JPH04292934A - Manufacture of thermoplastic resin film - Google Patents
Manufacture of thermoplastic resin filmInfo
- Publication number
- JPH04292934A JPH04292934A JP3081300A JP8130091A JPH04292934A JP H04292934 A JPH04292934 A JP H04292934A JP 3081300 A JP3081300 A JP 3081300A JP 8130091 A JP8130091 A JP 8130091A JP H04292934 A JPH04292934 A JP H04292934A
- Authority
- JP
- Japan
- Prior art keywords
- film
- hot air
- air blowing
- blowing means
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 229920005992 thermoplastic resin Polymers 0.000 title claims description 15
- 238000007667 floating Methods 0.000 claims abstract description 33
- 238000007664 blowing Methods 0.000 claims description 36
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 57
- 238000000034 method Methods 0.000 abstract description 28
- 230000008569 process Effects 0.000 abstract description 14
- 229920001169 thermoplastic Polymers 0.000 abstract description 5
- 239000004416 thermosoftening plastic Substances 0.000 abstract description 5
- 238000011282 treatment Methods 0.000 description 16
- 230000037303 wrinkles Effects 0.000 description 15
- -1 polyethylene terephthalate Polymers 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000012772 electrical insulation material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、熱による寸法変化が少
なく、かつ平面性に優れた熱可塑性樹脂フイルムの製造
方法に関する。さらに詳しくは包装材料、工業材料、電
気絶縁材料、コンデンサー材料、磁気材料などで熱寸法
安定性、平面性を必要とする用途に使用される熱可塑性
樹脂フイルムおよびシートの製造方法に関する。(本発
明で用いるフイルムとは、ことわりのないかぎりシート
も含むものである。)BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoplastic resin film that exhibits little dimensional change due to heat and excellent flatness. More specifically, the present invention relates to a method for producing thermoplastic resin films and sheets used in packaging materials, industrial materials, electrical insulation materials, capacitor materials, magnetic materials, etc., which require thermal dimensional stability and flatness. (The film used in the present invention also includes sheets, unless otherwise specified.)
【0002】0002
【従来の技術】二軸延伸熱可塑性フイルムは、たとえば
フイルム長手方向に延伸した後、ステンタ等のオーブン
を用いて幅方向に延伸し、延伸後該ステンタ内で幅方向
に弛緩処理等の熱処理を施すことにより、製造されてい
る。このような二軸延伸法においては、通常、ステンタ
内でのフイルム幅方向延伸に際し、いわゆるボーイング
という現象が多かれ少なかれ生じる。[Prior Art] A biaxially stretched thermoplastic film is, for example, first stretched in the longitudinal direction of the film, then stretched in the width direction using an oven such as a stenter, and then subjected to heat treatment such as relaxation treatment in the width direction in the stenter. It is manufactured by applying In such a biaxial stretching method, a so-called bowing phenomenon usually occurs to some extent when the film is stretched in the width direction within the stenter.
【0003】このボーイング101は、図5に誇張して
示すように、フイルム102が、ステンタ103内の幅
方向延伸ゾーン104と熱処理ゾーン105間で延伸部
の長手方向応力に対し、熱処理ゾーンの長手方向応力が
小さく、熱処理部分が延伸ゾーン部分に引張られるため
に生じる現象で、フイルムはその幅方向両エッジ部分が
クリップで把持されているため、中央部分が延伸部分方
向(走行方向上流方向)に引張り込まれて、フイルムが
平面形態を保持しつつ弓なりに湾曲する現象である。ス
テンタ103内には、幅方向延伸ゾーン104、熱処理
ゾーン105以降に、幅方向弛緩処理ゾーン106が設
けられることが多いが、ボーイングはフイルム長手方向
にフイルムが湾曲する現象であるため、一旦発生したも
のを修復するのは困難である。このようなボーイング現
象の程度が激しいと、製膜される二軸延伸熱可塑性フイ
ルムの熱寸法安定性(例えば熱収縮率)や平面性が大き
く損なわれるばかりか、フイルムの各種機械特性(強度
、伸度、ヤング率、F5値など)や熱収縮率、温度、湿
度膨張係数、光学特性などが幅方向においてばらつきを
生じ、用途により使用困難となる。また、機械の幅が大
きくなったり、横延伸後の長手方向の剛性が大きいなど
、よりボーイングが大きくなり問題となる。As shown in an exaggerated manner in FIG. 5, this bowing 101 has a structure in which the film 102 is stretched between the width direction stretching zone 104 and the heat treatment zone 105 in the stenter 103 in response to longitudinal stress in the stretching portion. This phenomenon occurs because the directional stress is small and the heat-treated area is pulled toward the stretching zone.Since both edges in the width direction of the film are held with clips, the center part is pulled toward the stretching area (upstream direction in the running direction). This is a phenomenon in which the film is stretched and curved into an arch while maintaining its flat shape. In the stenter 103, a widthwise relaxation treatment zone 106 is often provided after a widthwise stretching zone 104 and a heat treatment zone 105, but since bowing is a phenomenon in which the film curves in the longitudinal direction of the film, once it occurs, It is difficult to repair things. If the degree of such bowing phenomenon is severe, not only will the thermal dimensional stability (e.g. thermal shrinkage rate) and flatness of the biaxially stretched thermoplastic film to be formed be greatly impaired, but also the various mechanical properties (strength, (elongation, Young's modulus, F5 value, etc.), thermal shrinkage rate, temperature, humidity expansion coefficient, optical properties, etc., vary in the width direction, making it difficult to use depending on the application. In addition, if the width of the machine becomes large or the rigidity in the longitudinal direction after lateral stretching becomes large, bowing becomes larger, which becomes a problem.
【0004】本発明に関連して、熱寸法安定性を付与す
る手段として、特開平2−22038号公報に、特定の
フイルム特性を持ったオーブン通過後のフイルムを、該
フイルムの片面側から加熱空気を送って曲面を描くよう
に浮遊走行させ弛緩熱処理を行なう方法が提案されてい
る。In connection with the present invention, as a means for imparting thermal dimensional stability, Japanese Patent Laid-Open No. 2-22038 discloses that a film having specific film characteristics after passing through an oven is heated from one side of the film. A method has been proposed in which relaxation heat treatment is performed by sending air and causing it to float in a curved manner.
