容積の内
容量とする測定が行われていた。しかし、生産工程で容
器を次々と測定し、測定後に水を捨て、容器を乾燥させ
る必要がある場合、上記のような方法では使用した水の
排水設備或いは、回収設備を必要とし、更に測定後の容
器の乾燥設備も必要とされる。このように水を使って容
積測定を行なう方法は、設備が大きくなるし、乾燥のた
めの設備と時間も余計に必要とされる欠点がある。
[Background Art] Conventionally, as a method for accurately measuring the internal volume of a container, for example, a liquid (particularly water) is poured into a container, and the amount of water added until the container is filled is determined as the internal volume of the container. was being carried out. However, when containers are measured one after another in the production process, and it is necessary to discard the water and dry the containers after each measurement, the above method requires drainage equipment or collection equipment for the used water, and Container drying equipment is also required. This method of measuring volume using water has disadvantages in that it requires large equipment and requires additional equipment and time for drying.

【0003】また水の代わりに気体を使って同様の方法
で容積測定を行なう方法(エアーボリュームテスター)
もある(特願昭63−223529号公報参照)。しか
し気体は圧縮性であるので、気体を利用した容積測定は
その気体の圧力の影響を受け易く、かつ温度に対する影
響も大きい上に、水と比べて気体は粘性が小さいことか
ら、容器自体及び容器と測定装置の接続部等における気
体の洩れが大きく影響し、精度の高い測定は困難であっ
た。また上記のようなエアーボリュームテスターはボイ
ルの法則PV=coustを用い圧力から容積を算出す
るものであるが、これは温度が一定の場合にのみ成立す
る。従って、基準容器内の空気温度と被測定容器内の空
気温度が等しくなければならず、被測定容器の温度がそ
れぞれ一定でなければ当然被測定容器内の空気温度もそ
れぞれ変化し、基準容器内空気温度と温度差が発生し誤
差が生じる。更に温度差が例えば夏、冬或いは昼、夜で
も変化するため実際のラインでは基準容器と被測定容器
の温度とを一定に管理するのは不可能である。またエア
ーボリュームテスターはエアーが圧縮性流体のため、容
器内に注入する際において時間がかかり、またシールが
難しくインライン計測には不向きである等々の問題があ
る。
[0003] There is also a method of measuring volume using a similar method using gas instead of water (air volume tester).
(See Japanese Patent Application No. 63-223529). However, since gas is compressible, volume measurement using gas is easily affected by the pressure of the gas, and has a large effect on temperature.In addition, gas has a lower viscosity than water, so the container itself Gas leakage at the connection between the container and the measuring device had a significant effect, making highly accurate measurements difficult. Further, the air volume tester described above calculates volume from pressure using Boyle's law PV=cost, but this only holds true when the temperature is constant. Therefore, the air temperature in the reference container and the air temperature in the test container must be equal, and if the temperatures in the test containers are constant, the air temperature in the test containers will naturally change, and the temperature in the reference container will change. A temperature difference between the air temperature and the air temperature causes an error. Furthermore, since the temperature difference changes, for example, in summer and winter, or during the day and night, it is impossible to maintain constant temperature control between the reference container and the measured container in an actual production line. In addition, since air is a compressible fluid, the air volume tester takes time to inject into the container, and it is difficult to seal, making it unsuitable for in-line measurement.

【0004】0004

【発明が解決しようとする課題】本発明は、上記従来の
水や気体を使って容積測定を行なう容積測定装置の有す
る問題点を解決するために、部品等の凹凸部の容積をレ
ンジファインダを用いて3次元画像処理を行なうことに
より、非接触で凹凸部の容積を正確に測定できる非接触
容積測定装置を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned problems of conventional volume measuring devices that measure volume using water or gas by using a range finder to measure the volume of uneven parts, etc. It is an object of the present invention to provide a non-contact volume measuring device that can accurately measure the volume of an uneven portion without contact by performing three-dimensional image processing.

