JPH04292241A - Starting method of collisional safety device - Google Patents

Starting method of collisional safety device

Info

Publication number
JPH04292241A
JPH04292241A JP3055138A JP5513891A JPH04292241A JP H04292241 A JPH04292241 A JP H04292241A JP 3055138 A JP3055138 A JP 3055138A JP 5513891 A JP5513891 A JP 5513891A JP H04292241 A JPH04292241 A JP H04292241A
Authority
JP
Japan
Prior art keywords
collision
acceleration
collisional
safety device
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3055138A
Other languages
Japanese (ja)
Inventor
Shigero Momohara
茂郎 桃原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3055138A priority Critical patent/JPH04292241A/en
Priority to US07/852,629 priority patent/US5309138A/en
Priority to DE4208714A priority patent/DE4208714C2/en
Publication of JPH04292241A publication Critical patent/JPH04292241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automotive Seat Belt Assembly (AREA)
  • Air Bags (AREA)

Abstract

PURPOSE:To operate a collisional safety device, such as an air bag unit and a belt draw gear or the like, in a very short time after collision happening. CONSTITUTION:Supposing that a waveform of acceleration G being produced by a car crash is set down to a sinusoidal wave G=-Acosomegat+A (omega=2/T) of amplitude A and time T, a secondary collision velocity V, where an area V in a slanting line, namely, a rider unequipped with a seat belt is thrown forward due to collisional inertia, is operated by an equation of V=(T/2).{(dG/ dt)<2>/Gomega2+G} with the time T or a constant being determined by acceleration G at the initial stage of the crash, time differentiation dG/dt of acceleration G and a body structure. If this secondary collisional velocity goes beyond the reference value, a starting signal of a collisional safety device is outputted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、車両の衝突時にエアバ
ッグ装置やベルト引込み装置等の衝突安全装置を起動さ
せる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating a collision safety device such as an air bag device or a belt retraction device in the event of a vehicle collision.

【0002】0002

【従来の技術】車両の衝突時に乗員を二次衝突の被害か
ら保護するためのエアバッグ装置において、その起動信
号として加速度センサが出力する加速度信号のみを用い
ると、車体に殆ど損傷を与えないような小さな物体が前
記加速度センサの近傍に衝突しただけで起動信号が出力
される可能性があるため、それを防止するための手段が
必要となる。また、衝撃が大きい衝突に限らず、衝撃が
小さく且つ長く継続するような衝突が発生した場合にも
エアバッグ装置を作動させる必要があるが、このような
場合に加速度センサが起動信号を出力しない可能性があ
るため、それを補う手段が必要となる。
[Prior Art] In an airbag system that protects occupants from secondary collision damage in the event of a vehicle collision, if only the acceleration signal output from an acceleration sensor is used as the activation signal, it is possible to avoid causing almost no damage to the vehicle body. There is a possibility that an activation signal will be output even if a small object collides near the acceleration sensor, so a means to prevent this is required. In addition, it is necessary to activate the airbag device not only in a collision with a large impact but also in a collision with a small impact that continues for a long time, but in such cases the acceleration sensor does not output an activation signal. Since this is a possibility, a means of compensating for this is required.

【0003】かかる問題を回避するために、加速度セン
サが出力する加速度を積分して求めた速度、すなわち衝
突による慣性で乗員が例えばステアリングホイールに向
けて接近する二次衝突速度を演算し、その二次衝突速度
が所定の基準値を越えた場合にエアバッグ装置の起動信
号を出力するものが提案されている(特公昭59−85
74号公報参照)。
In order to avoid this problem, the velocity obtained by integrating the acceleration output by the acceleration sensor, that is, the secondary collision velocity at which the occupant approaches, for example, the steering wheel due to the inertia caused by the collision, is calculated, and the secondary collision velocity is calculated. A device has been proposed that outputs an activation signal for an airbag device when the next collision speed exceeds a predetermined reference value (Japanese Patent Publication No. 59-85
(See Publication No. 74).

【0004】0004

【発明が解決しようとする課題】しかしながら上記従来
の手法では、衝撃が小さく且つ長く継続するような衝突
が発生した場合に、衝突の瞬間からエアバッグ装置の起
動信号が出力されるまでにかなりの時間が経過すること
があり、そのためにエアバッグ装置の起動タイミングが
多少ずれる可能性がある。
[Problems to be Solved by the Invention] However, with the above conventional method, when a collision occurs where the impact is small and continues for a long time, it takes a considerable amount of time from the moment of the collision until the activation signal for the airbag device is output. Time may pass, which may cause a slight shift in the activation timing of the airbag device.