【0005】しかしながら、上記従来方法は、オーブン
通過後の熱処理フイルムに対し、再熱処理を行うもので
、ステンタ内で生じるボーイングを改良するには効果が
ないか、たとえあっても極めて小さい。また、浮遊弛緩
処理を行なう前のフイルム特性を特定条件下に設定しな
ければならず、そのフイルム特性をもったものでなけれ
ば十分な熱寸法安定性を得ることができない。さらに、
平面性を兼ね備えた状態で熱寸法安定性を満足すること
についても同様で、特定条件のフイルムを準備しなけれ
ば良好な平面性が得られない。However, the conventional method described above involves reheating the heat-treated film after passing through the oven, and is not effective in improving the bowing that occurs within the stenter, or even if it is, it is extremely small. In addition, the film characteristics must be set under specific conditions before the floating relaxation treatment, and unless the film has those characteristics, sufficient thermal dimensional stability cannot be obtained. moreover,
The same goes for satisfying thermal dimensional stability while having flatness; good flatness cannot be obtained unless a film is prepared under specific conditions.
【0006】[0006]
【発明が解決しようとする課題】本発明は、前述のよう
な従来延伸方法における、ステンタ内で幅方向延伸、熱
処理の際に生じるボーイングを改良し、かつ、フイルム
長手方向、幅方向の両方向について目的とする熱処理を
適切に行って、二軸延伸フイルム特性が特定条件のフイ
ルムでなくても、平面性が優れかつ熱寸法安定性にも優
れた熱可塑性樹脂フイルムを得ることのできるフイルム
製造方法を提供することを目的とする。[Problems to be Solved by the Invention] The present invention improves the bowing that occurs during width direction stretching and heat treatment in a stenter in the conventional stretching method as described above, and improves bowing in both the longitudinal and width directions of the film. A method for producing a film that can produce a thermoplastic resin film with excellent flatness and thermal dimensional stability even if the biaxially stretched film characteristics do not meet specific conditions by appropriately performing the intended heat treatment. The purpose is to provide
【0007】[0007]
【課題を解決するための手段】この目的に沿う本発明の
熱可塑性樹脂フイルムの製造方法は、熱可塑性樹脂から
なるフイルムを、フイルム長手方向とフイルム幅方向に
二軸延伸した直後に、弧状縦断面を有する熱風吹出し手
段の弧状面に沿って弧状を描くように浮上走行させ、該
浮上走行中に、フイルム長手方向とフイルム幅方向の両
方向に関して実質的に同時に該フイルムの熱処理を行う
方法から成る。[Means for Solving the Problems] The method for producing a thermoplastic resin film of the present invention in accordance with this object is to stretch a film made of a thermoplastic resin biaxially in the film longitudinal direction and the film width direction, and then straighten the film in an arcuate longitudinal direction. The film is made to float in an arc along the arcuate surface of a hot air blowing means having a surface, and the film is heat-treated substantially simultaneously in both the film longitudinal direction and the film width direction during the floating motion. .
【0008】本発明における熱可塑性樹脂とは、加熱す
ると塑性を示す樹脂であり、代表的な樹脂としては、ポ
リエチレンテレフタレート、ポリエチレンナフタレート
など及びそれらの共重合体で代表されるように主鎖にエ
ステル結合を有するポリエステル類、ポリプロピレン、
ポリスチレンなどで代表されるポリオレフィン類、ナイ
ロン6、ナイロン66、ナイロン610、ナイロン12
などで代表されるポリアミド類、ポリフェニレンスルフ
ィドなど、およびそれらの共重合体や変成体などである
。本発明の場合、ポリエチレンテレフタレート、ポリエ
チレンナフタレート、ポリプロピレン、ポリフェニレン
スルフィドおよびそれらの共重合体などが特に本発明の
効果が顕著であり、好ましい。もちろん、上記ポリマー
に公知の添加剤、例えば安定剤、粘度調製剤、酸化防止
剤、充填剤、滑り剤、帯電防止剤、ブロッキング防止剤
、剥離剤、離型剤などを含有させてもよい。[0008] The thermoplastic resin in the present invention is a resin that exhibits plasticity when heated, and typical resins include polyethylene terephthalate, polyethylene naphthalate, etc., and copolymers thereof. Polyesters with ester bonds, polypropylene,
Polyolefins represented by polystyrene, nylon 6, nylon 66, nylon 610, nylon 12
These include polyamides, such as polyphenylene sulfide, and copolymers and modified products thereof. In the case of the present invention, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyphenylene sulfide, and copolymers thereof are particularly preferred because the effects of the present invention are remarkable. Of course, the above polymer may contain known additives such as stabilizers, viscosity modifiers, antioxidants, fillers, slip agents, antistatic agents, antiblocking agents, release agents, mold release agents, and the like.
【0009】本発明における二軸延伸は、長手方向に延
伸した後幅方向に延伸する逐次二軸延伸、あるいは、長
手方向、幅方向に実質的に同時に延伸する同時二軸延伸
のいずれでもよい。同時二軸延伸であっても、延伸から
熱処理に移る際、フイルム幅方向両側のエッジ部は拘束
されるので、ボーイング現象が生じる。[0009] The biaxial stretching in the present invention may be either sequential biaxial stretching in which the film is stretched in the longitudinal direction and then in the width direction, or simultaneous biaxial stretching in which the film is stretched substantially simultaneously in the longitudinal direction and the width direction. Even in simultaneous biaxial stretching, the bowing phenomenon occurs because the edges on both sides of the film in the width direction are restrained when the film moves from stretching to heat treatment.
【0010】そして、本発明方法においては、上記方法
によりフイルムが二軸に延伸された直後に、弧状縦断面
を有する熱風吹出し手段の弧状面に沿って弧状を描くよ
うに浮上走行され、該浮上走行中に、フイルム長手方向
とフイルム幅方向の両方向に関して実質的に同時に該フ
イルムの熱処理が行われる。熱処理は、弛緩処理を伴う
ものであってもよく、実質的に定長下で行うものであっ
てもよい。すなわち、本発明方法は、従来方法のように
、幅方向延伸後に続いて幅方向の熱処理が行われるので
はなく、この二軸延伸直後に、長手方向と幅方向両方向
についての熱処理が実質的に同時に行われるのである。In the method of the present invention, immediately after the film is biaxially stretched by the above method, the film is levitated in an arc along the arcuate surface of a hot air blowing means having an arcuate longitudinal section, and the levitated film is During running, the film is heat-treated substantially simultaneously in both the film longitudinal direction and the film width direction. The heat treatment may be accompanied by a relaxation treatment, or may be performed under a substantially constant length. That is, in the method of the present invention, unlike the conventional method, heat treatment in the width direction is not performed after stretching in the width direction, but heat treatment in both the longitudinal direction and the width direction is performed immediately after this biaxial stretching. They are done at the same time.