【0005】[0005]

【課題を解決するための手段】このため、本発明が上記
問題点を解決するために採用した第1の技術手段は、測
定装置測定物を所定方向に所定距離移動する移動台と、
前記測定物にスリット光を照射するスリット光源と、こ
のスリット光源から出力されたスリット光が非測定物に
当っている時のスリット画像を撮影するカメラと、前記
カメラから得られるスリット画像から3次元データを画
像処理し1スリット画像毎の容積を演算し、これらを積
分して容積全体を求める機能を有する画像処理手段とか
ら非接触容積測定装置を構成したことにある。また本発
明が採用した第2の技術手段は、スリット光源より測定
物にスリット光を投射し、測定物表面上のスリット光を
テレビカメラによりスリット画像として取込み、取り込
んだスリット画像をもとに所定座標からの3次元座標デ
ータ演算を行い、このデータによりスリット投射位置の
1スリット容積を算出し、次いで測定物を移動させなが
ら上記と同一手順により各1スリット毎の容積を算出し
、その後すべての1スリット容積を積分することにより
非接触で測定すべき容積を求めるようにしたことにある
[Means for Solving the Problems] Therefore, the first technical means adopted by the present invention to solve the above-mentioned problems is a moving table for moving a measuring device measuring object a predetermined distance in a predetermined direction;
A slit light source that irradiates the object to be measured with slit light, a camera that takes a slit image when the slit light output from the slit light source hits a non-measurement object, and a three-dimensional image obtained from the slit image obtained from the camera. A non-contact volume measuring device is constructed from image processing means having a function of image processing data, calculating the volume for each slit image, and integrating these to obtain the entire volume. In addition, the second technical means adopted by the present invention is to project slit light onto the object to be measured from a slit light source, capture the slit light on the surface of the object as a slit image with a television camera, and create a predetermined image based on the captured slit image. Calculate three-dimensional coordinate data from the coordinates, calculate the volume of one slit at the slit projection position using this data, then calculate the volume of each slit by the same procedure as above while moving the measurement object, and then calculate the volume of each slit at the slit projection position. The purpose is to obtain the volume to be measured without contact by integrating the volume of one slit.

【0006】[0006]

【作用】先ずレンジファインダのレーザースリット光源
より対象物にレーザースリット光を投射する。投射され
たスリット光は対象物上で、その表面形状に合致した凹
凸表面を浮き出す。対象物表面上のレーザースリット光
をレンジファインダ内のCCDテレビカメラによりスリ
ット画像として取込み、画像処理装置内の画像メモリに
ストアする。画像処理装置内でスリット画像上の各点に
対し、所定座標からの3次元座標データ演算を行い、こ
のデータをパソコンに転送する。パソコン内で得られた
スリット上の3次元座標データよりスリット投射位置の
容積(1スリット容積Vc )を算出する。上記と同一
手順を行うためにパソコン制御によりX軸テーブルを微
動(ΔX)する。被測定物の頂面部すべてについて、各
1スリット毎の容積(i=0〜m)が算出されれば計測
を終了し、すべての1スリット容積を積分して凹部容積
Vを求める。
[Operation] First, the laser slit light source of the range finder projects a laser slit light onto the object. The projected slit light highlights an uneven surface that matches the surface shape of the object. Laser slit light on the surface of an object is captured as a slit image by a CCD television camera in a range finder and stored in an image memory in an image processing device. Three-dimensional coordinate data is calculated from predetermined coordinates for each point on the slit image within the image processing device, and this data is transferred to a personal computer. The volume of the slit projection position (one slit volume Vc) is calculated from the three-dimensional coordinate data on the slit obtained in the personal computer. In order to perform the same procedure as above, the X-axis table is slightly moved (ΔX) by computer control. Once the volume of each slit (i=0 to m) has been calculated for all the top surfaces of the object to be measured, the measurement is finished, and the recess volume V is determined by integrating all the slit volumes.