【0005】本発明は前述の事情に鑑みてなされたもの
で、衝突発生後の極めて短時間のうちに的確に衝突安全
装置を起動させ得る衝突安全装置の起動方法を提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method for activating a collision safety device that can accurately activate the collision safety device within a very short time after a collision occurs. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、車両の衝突により発生する加速度を検出
する加速度センサの出力信号に基づいて衝突安全装置を
起動させる衝突安全装置の起動方法において、前記加速
度センサの出力信号と該出力信号の時間変化率から衝突
による車体の減速量を推定し、その減速量が所定値を越
えたときに前記衝突安全装置を起動させることを特徴と
する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides activation of a collision safety device that activates the collision safety device based on an output signal of an acceleration sensor that detects acceleration caused by a vehicle collision. The method is characterized in that the amount of deceleration of the vehicle body due to a collision is estimated from the output signal of the acceleration sensor and the time rate of change of the output signal, and the collision safety device is activated when the amount of deceleration exceeds a predetermined value. do.

【0007】[0007]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0008】図1に示すように、バッテリ1と接地部2
との間には機械式加速度センサ3、スクイブ4、および
トランジスタ5が直列に配設される。機械式加速度セン
サ3は、車両の衝突により発生する加速度を検出するも
ので、検出された加速度が所定値を越えた場合にエアバ
ッグ装置を作動させるべく接点を閉成する。スクイブ4
は、前記機械式加速度センサ3の接点が閉成し且つ後述
する衝突判断回路6がトランジスタ5のベースに起動信
号を出力した場合、前記バッテリ1により通電されてエ
アバッグを展開するための推薬を点火する。
As shown in FIG. 1, a battery 1 and a grounding section 2
A mechanical acceleration sensor 3, a squib 4, and a transistor 5 are arranged in series between the two. The mechanical acceleration sensor 3 detects acceleration caused by a vehicle collision, and closes a contact point to activate an airbag device when the detected acceleration exceeds a predetermined value. squib 4
is a propellant that is energized by the battery 1 to deploy the air bag when the contact of the mechanical acceleration sensor 3 is closed and the collision judgment circuit 6, which will be described later, outputs an activation signal to the base of the transistor 5. ignite.

【0009】符号7は電気式加速度センサであって、車
両の衝突により発生する加速度を歪み計により電気信号
すなわち電圧信号に変換して連続的に出力する。電気式
加速度センサ7の出力信号はアンプ8により増幅された
後、ローパスフィルタ9により高周波成分を除去されて
前記衝突判断回路6に入力される。
Reference numeral 7 denotes an electrical acceleration sensor which converts the acceleration generated by a vehicle collision into an electrical signal, ie, a voltage signal, using a strain gauge and continuously outputs the signal. After the output signal of the electric acceleration sensor 7 is amplified by an amplifier 8, high frequency components are removed by a low-pass filter 9, and the signal is input to the collision determination circuit 6.

【0010】ところで車両の衝突により発生する加速度
の波形、すなわち前記電気式加速度センサ7により検出
される加速度の波形は、図2に示すように正弦波に類似
した波形に高周波よりなる歪み成分を合成したものであ
ることが実験的に知られている。前記加速度の波形をロ
ーパスフィルタ9を通過させると、図3に示すような正
弦波に類似した波形が得られ、その波形における周期T
は加速度の大小によらず、個々の車体構造に依存する定
数であることが知られている。したがって車両の衝突に
より発生する加速度の波形を正弦波であると仮定すれば
、前記定数T並びに衝突初期における加速度Gとその時
間変化率dG/dtから斜線部の面積V、すなわち衝突
による車体の減速量を演算することができる。そして前
記面積Vの大きさはシートベルトを装着していない乗員
が衝突により車体に対して前方に投げ出される速度、す
なわち二次衝突の速度に対応しているため、そのVの値
がエアバッグ装置を起動させるためのパラメータとして
使用される。
By the way, the waveform of acceleration generated by a vehicle collision, that is, the waveform of acceleration detected by the electric acceleration sensor 7, is a waveform similar to a sine wave that is synthesized with a high-frequency distortion component, as shown in FIG. It is experimentally known that this is the case. When the acceleration waveform is passed through the low-pass filter 9, a waveform similar to a sine wave as shown in FIG. 3 is obtained, and the period T in the waveform is
It is known that is a constant that depends on the individual vehicle body structure, regardless of the magnitude of acceleration. Therefore, assuming that the waveform of acceleration generated by a vehicle collision is a sine wave, from the constant T, the acceleration G at the initial stage of the collision, and its rate of change over time dG/dt, the area of the shaded part V, that is, the deceleration of the vehicle body due to the collision. Able to calculate quantities. Since the size of the area V corresponds to the speed at which an occupant who is not wearing a seatbelt is thrown forward against the vehicle body due to a collision, that is, the speed of a secondary collision, the value of V corresponds to Used as a parameter to start.