【0011】このように、二軸延伸直後に、フイルムが
その幅方向両側の拘束を解かれて浮上走行により長手方
向に実質的にフリー状態とされることにより、長手方向
の湾曲歪であるボーイングを生じさせようとフイルムに
作用する力が、この浮上走行熱処理部で実質的にカット
され、ボーイングが極めて効率よく改良される。そして
、この段階でボーイングを改良し、長手方向、幅方向の
両方向について必要な熱処理を行なうことにより、最終
的に得られる二軸延伸フイルムの熱寸法安定性、平面性
が大幅に向上されるとともに、フイルム幅方向位置によ
る機械特性(強度、伸度、ヤング率、F5値など)や熱
収縮率、温度、湿度膨張係数、光学特性などの特性のば
らつきも極めて小さく抑えられる。[0011] Immediately after biaxial stretching, the film is released from the restraints on both sides in the width direction and becomes substantially free in the longitudinal direction due to floating running, so that bowing, which is a bending strain in the longitudinal direction, occurs. The force that acts on the film to cause this is substantially cut in this floating heat treatment section, and the bowing is improved extremely efficiently. By improving the bowing at this stage and performing the necessary heat treatment in both the longitudinal and width directions, the thermal dimensional stability and flatness of the final biaxially stretched film are greatly improved. Also, variations in properties such as mechanical properties (strength, elongation, Young's modulus, F5 value, etc.), thermal shrinkage rate, temperature, humidity expansion coefficient, optical properties, etc. depending on the position in the film width direction can be suppressed to an extremely small level.
【0012】また、従来この部分では、ステンタ内でフ
イルム幅方向の熱処理しかできず、二軸延伸後のフイル
ムを長手方向について熱処理しようとすると、ステンタ
後にロール法等により処理するしか方法がなかったが、
時間的にずれのある別々の熱処理であるため、二次元方
向全てについて所望の熱処理(たとえば弛緩処理)を均
一に行うことが難しかった。しかし本発明方法では、フ
イルム浮上走行中には、実質的にフイルム二次元方向全
てについてフリー状態とされ、しかも所望の熱負荷を与
えることが可能になるので、長手方向、幅方向両方向に
ついて極めて均一な熱処理が可能となる。[0012] Conventionally, this part could only be heat-treated in the width direction of the film within the stenter, and if the film was to be heat-treated in the longitudinal direction after biaxial stretching, the only way was to process it by a roll method or the like after the stenter. but,
Since the heat treatments are performed at different times, it is difficult to uniformly perform the desired heat treatment (for example, relaxation treatment) in all two-dimensional directions. However, in the method of the present invention, during the film floating run, the film is kept in a free state in virtually all two-dimensional directions, and it is possible to apply the desired heat load, so it is extremely uniform in both the longitudinal and width directions. heat treatment becomes possible.
【0013】また、上記浮上式熱処理においては、弧状
に浮上走行させることによりフイルムに自由度をもたせ
つつフイルムをふくらませるようにしてフイルムにシワ
が入りにくいようにすることができる。また、浮上走行
であるから擦り傷などの表面欠点も防止される。さらに
弧状の長さを調節することにより十分な熱処理(弛緩処
理)時間をとることも可能である。Furthermore, in the above-mentioned floating heat treatment, the film is floated in an arc shape to give the film a degree of freedom and to swell the film, thereby making it difficult for wrinkles to form in the film. Furthermore, surface defects such as scratches are also prevented because the vehicle travels in a floating manner. Furthermore, by adjusting the length of the arc, it is also possible to provide sufficient heat treatment (relaxation treatment) time.
【0014】また、上記浮上式熱処理においては、吹出
し熱風の風圧(風速)、温度にもよるが、単に弧状に浮
上走行させるだけでは、フイルム長手方向にシワが発生
するおそれがある場合もあるので、次のようにすること
が好ましい。この熱処理工程に導入されたフイルムは弧
状縦断面を有する熱風吹出し手段の弧状面に沿って弧状
を描くように浮上走行され、該浮上走行中に長手方向と
幅方向の両方向に関して熱処理が行なわれるが、とくに
、熱風吹出し手段のフイルム走行方向最終熱風吹出し位
置において、熱風吹出し手段の弧状面の接線方向よりも
内側の方向にフイルムを導出する。このようにフイルム
導出方向を規制することにより、熱風吹出し手段から吹
き出された熱風の圧力が、とくに出口近傍において適切
にかつ均一に封じ込められ、処理中のフイルムに幅方向
伸長力が均一に作用してフイルムにシワが入ることが極
めて効果的に防止される。そして、熱風吹出し手段出口
部でシワが入らないため、上流側弧面上でもシワは発生
しない。シワの全く発生していない状態のまま、熱処理
が行われ、かつ終了するので処理後のフイルムの平面性
は極めて良好に保たれる。[0014] In addition, in the above-mentioned floating heat treatment, depending on the pressure (wind speed) and temperature of the hot air blown out, there is a risk that wrinkles may occur in the longitudinal direction of the film if the film is simply floated in an arc shape. , it is preferable to do as follows. The film introduced into this heat treatment step is floated in an arc along the arcuate surface of the hot air blowing means having an arcuate longitudinal cross section, and heat-treated in both the longitudinal and width directions during the floatation. In particular, at the final hot air blowing position of the hot air blowing means in the film traveling direction, the film is guided inward from the tangential direction of the arcuate surface of the hot air blowing means. By regulating the direction in which the film is drawn out in this way, the pressure of the hot air blown out from the hot air blowing means is appropriately and uniformly contained, especially in the vicinity of the outlet, and the stretching force in the width direction acts uniformly on the film being processed. This effectively prevents wrinkles from forming on the film. Since wrinkles do not form at the outlet of the hot air blowing means, wrinkles do not occur even on the upstream arc surface. Since the heat treatment is carried out and completed without any wrinkles, the flatness of the film after treatment is maintained extremely well.
【0015】上記シワの発生の有無については、熱風吹
出し手段の最終熱風吹出し位置におけるフイルム導出方
向を、熱風吹出し手段の弧状面の接線方向よりも内側に
規制するか否かによって、顕著な差が生じる。つまり接
線方向よりも内側に規制することにより、完全にシワの
発生が防止される。Regarding the occurrence of wrinkles, there is a significant difference depending on whether or not the direction in which the film is led out at the final hot air blowing position of the hot air blowing means is restricted to be inside the tangential direction of the arcuate surface of the hot air blowing means. arise. In other words, by restricting it inward from the tangential direction, wrinkles can be completely prevented from forming.