【0007】[0007]

【実施例】以下に図面を参照して本発明に係る実施例を
説明すると、図1は本発明に係る容積測定装置の構成図
であり、図2はレンジファインダの概略構成図、図3は
レンジファインダによる非測定部の形状を写し出した図
である。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a volume measuring device according to the present invention, FIG. 2 is a schematic block diagram of a range finder, and FIG. 3 is a schematic block diagram of a range finder. FIG. 3 is a diagram showing the shape of a non-measurement part by a range finder.

【0008】図1において、1はレンジファインダ、2
はレーザースリット光、3は非測定物(対象物)、4は
対象部をX軸方向に移動するX軸テーブル、5はX軸ド
ライバ、6はマイコン、7は画像処理装置、8は白黒モ
ニタであり、これらによって本実施例の非接触容積測定
装置が構成されている。
In FIG. 1, 1 is a range finder, 2 is a range finder, and 2 is a range finder.
is a laser slit light, 3 is a non-measurable object (target object), 4 is an X-axis table that moves the target part in the X-axis direction, 5 is an X-axis driver, 6 is a microcomputer, 7 is an image processing device, 8 is a black and white monitor These constitute the non-contact volume measuring device of this embodiment.

【0009】続いて各構成部の説明をすると、レンジフ
ァインダ1は図2、図3に示すように、レーザースリッ
ト光源9と、CCDテレビカメラ10から構成されてお
り、レーザースリット光源から出力されたスリット光が
被測定物(対象物)にあたっている時のスリット画像を
カメラでとらえ、カメラから得られるスリット画像のス
リット上の3次元データを画像処理装置に抽出するもの
である。またX軸テーブルは対象物をスキャンするため
のものであり、X軸ドライバ5によって所定距離づつ対
象物をX軸方向に微小移動させる機能を有している。ま
たマイコン6及び画像処理装置7は前述の3次元画像デ
ータをもとに後述する方法により容積を演算するもので
、1スリット画像毎の容積を演算し、これらを積分して
容積全体を求める機能を有している。
Next, each component will be explained. As shown in FIGS. 2 and 3, the range finder 1 is composed of a laser slit light source 9 and a CCD television camera 10. A camera captures a slit image when the slit light hits an object to be measured, and an image processing device extracts three-dimensional data on the slit in the slit image obtained from the camera. The X-axis table is used to scan the object, and has the function of minutely moving the object in the X-axis direction by an X-axis driver 5 by a predetermined distance. Furthermore, the microcomputer 6 and the image processing device 7 calculate the volume based on the above-mentioned three-dimensional image data by a method described later, and have a function of calculating the volume of each slit image and integrating these to obtain the entire volume. have.

【0010】続いて以上のように構成された非接触容積
測定装置を使用して、図5に示すような対象物を例にし
て具体的な容積測定方法を図4のフローチャートに基づ
いて説明する。 1)  プログラムがスタートすると、先ずレンジファ
インダのレーザースリット光源より対象物にレーザース
リット光を投射する。投射されたスリット光は図3に示
すように対象物上で、その表面形状に合致した凹凸表面
を浮き出す(ステップ100)。 2)  対象物表面上のレーザースリット光をレンジフ
ァインダ内のCCDテレビカメラにより図3に示す如く
スリット画像として取込み、画像処理装置内の画像メモ
リにストアする(ステップ101)。 3)  画像処理装置内でスリット画像上の各点に対し
、所定座標からの3次元座標データ演算を行い、このデ
ータをパソコンに転送する。具体的にスリット画像上の
点は約480点あり、これらの各点が基準高さからどれ
だけの距離離れているかを演算し、このデータがパソコ
ンに転送される(ステップ102)。 4)  パソコン内で得られたスリット上の3次元座標
データよりスリット投射位置の容積(1スリット容積V
c )を算出する(ステップ103)。 5)  上記1)〜4)と同一手順を行うためにパソコ
ン制御によりX軸テーブルを微動(ΔX)する(ステッ
プ104)。 6)  被測定物の頂面部すべてについて、各1スリッ
ト毎の容積(i=0〜m)が算出されれば計測を終了し
(ステップ105)、すべての1スリット容積を積分す
ることにより次式により凹部容積Vを求める(ステップ
106)。
Next, a specific volume measuring method using the non-contact volume measuring device configured as described above will be explained based on the flowchart of FIG. 4, taking an object as shown in FIG. 5 as an example. . 1) When the program starts, first, the range finder's laser slit light source projects a laser slit light onto the object. As shown in FIG. 3, the projected slit light highlights an uneven surface on the object that matches the surface shape of the object (step 100). 2) The laser slit light on the surface of the object is captured by the CCD television camera in the range finder as a slit image as shown in FIG. 3, and stored in the image memory in the image processing device (step 101). 3) Perform three-dimensional coordinate data calculation from predetermined coordinates for each point on the slit image within the image processing device, and transfer this data to a personal computer. Specifically, there are approximately 480 points on the slit image, and the distance of each of these points from the reference height is calculated, and this data is transferred to the personal computer (step 102). 4) From the three-dimensional coordinate data on the slit obtained in the computer, the volume of the slit projection position (one slit volume V
c) is calculated (step 103). 5) In order to perform the same procedure as 1) to 4) above, the X-axis table is slightly moved (ΔX) by computer control (step 104). 6) When the volume of each slit (i=0 to m) is calculated for all the top surfaces of the object to be measured, the measurement is finished (step 105), and the following equation is obtained by integrating all the slit volumes. The recess volume V is determined by (step 106).