【0011】次に、定数T、加速度G、および加速度G
の時間変化率dG/dtから前記二次衝突速度Vを演算
する過程を図4に基づいて説明する。
Next, constant T, acceleration G, and acceleration G
The process of calculating the secondary collision velocity V from the time rate of change dG/dt will be explained based on FIG. 4.

【0012】車両の衝突により発生する加速度Gの波形
を振幅A、周期Tの正弦波               G=−A cosωt+
A        (ω=2π/T)    ・・・■
である仮定すると、■式を時間tで微分して、    
          dG/dt=Aω sinωt 
                       ・・
・■が得られ、この■式を変形して、                sinωt=(dG/
dt)/Aω                  ・
・・■が得られる。
The waveform of acceleration G caused by a vehicle collision is a sine wave with amplitude A and period T. G=-A cosωt+
A (ω=2π/T)...■
Assuming that, by differentiating the formula ■ with respect to time t, we get
dG/dt=Aω sinωt
・・・
・■ is obtained, and by transforming this formula, sinωt=(dG/
dt)/Aω・
...■ is obtained.

【0013】一方、前記■式を変形して、      
         cosωt=1−G/A     
                       ・・
・■が得られる。
On the other hand, by transforming the above equation (2),
cosωt=1-G/A
・・・
・■ is obtained.

【0014】前記■式と■式を、公式 sin2 ωt
+ cos2 ωt=1に代入して得られる         {(dG/dt)/Aω}2 +(1
−G/A)2 =1を変形して、               2A=(dG/dt)2
 /Gω2 +G              ・・・
■が得られる。
[0014] The above equations ■ and ■ are expressed as the formula sin2 ωt
+ cos2 ωt = 1 to obtain {(dG/dt)/Aω}2 + (1
-G/A)2 = 1 is transformed into 2A=(dG/dt)2
/Gω2 +G...
■ is obtained.

【0015】ここで図4の斜線部の面積Vは、前記■式
をt=0からt=Tまで積分することにより、    
          V=AT           
                         
    ・・・■により与えられる。
Here, the area V of the shaded part in FIG.
V=AT

...Given by ■.

【0016】したがって、■式を■式に代入することに
より、           V=(T/2)・{(dG/dt
)2 /Gω2 +G}    ・・・■が得られる。
[0016] Therefore, by substituting the formula
)2 /Gω2 +G}...■ is obtained.

【0017】前記■式は、或る時刻における加速度Gの
値とその時間微分dG/dtの値から、乗員の二次衝突
速度Vを推定できることを示している。
The above equation (2) shows that the secondary collision velocity V of the occupant can be estimated from the value of the acceleration G at a certain time and the value of its time differential dG/dt.

【0018】次に、衝突判断回路6において行われる衝
突判断の内容を図5のフローチャートに基づいて説明す
る。
Next, the details of the collision determination performed in the collision determination circuit 6 will be explained based on the flowchart shown in FIG.

【0019】先ずステップS1においてG1 =0と置
いた後、ステップS2でアンプ8およびローパスフィル
タ9を通過を通過した電気式加速度センサ7の出力信号
の値G2 が読み込まれる。続くステップS3で前記加
速度の時間変化率dG/dtに対応するΔGの値がΔG
=(G2 −G1 )/ΔTにより演算される。ここで
、ΔTは所定のサンプリングタイムである。
First, in step S1, G1 is set to 0, and in step S2, the value G2 of the output signal of the electrical acceleration sensor 7 that has passed through the amplifier 8 and the low-pass filter 9 is read. In the following step S3, the value of ΔG corresponding to the time rate of change dG/dt of the acceleration is determined as ΔG.
It is calculated by =(G2-G1)/ΔT. Here, ΔT is a predetermined sampling time.