【0016】また、本発明方法における浮上式熱処理に
おいては、たとえ熱風吹出し手段をオーブン等で覆い、
熱風を循環使用するようにしても、従来のステンタ方式
等と比べ、オーブン全体の大きさおよび熱風循環経路を
小型にすることができる。したがって、フイルムから析
出するオリゴマー、揮散添加剤等があっても、それらが
熱風循環系に付着したりする要素が少なくなり、熱風中
に浮遊したとしてもフィルター等で容易に除去できるよ
うになる。その結果、これらオリゴマーや添加剤に起因
するフイルム表面欠点の発生が防止され、表面品質上も
優れたフイルムが得られる。Furthermore, in the floating heat treatment in the method of the present invention, even if the hot air blowing means is covered with an oven or the like,
Even if the hot air is circulated, the overall size of the oven and the hot air circulation path can be made smaller compared to conventional stenter systems. Therefore, even if there are oligomers, volatile additives, etc. that precipitate from the film, they are less likely to adhere to the hot air circulation system, and even if they float in the hot air, they can be easily removed with a filter or the like. As a result, the occurrence of film surface defects caused by these oligomers and additives is prevented, and a film with excellent surface quality can be obtained.
【0017】さらに、本発明方法における浮上式熱処理
にあっては、吹出し熱風の風速により、弛緩率等のコン
トロールを行うことができる。すなわち、吹出し熱風は
、熱風吹出し手段と浮上フイルムとの間を、フイルム長
手方向および幅方向に逃げるが、このうちフイルム幅方
向に逃げる熱風は、フイルムに、該フイルムを幅方向に
拡げる力を及ぼす。一方、フイルムは、幅方向にもフリ
ー状態とされているので、加熱により幅方向に縮もうと
する。この拡幅方向の力と縮幅方向の力のバランスによ
り、弛緩率を調整でき、定長下での熱処理も可能となる
。そして、この拡幅方向の力が、主として熱風吹出し手
段からの吹出し熱風の風速によりコントロールされる。Furthermore, in the floating heat treatment in the method of the present invention, the relaxation rate and the like can be controlled by controlling the speed of the blown hot air. That is, the blown hot air escapes between the hot air blowing means and the floating film in the film longitudinal direction and width direction, but the hot air escaping in the film width direction exerts a force on the film to spread the film in the width direction. . On the other hand, since the film is also in a free state in the width direction, it tends to shrink in the width direction by heating. By balancing the force in the width expansion direction and the force in the width reduction direction, the relaxation rate can be adjusted and heat treatment can be performed under a constant length. The force in the width expanding direction is mainly controlled by the speed of the hot air blown from the hot air blowing means.
【0018】フイルム長手方向の弛緩処理については、
この浮上式熱処理工程の入口、出口のフイルム走行速度
を調整することにより実質的に自由に設定でき、出口側
が入口側よりもたとえば5%遅ければ5%の弛緩処理を
行うことができ、入口側と出口側が同速であれば定長下
での熱処理とすることができる。Regarding the relaxation treatment in the longitudinal direction of the film,
By adjusting the film running speed at the inlet and outlet of this floating heat treatment process, it can be set virtually freely.If the outlet side is 5% slower than the inlet side, a 5% relaxation process can be performed, and the inlet side can be relaxed by 5%. If the velocity on the exit side is the same as that on the exit side, heat treatment can be performed under a fixed length.
【0019】上記の如き本発明の熱可塑性樹脂フイルム
の製造方法は、たとえば図1ないし図3に示すように実
施される。図1、図2において、未延伸のフイルム1は
、複数のロール等を配した長手方向延伸工程2で長手方
向に延伸され、ステンタ3の予熱ゾーン4で予熱、延伸
ゾーン5で幅方向に延伸される。この二軸延伸熱可塑性
フイルム6が、上記二軸延伸直後に、浮上式熱処理手段
7によって、長手方向と幅方向の両方向に実質的に同時
に熱処理(たとえば弛緩処理)される。ガイドロール8
から浮上式熱処理工程に導入されたフイルム6は、図3
に示すように、複数の熱風吹出しノズル9を有し弧状縦
断面を有する熱風吹出し手段10の弧状面に沿って弧状
を描くように浮上走行され、浮上走行中に長手方向、幅
方向両方向に熱処理される。そして、フイルム走行方向
最終熱風吹出し位置(最終熱風吹出しノズル9aの位置
)において、熱風吹出し手段10の弧状面の接線方向1
1よりも内側の方向12にフイルムが導出される。図で
は角度θだけ内側に向けられている。導出されたフイル
ム13は、ガイドロール14を経た後、搬送ロール15
,16(たとえば冷却ロール)を経て、コア17上に二
軸延伸フイルムのスプール18として巻き取られる。
上記浮上式熱処理工程も、望ましくはオーブン19で覆
われ、熱風は循環されながら所定の温度に加熱コントロ
ールされる。上記において、熱風吹出し手段出口におけ
るフイルム導出方向12を、接線方向11よりも内側に
することにより、シワの発生が完全に防止され、浮上式
熱処理によりボーイングが改良されつつ、熱寸法安定性
が確保され(低熱収縮率に保たれ)、かつ平面性の極め
て良好なフイルムが得られる。The method for producing the thermoplastic resin film of the present invention as described above is carried out, for example, as shown in FIGS. 1 to 3. In FIGS. 1 and 2, an unstretched film 1 is stretched in the longitudinal direction in a longitudinal stretching step 2 using a plurality of rolls, etc., preheated in a preheating zone 4 of a stenter 3, and stretched in the width direction in a stretching zone 5. be done. Immediately after the biaxial stretching, this biaxially stretched thermoplastic film 6 is subjected to heat treatment (for example, relaxation treatment) substantially simultaneously in both the longitudinal direction and the width direction by the floating heat treatment means 7. Guide roll 8
The film 6 introduced into the floating heat treatment process is shown in FIG.
As shown in FIG. 2, the hot air blowing means 10 having a plurality of hot air blowing nozzles 9 and having an arcuate vertical cross section is floated in an arc shape along the arc-shaped surface, and heat treatment is performed in both the longitudinal direction and the width direction during the floating run. be done. Then, at the final hot air blowing position in the film running direction (the position of the final hot air blowing nozzle 9a), the tangential direction 1 of the arcuate surface of the hot air blowing means 10 is
The film is drawn out in a direction 12 inward from direction 1. In the figure, it is directed inward by an angle θ. The extracted film 13 passes through a guide roll 14 and then a transport roll 15.
, 16 (for example, cooling rolls), and is wound onto a core 17 as a spool 18 of biaxially stretched film. The floating heat treatment step is also preferably covered with an oven 19, and heating is controlled to a predetermined temperature while hot air is circulated. In the above, by setting the film outlet direction 12 at the outlet of the hot air blowing means to be inside the tangential direction 11, the occurrence of wrinkles is completely prevented, and while the bowing is improved by floating heat treatment, thermal dimensional stability is ensured. (maintained at a low heat shrinkage rate) and a film with extremely good flatness can be obtained.