【数1】[Math 1]

【0011】以上のようにして、対象物の凹部又は凸部
の容積を求めることができるが、ここでスリット容積算
出に使用する基準高さ及び1スリット容積の算出につい
て更に詳細に説明する。
In the above manner, the volume of the concave or convex portion of the object can be determined. Here, the reference height used for calculating the slit volume and the calculation of one slit volume will be explained in more detail.

【0012】図5のようにレーザースリット光が投射さ
れた場合、i番目のスリット光に対する対象物断面図は
図6のようになる。(ここでi番目のスリット画像に対
してj=0〜nまでのY−Z座標データが得られる)。 図6に基づいて以下の手法により基準高さZav及び1
スリット容積Vi を算出する。 1)  図6における基準高さZavの算出。 j=0よりプラス方向dZj〔=Zi+p −Zi 〕
を順次算出し、始めてdZj>q(qはワーク形状によ
り任意に設定)となる点(形状が変化した位置)をj1
 (図中イ点)とし、またj=nよりマイナス方向にd
Z(−j)〔=Zj−p −Zj 〕を順次算出し、始
めてdZ(−j)>q(形状が変化した点)なる点をj
2 (図中ロ点)とする。以上より平均高さZavは次
式で求められる。
When the laser slit light is projected as shown in FIG. 5, the cross-sectional view of the object for the i-th slit light is as shown in FIG. (Here, Y-Z coordinate data from j=0 to n is obtained for the i-th slit image). Based on FIG. 6, the reference height Zav and 1 are calculated using the following method.
Calculate the slit volume Vi. 1) Calculation of reference height Zav in FIG. 6. Positive direction dZj [=Zi+p −Zi] from j=0
are calculated sequentially, and the first point where dZj > q (q is set arbitrarily depending on the workpiece shape) (the position where the shape changes) is set to j1.
(point A in the figure), and d in the negative direction from j=n.
Sequentially calculate Z(-j) [=Zj-p -Zj], and find the first point where dZ(-j)>q (the point where the shape changes) as j
2 (point B in the figure). From the above, the average height Zav can be calculated using the following formula.

【数2】 2)  1スリット容積Vi の算出。 上記で求めたZav(基準高さ)を用いて、1スリット
容積を算出するにあたって必要となるスリットの1ピッ
チ量を次式で求める。
[Equation 2] 2) Calculation of 1 slit volume Vi. Using the Zav (reference height) determined above, the amount of one pitch of the slit required to calculate the volume of one slit is determined by the following formula.