【0020】次にステップS4で前記■式に基づき二次
衝突速度Vが演算される。このとき、■式のdG/dt
に代えて前記ΔGが用いられ、■式のGに代えて前記G
2 が用いられる。この様にして二次衝突速度Vが演算
されると、ステップS5で前記二次衝突速度Vの値が所
定の基準値V0 と比較され、VがV0 を越えていれ
ばエアバッグ装置を作動させる必要があると判断され、
ステップS6でエアバッグ装置の起動信号が出力される
。前記二次衝突速度Vの値すなわち図4の斜線部の面積
は加速度Gの正弦波の周期Tおよび振幅Aに依存するた
め、図7に示すようにエアバッグ装置の起動信号のON
領域とOFF領域の境界は、周期Tが大きいときには振
幅Aが小さく、逆に周期Tが小さいときには振幅Aが大
きくなる。また前記ステップS5でVがV0 以下であ
れば、ステップS7でG1 をG2 に置き換えて前述
のステップS2以下の作用が繰り返される。
Next, in step S4, the secondary collision velocity V is calculated based on the equation (2). At this time, dG/dt of the formula ■
The above ΔG is used instead of , and the above G
2 is used. When the secondary collision velocity V is calculated in this way, the value of the secondary collision velocity V is compared with a predetermined reference value V0 in step S5, and if V exceeds V0, the airbag device is activated. It is determined that it is necessary,
In step S6, an activation signal for the airbag device is output. Since the value of the secondary collision velocity V, that is, the area of the shaded part in FIG. 4 depends on the period T and amplitude A of the sine wave of the acceleration G, the activation signal of the airbag device is turned on as shown in FIG.
At the boundary between the region and the OFF region, the amplitude A is small when the period T is large, and conversely, the amplitude A is large when the period T is small. Further, if V is equal to or less than V0 in step S5, G1 is replaced with G2 in step S7, and the operations from step S2 onwards are repeated.

【0021】而して、衝突が発生した直後の加速度の値
およびその時間変化率の値に基づいて衝突判断を行える
ので、エアバッグの展開に要する作動時間を充分に確保
した状態でエアバッグ装置の起動信号を出力することが
できる。
[0021] Since a collision can be determined based on the value of acceleration immediately after a collision and the value of its rate of change over time, the airbag device can be operated while ensuring sufficient operating time for the airbag to deploy. can output a start signal.

【0022】以上、本発明の実施例を詳述したが、本発
明は前記実施例に限定されるものではなく、特許請求の
範囲に記載した本発明を逸脱することなく種々の小設計
変更を行うことができる。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-mentioned embodiments, and various small design changes may be made without departing from the scope of the present invention as set forth in the claims. It can be carried out.

【0023】例えば、本発明はエアバッグ装置に限らず
、シートベルトのベルト引込み装置に対しても適用する
ことができる。
For example, the present invention is applicable not only to airbag devices but also to belt retraction devices for seat belts.

【0024】[0024]

【発明の効果】以上のように本発明によれば、車両の衝
突直後の加速度を検出することにより該衝突による車体
の減速量を推定できるので、その減速量を基準値と比較
して衝突安全装置を起動させるか否かの判断を衝突発生
後の極めて早い時期に下すことができる。その結果、衝
突安全装置の作動に要する時間を充分に考慮して早期に
起動信号を出力することができ、該衝突安全装置の機能
を充分に発揮させることが可能となる。
As described above, according to the present invention, the amount of deceleration of the vehicle body due to the collision can be estimated by detecting the acceleration of the vehicle immediately after the collision, and the amount of deceleration is compared with a reference value to improve collision safety. A decision as to whether or not to activate the device can be made very early after a collision occurs. As a result, the activation signal can be outputted early, taking into full consideration the time required for the operation of the collision safety device, and it becomes possible to fully utilize the functions of the collision safety device.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の全体構成を示すブロック図[Fig. 1] Block diagram showing the overall configuration of the present invention

【図2】電
気式加速度センサにより検出される加速度の波形を示す
グラフ
[Figure 2] Graph showing the waveform of acceleration detected by the electrical acceleration sensor

【図3】ローパスフィルタを通過した加速度の波形を示
すグラフ
[Figure 3] Graph showing the waveform of acceleration passed through a low-pass filter

【図4】二次衝突速度の演算方法の説明図[Figure 4] Explanatory diagram of how to calculate secondary collision velocity