【0020】上記弧状の浮上走行においては、弧状の半
径が250〜1000mmであるのがシワ防止の点で好
ましい。半径250mm未満ではシワが起こりやすくな
りかつ蛇行を起こしやすくなる。また、半径が1000
mmを越えてもシワが起こりやすくなるとともに装置が
大型化し好ましくない。[0020] In the above-mentioned arc-shaped floating run, it is preferable that the radius of the arc is 250 to 1000 mm from the viewpoint of preventing wrinkles. If the radius is less than 250 mm, wrinkles are likely to occur and meandering is likely to occur. Also, the radius is 1000
If it exceeds mm, wrinkles tend to occur and the device becomes larger, which is not preferable.
【0021】この弧状の巻き付け角度は、120°以上
、好ましくは150°以上、より好ましくは180°以
上であるのが望ましい。弧状の半径にもよるが、120
°未満の巻き付け角度ではシワが発生しやすくなり、フ
イルムの蛇行も生じやすくなる。[0021] The arcuate winding angle is desirably 120° or more, preferably 150° or more, and more preferably 180° or more. Depending on the radius of the arc, 120
If the winding angle is less than 0.0 degrees, wrinkles will easily occur, and the film will also tend to meander.
【0022】またこの弧状の浮上式熱処理工程は、図4
に示すように連続して2個以上の熱風吹出し手段10a
、10bを有していてもよく、その場合、逆方向に弧状
を描くように走行させるのがシワを防止して平面性を良
好に保つ観点から好ましい。なお、このように複数段の
熱風吹出し手段を設ける場合、たとえば長手方向熱処理
に適した温度、幅方向熱処理に適した温度のように、各
段の温度設定を変えることも可能である。たとえば、上
記長手方向弛緩のための熱処理の温度条件としては、た
とえばポリエステル樹脂フイルムの場合、90〜230
℃の温度領域で処理するのが好ましい。熱寸法安定性を
必要とする温度(±20℃程度)で処理すれば良い。
また、幅方向弛緩処理温度は、たとえばポリエステル樹
脂の場合、150〜250℃が適当である。また、同一
弧状の処理装置内で各ノズル温度を変更して処理するの
も平面性向上やボーイング防止の観点から好ましい。This arc-shaped floating heat treatment process is shown in FIG.
Two or more hot air blowing means 10a in succession as shown in FIG.
, 10b. In that case, it is preferable to run in an arc shape in the opposite direction from the viewpoint of preventing wrinkles and maintaining good flatness. In addition, when a plurality of stages of hot air blowing means are provided in this way, it is also possible to change the temperature settings for each stage, such as a temperature suitable for longitudinal heat treatment and a temperature suitable for width direction heat treatment. For example, in the case of a polyester resin film, the temperature conditions for the heat treatment for longitudinal relaxation are 90-230°C.
Preferably, the treatment is carried out in the temperature range of °C. It is sufficient to process at a temperature (approximately ±20° C.) that requires thermal dimensional stability. In addition, for example, in the case of polyester resin, the appropriate temperature for the relaxation treatment in the width direction is 150 to 250°C. Further, it is also preferable to perform processing by changing the temperature of each nozzle within the same arc-shaped processing device from the viewpoint of improving flatness and preventing bowing.
【0023】また、この弧状の熱処理は、図に示したよ
うに弧状の内部から熱風を吹き出す構造をとり、フイル
ム幅方向に延びるスリット等からなる熱風吹出しノズル
を持った構造で、円周方向に複数のノズルを持ったもの
である必要がある。この弧状の熱処理工程における吹出
し熱風の風速は、5〜200m/秒が良く、5m/秒未
満では処理効果が低下し、フイルムの蛇行の原因となる
。また200m/秒を越えるものではフイルムがばたつ
きを生じ、擦り傷の原因となる。この範囲内の吹出し風
速で、前述の如く、目標とする弛緩率等に応じて風速を
設定すればよい。Furthermore, as shown in the figure, this arc-shaped heat treatment has a structure in which hot air is blown from the inside of the arc, and has a hot-air blowing nozzle consisting of a slit or the like extending in the width direction of the film. It must have multiple nozzles. The speed of the hot air blown out in this arc-shaped heat treatment step is preferably 5 to 200 m/sec, and if it is less than 5 m/sec, the processing effect will decrease and cause meandering of the film. Moreover, if the speed exceeds 200 m/sec, the film will flap, causing scratches. As described above, the wind speed may be set within this range according to the target relaxation rate, etc.
【0024】またこの弧状を描く熱処理工程では、フイ
ルムの端部から1〜20mm外側にフイルムの浮上量〜
浮上量−10mm程度のじゃま板を設けるのが良い。こ
のじゃま板がないと、フイルムの蛇行が生じやすくなる
と共にフイルム端部が緊張した状態になり、フイルム中
央部がたるみを生じやすくなる。In addition, in this arc-shaped heat treatment process, the flying height of the film is 1 to 20 mm outward from the edge of the film.
It is preferable to provide a baffle plate with a flying height of about -10 mm. Without this baffle plate, the film tends to meander, the edges of the film become tense, and the center of the film tends to sag.
【0025】浮上式熱処理の処理時間としては使用する
熱可塑性樹脂の種類にもよるが、1〜30秒、好ましく
は5〜20秒が良い。1秒未満では処理効果が不十分と
なり目標とする熱寸法安定性が得られない。また30秒
を越えるものでは、物性は満足するが装置が大型化し好
ましくない。The treatment time for the floating heat treatment is preferably 1 to 30 seconds, preferably 5 to 20 seconds, although it depends on the type of thermoplastic resin used. If it is less than 1 second, the treatment effect will be insufficient and the target thermal dimensional stability will not be achieved. On the other hand, if the heating time exceeds 30 seconds, the physical properties may be satisfied, but the apparatus will become larger, which is not preferable.
【0026】またこの熱処理における長手方向の弛緩に
ついては、熱処理前のフイルムの特性により変化するが
、その弛緩率としては15%以下、好ましくは8%以下
であるのが良い。これによってボーイングが大きく改良
される。この弛緩処理の際厚みの厚いエッジを含んでい
ても良いが、好ましくはこの処理前にエッジをスリット
してから処理すると一層平面性、ボーイング防止の観点
から好ましいものとなる。The relaxation in the longitudinal direction during this heat treatment varies depending on the characteristics of the film before heat treatment, but the relaxation rate is preferably 15% or less, preferably 8% or less. This will greatly improve Boeing. Although thick edges may be included during this relaxation treatment, it is preferable to slit the edges before this treatment, which is more preferable from the viewpoint of flatness and prevention of bowing.