【数3】ΔX=Xi + 1 −Xi 続いて、図6中の各点の高さ(基準高さからの距離及び
各点間の距離)を次式で求める。
[Equation 3] ΔX=Xi + 1 −Xi Next, the height of each point in FIG. 6 (distance from the reference height and distance between each point) is determined by the following equation.

【数4】ΔYj=Yj + 1 −Yj[Math. 4] ΔYj = Yj + 1 - Yj

【数5】ΔZj
=Zj−Zav 以上の式から1スリット容積を求め次式により積算して
全容積を求めることができる。
[Mathematical 5]ΔZj
=Zj-Zav The volume of one slit is determined from the above formula, and the total volume can be determined by integrating the volume using the following formula.

【数6】[Math 6]

【0013】なお、上記実施例は凹部の容積の測定であ
るが、凸部も全く同様な方法で求めることができる。ま
たスリット光は対象物によっては死角となり、データが
得られない場合もあるが図7に示す如く前後のデータに
より補正を行なえばデータの生成は可能である。また本
発明では以上のようにして非接触により容積が計測可能
なため、砂型等の圧力による変形が起こるものについて
は特に有効と考えられる。
Although the above embodiment measures the volume of a concave portion, a convex portion can also be determined in exactly the same manner. Further, depending on the object, the slit light becomes a blind spot, and data may not be obtained in some cases, but it is possible to generate data if correction is performed using the preceding and following data as shown in FIG. Furthermore, since the present invention allows volume to be measured in a non-contact manner as described above, it is considered to be particularly effective for objects that are deformed due to pressure, such as sand molds.

【0014】[0014]

【発明の効果】以上詳細に説明したように本発明によれ
ば、以下のような優れた効果を奏することができる。 1.非接触により計測可能なため対象物がくずれやすい
材質・形状でも計測できる。 2.対象物が傾いている場合も計測可能である。(気体
、液体を利用した方法では不可能である)3.生産工程
において液体による方法では排水、ワークの乾燥等に設
備が必要であり、気泡が残りやすく自動化が困難である
が、本発明は構成がシンプルで自動化も可能である。 4.エアーボリュームテスターでは生産ラインでワーク
温度変化に影響を受けるが、本発明は影響を受けず計測
できる。
[Effects of the Invention] As described above in detail, according to the present invention, the following excellent effects can be achieved. 1. Since it is possible to measure without contact, it is possible to measure objects made of materials and shapes that are easily damaged. 2. Measurement is possible even when the object is tilted. (This is not possible with methods using gas or liquid.)3. In the production process, liquid methods require equipment for drainage, drying of the workpiece, etc., and bubbles tend to remain, making automation difficult.However, the present invention has a simple configuration and can be automated. 4. Air volume testers are affected by workpiece temperature changes on the production line, but the present invention can measure without being affected.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る実施例としての容積測定装置の構
成図である。
FIG. 1 is a configuration diagram of a volume measuring device as an embodiment of the present invention.

【図2】レンジファインダの構成図である。FIG. 2 is a configuration diagram of a range finder.

【図3】レンジファインダによる被測定部の形状を写し
出した図である。
FIG. 3 is a diagram showing the shape of a part to be measured by a range finder.

【図4】容積測定フローチャート図である。FIG. 4 is a volumetric flowchart diagram.

【図5】対象物にレーザスリットを投射する位置を示す
図である。
FIG. 5 is a diagram showing a position where a laser slit is projected onto an object.

【図6】ワーク断面図である。FIG. 6 is a cross-sectional view of the workpiece.

【図7】死角に対するデータ補正の説明図である。FIG. 7 is an explanatory diagram of data correction for blind spots.