【図5】衝突
判断回路において行われる衝突判断の内容を示すフロー
チャート
[Fig. 5] Flowchart showing the content of collision determination performed in the collision determination circuit

【図6】衝突判断の基準を示すグラフ[Figure 6] Graph showing criteria for collision judgment

【符号の説明】[Explanation of symbols]

7・・・電気式加速度センサ(加速度センサ)G・・・
加速度(加速度センサの出力信号)ΔG・・加速度の時
間変化率 V・・・二次衝突速度(減速量)
7... Electric acceleration sensor (acceleration sensor) G...
Acceleration (output signal of acceleration sensor) ΔG... Time rate of change of acceleration V... Secondary collision speed (deceleration amount)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  車両の衝突により発生する加速度を検
出する加速度センサ(7)の出力信号(G)に基づいて
衝突安全装置を起動させる衝突安全装置の起動方法にお
いて、前記加速度センサ(7)の出力信号(G)と該出
力信号(G)の時間変化率(ΔG)から衝突による車体
の減速量(V)を推定し、その減速量(V)が所定値を
越えたときに前記衝突安全装置を起動させることを特徴
とする、衝突安全装置の起動方法。
1. A method for activating a collision safety device in which the collision safety device is activated based on an output signal (G) of an acceleration sensor (7) that detects acceleration caused by a vehicle collision, comprising: The amount of deceleration (V) of the vehicle body due to a collision is estimated from the output signal (G) and the time rate of change (ΔG) of the output signal (G), and when the amount of deceleration (V) exceeds a predetermined value, the collision safety A method for activating a collision safety device, the method comprising activating the device.
JP3055138A 1991-03-19 1991-03-19 Starting method of collisional safety device Pending JPH04292241A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3055138A JPH04292241A (en) 1991-03-19 1991-03-19 Starting method of collisional safety device
US07/852,629 US5309138A (en) 1991-03-19 1992-03-17 Vehicle collision detecting method employing an acceleration sensor
DE4208714A DE4208714C2 (en) 1991-03-19 1992-03-18 Vehicle collision detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3055138A JPH04292241A (en) 1991-03-19 1991-03-19 Starting method of collisional safety device

Publications (1)

Publication Number Publication Date
JPH04292241A true JPH04292241A (en) 1992-10-16

Family

ID=12990420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3055138A Pending JPH04292241A (en) 1991-03-19 1991-03-19 Starting method of collisional safety device

Country Status (1)

Country Link
JP (1) JPH04292241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130532A (en) * 2011-12-22 2013-07-04 Sharp Corp Drop impact detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130532A (en) * 2011-12-22 2013-07-04 Sharp Corp Drop impact detection device

Similar Documents

Publication Publication Date Title
JP3624462B2 (en) Vehicle occupant protection device
JP2990381B2 (en) Collision judgment circuit
JPH03253441A (en) Collision sensor
US7744123B2 (en) Method and apparatus for controlling an actuatable restraining device using XY side satellite accelerometers
US5205582A (en) Occupant protective system
KR100663794B1 (en) Method and apparatus for determining symmetric and asymmetric crash events with improved misuse margins
JPH09315265A (en) Occupant protecting device for vehicle
US7278657B1 (en) Method and apparatus for controlling an actuatable occupant protection device using an ultrasonic sensor
US8118130B2 (en) Method and apparatus for controlling an actuatable restraining device using XY crush-zone satellite accelerometers
US6459366B1 (en) System and method for controlling an actuatable occupant protection device
EP0900702A3 (en) Occupant protective device
JPH1067295A (en) Occupant protective device of vehicle
JPH04292241A (en) Starting method of collisional safety device
JP3120290B2 (en) Collision detection method
JP4183880B2 (en) Vehicle collision determination device
JP2932007B2 (en) Collision judgment circuit
EP0931706A1 (en) Device and method for protecting a vehicle occupant
JP4183882B2 (en) Vehicle collision determination device
JP4183881B2 (en) Vehicle collision determination device
JP3876111B2 (en) Vehicle collision determination device
JP2006027290A (en) Collision mode determination apparatus and occupant crash protector
US8186711B2 (en) Separation of abuse conditions and crash events to control occupant restraint devices
GB2356075A (en) Improvements relating to a control system within a vehicle
JP2683920B2 (en) Acceleration sensor
KR100203418B1 (en) Airbag used duplicate accelerative sensor