【0027】さらに、浮上式熱処理工程の熱風吹出しは
、弧状の内側から前述した風速で吹き出す以外に、フイ
ルムの逆面側(外側)からも吹き出すことが、カールな
どの防止の観点から好ましい。この際風速は内側>外側
でなければならない。外側の風速が同じか大きい時はフ
イルムにシワが入ったり、擦り傷が入るなどの問題を生
じる。Furthermore, in the floating heat treatment process, hot air is preferably blown from the opposite side (outside) of the film, in addition to being blown from the inside of the arc at the above-mentioned wind speed, from the viewpoint of preventing curling and the like. In this case, the wind speed must be inside > outside. When the wind speed on the outside is the same or higher, problems such as wrinkles and scratches occur on the film.
【0028】次に本発明の製造方法の好ましい条件の一
つを説明するが、これに限定されるものではない。ポリ
エチレンテレフタレートを押出機に供給し、常法により
溶融させ、Tダイ口金より吐出させ、冷却ドラム上に静
電荷で密着固化させる。このフイルムを50〜130℃
で長手方向に2〜9.0倍延伸し(2段階縦延伸法を用
いても良く、この場合より一層ボーイング等の効果に対
して顕著になる)、80〜120℃で幅方向に3〜5倍
延伸した直後、図3に示したような装置を用い、弧状を
描くように巻き付け角120°〜270°で浮上走行さ
せ、弧状の内部から吹き出す熱風の温度を90〜230
℃にし、長手方向および幅方向それぞれに10%以下の
弛緩をしながら熱処理を行う。この浮上式熱処理を行っ
た後、必要に応じて熱固定し、冷却後、巻取る。Next, one of the preferable conditions for the manufacturing method of the present invention will be explained, but the conditions are not limited thereto. Polyethylene terephthalate is supplied to an extruder, melted by a conventional method, discharged from a T-die nozzle, and solidified by electrostatic charge onto a cooling drum. This film is heated to 50 to 130℃.
Stretch 2 to 9.0 times in the longitudinal direction at 80 to 120°C (a two-step longitudinal stretching method may also be used, in which case the effect of bowing etc. will be more pronounced), and 3 to 9.0 times in the width direction at 80 to 120°C. Immediately after stretching 5 times, using the device shown in Fig. 3, the winding angle is 120° to 270° in an arc shape, and the temperature of the hot air blown from the inside of the arc is 90 to 230°.
℃, and heat treatment is performed with relaxation of 10% or less in each of the longitudinal and width directions. After performing this floating heat treatment, it is heat-set if necessary, and after cooling, it is wound up.
【0029】[0029]
【発明の効果】本発明の熱可塑性樹脂フイルムの製造方
法によれば、二軸延伸直後に長手方向、幅方向の両方向
について実質的に同時に浮上式熱処理を行うので、この
処理工程でボーイングが大幅に改良され、熱寸法安定性
に優れ、かつ平面性が極めて優れた二軸延伸熱可塑性樹
脂フイルムが得られる。また、上記浮上式熱処理は、従
来のステンタ等に比べ小型の装置で効率よく行うことが
できるので、オリゴマーや添加剤等による汚れを容易に
防止できるようになる。[Effects of the Invention] According to the method for producing a thermoplastic resin film of the present invention, floating heat treatment is performed substantially simultaneously in both the longitudinal direction and the width direction immediately after biaxial stretching, so that bowing can be significantly reduced in this processing step. A biaxially stretched thermoplastic resin film with improved thermal dimensional stability and extremely flatness can be obtained. Furthermore, the floating heat treatment can be carried out more efficiently using a smaller device than a conventional stenter or the like, so that stains caused by oligomers, additives, etc. can be easily prevented.
【0030】[0030]
【評価方法】(1)平面性
フイルム全幅を3mサンプリングし、一端をフラットな
軸に貼付け2.5mの間隔をおいて、平面性のある自由
回転ロール上を介してこのロールに沿わせたのち、フイ
ルム端部に50g/mm2 の荷重が全幅均一にかかる
ようにフイルムをセットする。このフイルム長手方向の
中央部、すなわち1.25mの位置に全幅にわたり、水
平に糸を張る。この糸が、フイルム上の少なくとも1ヶ
所に接触するようにセットする。この時、平面性の悪い
フイルムはこの糸より離れたところにあり、この距離を
読み取り以下の評価基準により示した。平面性が全く問
題ない場合は、全幅にわたり、この糸に接触しているこ
とになる。
評価基準(最も離れた部分で評価)
○:フイルム〜糸間が2mm未満
△:フイルム〜糸間が2mm以上で10mm未満×:フ
イルム〜糸間が10mm以上
フイルム〜糸間が2mm未満では、使用上全く問題がな
いので○印で示した。10mm以上ではフイルムとして
全く使用不能であり×印で示した。2mm以上、10m
m未満は平面性の悪いのは認められるが、使用法によっ
て使えるものであり、△印で示した。[Evaluation method] (1) Sample the entire width of a flat film of 3 m, attach one end to a flat shaft, and run it along a flat, free-rotating roll at an interval of 2.5 m. The film was set so that a load of 50 g/mm2 was applied uniformly across the entire width of the film. A thread is stretched horizontally across the entire width of the film at the center in the longitudinal direction, that is, at a position of 1.25 m. This thread is set so that it contacts at least one location on the film. At this time, the film with poor flatness was located at a distance from this thread, and this distance was read and indicated using the following evaluation criteria. If there is no problem with flatness, the entire width will be in contact with this thread. Evaluation criteria (evaluated at the farthest part) ○: Film-to-thread distance is less than 2 mm △: Film-to-thread distance is 2 mm or more and less than 10 mm ×: Film-to-thread distance is 10 mm or more and film-to-thread distance is less than 2 mm, cannot be used There is no problem at all, so I marked it with an ○. If it is 10 mm or more, it is completely unusable as a film and is indicated by an x mark. 2mm or more, 10m
It is recognized that the flatness is poor when the thickness is less than m, but it can be used depending on the usage, and is indicated by a △ mark.