【符号の説明】[Explanation of symbols]

1  レンジファインダ 2  レーザスリット 3  ワーク 4  X軸テーブル 5  X軸ドライバ 6  マイコン 7  画像処理装置 8  白黒モニタ 9  スリット光源 10、14  テレビカメラ 11  レーザスリット光 12  スリット位置 13  対象物 1 Range finder 2 Laser slit 3 Work 4 X-axis table 5 X-axis driver 6. Microcomputer 7 Image processing device 8. Black and white monitor 9 Slit light source 10, 14 TV camera 11 Laser slit light 12 Slit position 13 Object

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】測定物を所定方向に所定距離移動する移動
台と、前記測定物にスリット光を照射するスリット光源
と、このスリット光源から出力されたスリット光が非測
定物に当っている時のスリット画像を撮影するカメラと
、前記カメラから得られるスリット画像から3次元デー
タを画像処理し1スリット画像毎の容積を演算し、これ
らを積分して容積全体を求める機能を有する画像処理手
段とから構成されたことを特徴とする非接触容積測定装
置。
Claims: 1. A moving stage for moving a measured object a predetermined distance in a predetermined direction; a slit light source for irradiating the measured object with slit light; a camera for taking a slit image; and an image processing means having a function of processing three-dimensional data from the slit image obtained from the camera, calculating the volume of each slit image, and integrating these to obtain the entire volume. A non-contact volume measuring device comprising:
【請求項2】スリット光源より測定物にスリット光を投
射し、測定物表面上のスリット光をテレビカメラにより
スリット画像として取込み、取り込んだスリット画像を
もとに所定座標からの3次元座標データ演算を行い、こ
のデータによりスリット投射位置の1スリット容積を算
出し、次いで測定物を移動させながら上記と同一手順に
より各1スリット毎の容積を算出し、その後すべての1
スリット容積を積分することにより測定すべき容積を求
めることを特徴とする非接触容積測定方法。
2. Projecting slit light onto the object to be measured from a slit light source, capturing the slit light on the surface of the object as a slit image with a television camera, and calculating three-dimensional coordinate data from predetermined coordinates based on the captured slit image. The volume of each slit at the slit projection position is calculated using this data, and then the volume of each slit is calculated using the same procedure as above while moving the object to be measured.
A non-contact volume measurement method characterized by determining the volume to be measured by integrating the slit volume.
JP3089018A 1991-03-29 1991-03-29 Noncontact type volume measuring device Pending JPH04301707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089018A JPH04301707A (en) 1991-03-29 1991-03-29 Noncontact type volume measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089018A JPH04301707A (en) 1991-03-29 1991-03-29 Noncontact type volume measuring device

Publications (1)

Publication Number Publication Date
JPH04301707A true JPH04301707A (en) 1992-10-26

Family

ID=13959169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089018A Pending JPH04301707A (en) 1991-03-29 1991-03-29 Noncontact type volume measuring device

Country Status (1)

Country Link
JP (1) JPH04301707A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354382A (en) * 2003-05-28 2004-12-16 General Electric Co <Ge> Method and system for measuring flow aperture area
JP2006317288A (en) * 2005-05-12 2006-11-24 Central Japan Railway Co Bolt height measuring method and device, bolt looseness determination method, and bolt looseness detection device
EP2101144A1 (en) 2008-03-13 2009-09-16 Aisin Seiki Kabushiki Kaisha Concave-convex surface inspection apparatus
JP2012037487A (en) * 2010-08-11 2012-02-23 Koatec Kk Shape inspection device and shape inspection method
CN104913737A (en) * 2015-06-30 2015-09-16 长安大学 Component quality checking device based on line laser three-dimensional measurement and detection method of device
WO2016031364A1 (en) * 2014-08-29 2016-03-03 日立オートモティブシステムズ株式会社 Method for manufacturing component and manufacturing device using such method, and volume measuring method
JP2016173297A (en) * 2015-03-17 2016-09-29 日本碍子株式会社 Evaluation method of erosion of honeycomb structure
US10208459B2 (en) 2014-12-12 2019-02-19 Hitachi, Ltd. Volume estimation device and work machine using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339158A (en) * 1976-09-22 1978-04-10 Nippon Telegr & Teleph Corp <Ntt> Object shape information generating system
JPH0341306A (en) * 1989-07-10 1991-02-21 Asutetsukusu:Kk Measuring apparatus of sectional area and volume