【0031】(2)熱寸法安定性
熱収縮率で評価した。評価は材料や用途により必要温度
が異なるため、その都度表示した。その他の評価法は以
下の通りである。フイルムを幅10mm、長さ300m
mにサンプリングし、長手方向中央に200mm間隔で
マークを入れる。このサンプルに荷重3gをかけ、測定
しようとする温度、処理時間で処理し、その後前述のマ
ーク位置の間隔(L)を読み取り次式により求める。
熱収縮率(%)=(200−L)/200×100(2) Thermal dimensional stability Evaluated by thermal shrinkage rate. Since the required temperature differs depending on the material and application, the evaluation is shown each time. Other evaluation methods are as follows. Film width 10mm, length 300m
m, and marks are placed in the center in the longitudinal direction at intervals of 200 mm. A load of 3 g is applied to this sample, the sample is processed at the temperature and processing time to be measured, and then the interval (L) between the mark positions described above is read and determined by the following equation. Heat shrinkage rate (%) = (200-L)/200x100
【0
032】(3)ボーイング
長手方向延伸工程と、幅方向延伸工程との間で、走行フ
イルム直上にフイルムを直角に横断する方向に糸を張り
、糸に墨をしみ込ませて張った糸を持ち上げた後離して
瞬間的にフイルム表面に実質的に全幅に渡って接触させ
、該フイルム表面に墨で線を描く。この線が最終的に得
られる二軸延伸フイルム上でどのように湾曲しているか
によって、つまりフイルムを直角に幅方向に横断する直
線に対して最大どれ程ずれているかを測定することによ
りボーイングの程度を下記の基準で評価した。
○:直線との最大ズレ量が5mm未満/m幅当り△:直
線との最大ズレ量が5mm以上で30mm未満/m幅当
り
×:直線との最大ズレ量が30mm以上/m幅当り0
(3) Between the bowing longitudinal direction stretching process and the width direction stretching process, a thread was stretched in a direction perpendicular to the film just above the running film, and the thread was impregnated with ink and the stretched thread was lifted. It is then separated and momentarily brought into contact with substantially the entire width of the film surface, and a line is drawn with ink on the film surface. By measuring how curved this line is on the final biaxially stretched film, that is, by measuring the maximum deviation from the straight line that crosses the film at right angles in the width direction, the Boeing The degree was evaluated using the following criteria. ○: Maximum deviation from the straight line is less than 5 mm/per m width △: Maximum deviation from the straight line is 5 mm or more and less than 30 mm/per m width ×: Maximum deviation from the straight line is 30 mm or more/per m width
【0
033】(4)表面オリゴマー量
フイルムをエタノール中に浸し、超音波処理にて90秒
で洗浄し、この液を濃縮後、アセトニトリルを加えて高
速液体クロマトグラフィー(HPLC)にて分析した。0
(4) Amount of surface oligomer The film was immersed in ethanol and washed with ultrasonic treatment for 90 seconds. After concentrating this liquid, acetonitrile was added and analyzed by high performance liquid chromatography (HPLC).
【0034】[0034]
【実施例】以下に本発明を実施例に基づき説明する。
実施例1、2
実施例1においては、ポリエチレンテレフタレート(〔
η〕=0.6)を押出機に供給し、290℃で溶融させ
、Tダイ口金より吐出させた後、表面温度30℃の冷却
ドラム上に静電荷で密着固化させた。このフイルムを9
0℃でロール周速差により長手方向に4.5倍延伸し、
続いてテンターにて90℃、2000%/分の延伸速度
で幅方向に4.0倍延伸し、幅方向延伸直後に、この二
軸延伸フイルムを、図4に示した装置を用いて、引続き
弧状を描くように巻き付け角が両熱風吹出し手段とも2
70°となるように浮上走行させ、弧状の内部から吹き
出す熱風の温度を230℃にして、長手方向に5.0%
、幅方向に5.0%の弛緩をしながら熱処理を行なった
。熱処理後のフイルムを冷却後巻き取った。実施例2に
おいては、弛緩率を長手方向1.5%、幅方向1.5%
にし、その他は実施例1と同様の条件で行った。表1に
結果を示すように、本発明の熱処理方法により、ボーイ
ングの程度を極めて小さくでき、熱収縮率、平面性に優
れた二軸延伸ポリエステルフイルムが得られた。EXAMPLES The present invention will be explained below based on examples. Examples 1 and 2 In Example 1, polyethylene terephthalate ([
η]=0.6) was supplied to an extruder, melted at 290°C, discharged from a T-die nozzle, and solidified by electrostatic charge on a cooling drum with a surface temperature of 30°C. This film is 9
Stretched 4.5 times in the longitudinal direction at 0°C due to the difference in peripheral speed of the rolls,
Subsequently, the biaxially stretched film was stretched 4.0 times in the width direction at 90° C. and a stretching speed of 2000%/min in a tenter, and immediately after stretching in the width direction, the biaxially stretched film was further stretched using the apparatus shown in FIG. The winding angle is 2 for both hot air blowing means so as to draw an arc shape.
The temperature of the hot air blown out from the arc-shaped interior was set to 230℃, and the temperature was 5.0% in the longitudinal direction.
The heat treatment was performed while relaxing 5.0% in the width direction. The heat-treated film was cooled and then wound up. In Example 2, the relaxation rate was 1.5% in the longitudinal direction and 1.5% in the width direction.
The other conditions were the same as in Example 1. As shown in Table 1, by the heat treatment method of the present invention, a biaxially stretched polyester film with extremely low bowing and excellent heat shrinkage and flatness was obtained.
【0035】比較例1、2
浮上式熱処理工程を設けない製造工程、すなわち、幅方
向延伸後には同じステンタ内で単に幅方向弛緩処理だけ
が行われる工程にて、実施例1と同様の条件にて二軸延
伸ポリエステルフイルムを得た。比較例2は、長手方向
でクリップオフされたあと、赤外線ヒーターを用いて表
1の弛緩率で処理した。結果、表1に示すように、上記
各実施例に比べボーイングの程度が大きく、熱収縮率、
平面性ともに劣ったものしか得られなかった。Comparative Examples 1 and 2 The same conditions as in Example 1 were used in a manufacturing process that did not include a floating heat treatment process, that is, a process in which only a widthwise relaxation treatment was performed in the same stenter after widthwise stretching. A biaxially stretched polyester film was obtained. Comparative Example 2 was clipped off in the longitudinal direction and then treated using an infrared heater at the relaxation rate shown in Table 1. As a result, as shown in Table 1, the degree of bowing was greater than in each of the above examples, and the heat shrinkage rate and
Only a product with poor flatness was obtained.
【0036】[0036]
【表1】[Table 1]
【図1】本発明方法に係るフイルム製造工程の概略側面
図である。FIG. 1 is a schematic side view of a film manufacturing process according to the method of the present invention.
【図2】図1の製造工程の平面図である。FIG. 2 is a plan view of the manufacturing process of FIG. 1;
【図3】図1の製造工程における浮上式熱処理工程の拡
大縦断面図である。FIG. 3 is an enlarged vertical cross-sectional view of a floating heat treatment step in the manufacturing process of FIG. 1;
【図4】図1とは別の実施例に係る本発明方法によるフ
イルム製造工程の概略側面図である。FIG. 4 is a schematic side view of a film manufacturing process according to a method of the present invention according to a different embodiment from FIG. 1;
【図5】ボーイングの説明のためのステンタの概略透視
平面図である。FIG. 5 is a schematic perspective plan view of a stenter for explaining Boeing.
1 未延伸フイルム
2 長手方向延伸工程
3 ステンタ
5 幅方向延伸ゾーン
6 二軸延伸直後の二軸延伸フイルム7 浮上式熱
処理手段
8,14 ガイドロール
9 熱風吹出しノズル
10,10a,10b 熱風吹出し手段11 接線
方向
12 接線よりも内側の方向
13 浮上式熱処理後の二軸延伸フイルム15,16
搬送ロール
18 スプール
19 オーブン1 Unstretched film 2 Longitudinal stretching step 3 Stenter 5 Width stretching zone 6 Biaxially stretched film 7 immediately after biaxial stretching Floating heat treatment means 8, 14 Guide roll 9 Hot air blowing nozzles 10, 10a, 10b Hot air blowing means 11 Tangent line Direction 12 Direction inside the tangent 13 Biaxially stretched films 15, 16 after floating heat treatment
Conveyance roll 18 Spool 19 Oven
Claims (3)
イルム長手方向とフイルム幅方向に二軸延伸した直後に
、弧状縦断面を有する熱風吹出し手段の弧状面に沿って
弧状を描くように浮上走行させ、該浮上走行中に、フイ
ルム長手方向とフイルム幅方向の両方向に関して実質的
に同時に該フイルムの熱処理を行うことを特徴とする熱
可塑性樹脂フイルムの製造方法。1. Immediately after a film made of a thermoplastic resin is biaxially stretched in the film longitudinal direction and the film width direction, the film is levitated in an arc shape along the arc surface of a hot air blowing means having an arc longitudinal section. . A method for producing a thermoplastic resin film, characterized in that the film is heat-treated substantially simultaneously in both the film longitudinal direction and the film width direction during the floating run.
向最終熱風吹出し位置において、熱風吹出し手段の弧状
面の接線方向よりも内側の方向にフイルムを導出する請
求項1の熱可塑性樹脂フイルムの製造方法。2. The method for producing a thermoplastic resin film according to claim 1, wherein at the final hot air blowing position of the hot air blowing means in the film running direction, the film is guided inward from the tangential direction of the arcuate surface of the hot air blowing means.
向に複数配設され、上流側の熱風吹出し手段の下流には
、逆転した弧状縦断面を有する別の熱風吹出し手段が設
けられ、前記上流側の熱風吹出し手段から前記下流側の
熱風吹出し手段にかけてフイルムを連続的に浮上走行さ
せる請求項1又は2の熱可塑性樹脂フイルムの製造方法
。3. A plurality of hot air blowing means are arranged in the film running direction, and downstream of the upstream hot air blowing means, another hot air blowing means having an inverted arcuate longitudinal section is provided, and the upstream hot air blowing means 3. The method for producing a thermoplastic resin film according to claim 1, wherein the film is continuously floated and run from the hot air blowing means to the hot air blowing means on the downstream side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3081300A JPH04292934A (en) | 1991-03-22 | 1991-03-22 | Manufacture of thermoplastic resin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3081300A JPH04292934A (en) | 1991-03-22 | 1991-03-22 | Manufacture of thermoplastic resin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04292934A true JPH04292934A (en) | 1992-10-16 |
Family
ID=13742545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3081300A Pending JPH04292934A (en) | 1991-03-22 | 1991-03-22 | Manufacture of thermoplastic resin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04292934A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104070691A (en) * | 2013-03-29 | 2014-10-01 | 宇部兴产株式会社 | Process and device for producing film |
JP2020001383A (en) * | 2018-06-22 | 2020-01-09 | 住友化学株式会社 | Manufacturing method of resin film |
-
1991
- 1991-03-22 JP JP3081300A patent/JPH04292934A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104070691A (en) * | 2013-03-29 | 2014-10-01 | 宇部兴产株式会社 | Process and device for producing film |
WO2014156536A1 (en) * | 2013-03-29 | 2014-10-02 | 宇部興産株式会社 | Process and device for producing film |
KR20150135343A (en) * | 2013-03-29 | 2015-12-02 | 우베 고산 가부시키가이샤 | Process and device for producing film |
JPWO2014156536A1 (en) * | 2013-03-29 | 2017-02-16 | 宇部興産株式会社 | Film manufacturing method and manufacturing apparatus |
US10259177B2 (en) | 2013-03-29 | 2019-04-16 | Ube Industries, Ltd. | Film manufacturing method and manufacturing apparatus |
JP2020001383A (en) * | 2018-06-22 | 2020-01-09 | 住友化学株式会社 | Manufacturing method of resin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0944468B1 (en) | Film bead heating for simultaneous stretching | |
JP2007197611A (en) | Optical film and method for manufacturing the same | |
US5076977A (en) | Process for controlling curl in polyester film | |
JP2999379B2 (en) | Relaxation heat treatment method for stretched film | |
JP3765681B2 (en) | Production method of polyester film | |
JPH04292934A (en) | Manufacture of thermoplastic resin film | |
JP3852671B2 (en) | Method for producing biaxially stretched polyester film | |
JPH0455377B2 (en) | ||
JPH04292937A (en) | Manufacture of thermoplastic resin film | |
JPS6321603B2 (en) | ||
JPH04286624A (en) | Manufacture of thermoplastic resin film | |
JP2009131981A (en) | Polyethylene terephthalate resin film and manufacturing method therefor | |
JPH04290726A (en) | Manufacture of thermoplastic resin film | |
JPH04270641A (en) | Preparation of thermoplastic resin film | |
JPS62268629A (en) | Heat treating method for thermoplastic resin film | |
JPH0459332A (en) | Thermoplastic resin film and its manufacture | |
JP3676156B2 (en) | Heat treatment method for biaxially stretched polyester film | |
JP2841817B2 (en) | Method for producing thermoplastic resin film | |
JP2002144421A (en) | Method for heat treating biaxially stretched polyester film | |
JPH03284934A (en) | Manufacture of biaxially oriented polyester film | |
JP2841816B2 (en) | Method for producing thermoplastic resin film | |
JP3983361B2 (en) | Method for producing stretched film | |
KR100235565B1 (en) | Method for producing sequentially biaxially oriented plastic film | |
JPH0365260B2 (en) | ||
JP4810747B2 (en) | Method for producing biaxially stretched polyester film |