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339158A (en) * 1976-09-22 1978-04-10 Nippon Telegr & Teleph Corp <Ntt> Object shape information generating system
JPH0341306A (en) * 1989-07-10 1991-02-21 Asutetsukusu:Kk Measuring apparatus of sectional area and volume

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354382A (en) * 2003-05-28 2004-12-16 General Electric Co <Ge> Method and system for measuring flow aperture area
JP2006317288A (en) * 2005-05-12 2006-11-24 Central Japan Railway Co Bolt height measuring method and device, bolt looseness determination method, and bolt looseness detection device
EP2101144A1 (en) 2008-03-13 2009-09-16 Aisin Seiki Kabushiki Kaisha Concave-convex surface inspection apparatus
US8049868B2 (en) 2008-03-13 2011-11-01 Aisin Seiki Kabushiki Kaisha Concave-convex surface inspection apparatus
JP2012037487A (en) * 2010-08-11 2012-02-23 Koatec Kk Shape inspection device and shape inspection method
WO2016031364A1 (en) * 2014-08-29 2016-03-03 日立オートモティブシステムズ株式会社 Method for manufacturing component and manufacturing device using such method, and volume measuring method
CN106489061A (en) * 2014-08-29 2017-03-08 日立汽车系统株式会社 The manufacture method of part and the manufacture device using it, cubage measuring method
JPWO2016031364A1 (en) * 2014-08-29 2017-06-01 日立オートモティブシステムズ株式会社 Manufacturing method of parts, manufacturing apparatus using the same, volume measuring method
US10208459B2 (en) 2014-12-12 2019-02-19 Hitachi, Ltd. Volume estimation device and work machine using same
JP2016173297A (en) * 2015-03-17 2016-09-29 日本碍子株式会社 Evaluation method of erosion of honeycomb structure
CN104913737A (en) * 2015-06-30 2015-09-16 长安大学 Component quality checking device based on line laser three-dimensional measurement and detection method of device

Similar Documents

Publication Publication Date Title
Sansoni et al. Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light
He et al. Accurate calibration method for blade 3D shape metrology system integrated by fringe projection profilometry and conoscopic holography
CN102288131A (en) Adaptive stripe measurement device of 360-degree contour error of object and method thereof
CN110864650A (en) Flatness measuring method based on fringe projection
Anchini et al. A new calibration procedure for 3-D shape measurement system based on phase-shifting projected fringe profilometry
CN101509759B (en) Self-demarcating system and method for vision detecting system
Abu-Nabah et al. Simple laser vision sensor calibration for surface profiling applications
El-Hakim et al. Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering
JPH04301707A (en) Noncontact type volume measuring device
JP2005509877A (en) Computer vision system calibration method and system
CN115235379A (en) Monocular line laser three-dimensional vision sensor parameter in-situ calibration device and method
CN201007646Y (en) Liquid auxiliary dislocation scanning three-dimensional shape measuring apparatus
Yamashita et al. 3-D measurement of objects in a cylindrical glass water tank with a laser range finder
TW200844426A (en) On-line mechanical visional inspection system of an object and method thereof
CN110146032B (en) Synthetic aperture camera calibration method based on light field distribution
CN112964318A (en) Real-time detection method and detection system for belt conveyor muck volume flow
CN110514110B (en) Platform leveling control method
Jin et al. Accurate intrinsic calibration of depth camera with cuboids
CN113822920B (en) Method for acquiring depth information by structured light camera, electronic equipment and storage medium
CN114170321A (en) Camera self-calibration method and system based on distance measurement
CN113959362A (en) Structured light three-dimensional measurement system calibration method and routing inspection data processing method
Chang et al. Non-contact scanning measurement utilizing a space mapping method
CN108534704A (en) Cylinder inner wall detection system based on structured light
Sansoni et al. Fast 3D profilometer based upon the projection of a single fringe pattern and absolute calibration
Iovenitti et al. Three-dimensional measurement using a single image

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980714