JPH04286869A - Cooling system of fuel cell - Google Patents

Cooling system of fuel cell

Info

Publication number
JPH04286869A
JPH04286869A JP3050918A JP5091891A JPH04286869A JP H04286869 A JPH04286869 A JP H04286869A JP 3050918 A JP3050918 A JP 3050918A JP 5091891 A JP5091891 A JP 5091891A JP H04286869 A JPH04286869 A JP H04286869A
Authority
JP
Japan
Prior art keywords
air
cooling air
fuel cell
cooling
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3050918A
Other languages
Japanese (ja)
Inventor
Kazuo Oshima
大島 一夫
Toru Koyashiki
小屋敷 徹
Tetsuo Take
武 哲夫
Toshio Matsushima
敏雄 松島
Masahiro Ichimura
雅弘 市村
Tsutomu Ogata
努 尾形
Yoshiaki Hasuda
蓮田 良紀
Maki Ishizawa
真樹 石沢
Hideaki Otsuka
大塚 秀昭
Takahisa Masashiro
尊久 正代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3050918A priority Critical patent/JPH04286869A/en
Publication of JPH04286869A publication Critical patent/JPH04286869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To supply cooling air and reaction air to a fuel cell commonly while respective air quantities can be controlled separately so as to simplify a device constitution. CONSTITUTION:A blower 16 supplies cooling air and reaction air to a fuel cell 1 commonly corresponding to a power generation quantity detected by a power generation quantity detecting means 21, so a device constitution is simplified. Control of a cooling air quantity and a reaction air quantity is performed by a cooling air flow regulation mechanism 30 provided at an exit or the like of a cooling air passage 5, thereby a temperature of the fuel cell 1 is kept at a set value.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、燃料電池を空気により
冷却する燃料電池冷却方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell cooling system for cooling a fuel cell with air.

【0002】0002

【従来の技術】従来の空冷式の、電解質にリン酸を用い
た燃料電池の例を図6に示す。リン酸型燃料電池は、燃
料極に水素を、空気極(酸素極)に空気を導き、水素と
空気中の酸素を反応させて発電を行うと共に、反応にと
もなって発生する熱を利用するシステムである。図にお
いて、1は燃料電池、2は燃料電池を収容する容器、3
は燃料極,4は空気極、5は冷却用空気通路、6は反応
用空気送風機、7は冷却用空気送風機、8は反応用空気
送風管、9は冷却用空気送風管、10はマニホールド、
11は温度検出手段、12は信号ケーブル、13は冷却
用空気送風機回転数制御手段、14は排気空気管、15
は熱回収用熱交換器、19は電気出力部、20は送電ケ
ーブル、21は燃料電池の発電量検出手段、22は反応
用空気送風機回転数制御手段、24は発電量検出手段2
1と反応用空気送風機回転数制御手段22を接続する信
号ケーブル、40は電解質を示している。
2. Description of the Related Art An example of a conventional air-cooled fuel cell using phosphoric acid as an electrolyte is shown in FIG. A phosphoric acid fuel cell is a system that generates electricity by introducing hydrogen to the fuel electrode and air to the air electrode (oxygen electrode), causing the hydrogen to react with the oxygen in the air, and also utilizing the heat generated by the reaction. It is. In the figure, 1 is a fuel cell, 2 is a container housing the fuel cell, and 3 is a fuel cell.
is a fuel electrode, 4 is an air electrode, 5 is a cooling air passage, 6 is a reaction air blower, 7 is a cooling air blower, 8 is a reaction air blower tube, 9 is a cooling air blower tube, 10 is a manifold,
11 is a temperature detection means, 12 is a signal cable, 13 is a cooling air blower rotation speed control means, 14 is an exhaust air pipe, 15
19 is a heat exchanger for heat recovery, 19 is an electric output unit, 20 is a power transmission cable, 21 is a fuel cell power generation amount detection means, 22 is a reaction air blower rotation speed control means, and 24 is a power generation amount detection means 2
1 and a signal cable connecting the reaction air blower rotation speed control means 22, and 40 indicates an electrolyte.

【0003】燃料電池1は、その温度が高くなると空気
極4,燃料極3表面の触媒が焼結して性能が劣化し、温
度が低くなると発電効率が下がる。このため触媒が焼結
しない範囲で、なるべく高い温度に燃料電池1本体の温
度を制御する必要がある。そこで従来、空冷式の燃料電
池1の冷却用空気は、冷却用空気送風機7によって冷却
用空気送風管9を通して供給され、その送風量は燃料電
池1の温度検出手段11によって検出された温度が設定
値になるように、冷却用空気送風機回転数制御手段13
により冷却用空気送風機7の回転数を調節して制御して
いた。一方、空気極4で反応に使用される空気は冷却用
空気とは別に、反応用空気送風機6によって反応用空気
送風管8を通して供給され、その送風量は発電量検出手
段21によって検出された燃料電池1の発電量に応じた
量になるように反応用空気送風機回転数制御手段22に
より反応用空気送風機6の回転数を調節して制御してい
た。この理由は燃料電池1の発電量が変化した場合に、
冷却用に使用される空気は燃料電池1の温度によって制
御し、空気極4で反応に使用される空気量は発電量に応
じて制御する必要があるためである。その場合、定性的
には発電量が減少すれば発生する熱も少なくなるため、
反応用空気も冷却用空気も減少させる必要がある。
When the temperature of the fuel cell 1 becomes high, the catalysts on the surfaces of the air electrode 4 and the fuel electrode 3 are sintered and the performance deteriorates, and when the temperature becomes low, the power generation efficiency decreases. Therefore, it is necessary to control the temperature of the main body of the fuel cell 1 to a temperature as high as possible within a range where the catalyst is not sintered. Therefore, conventionally, cooling air for the air-cooled fuel cell 1 is supplied by a cooling air blower 7 through a cooling air blowing pipe 9, and the amount of air blown is set to the temperature detected by the temperature detecting means 11 of the fuel cell 1. cooling air blower rotation speed control means 13 so that the
The rotational speed of the cooling air blower 7 was controlled by adjusting. On the other hand, the air used for the reaction at the air electrode 4 is supplied by a reaction air blower 6 through a reaction air blower pipe 8 in addition to the cooling air, and the amount of air blown is determined by the fuel consumption detected by the power generation amount detection means 21. The rotational speed of the reaction air blower 6 was controlled by adjusting the rotational speed of the reaction air blower 6 using the reaction air blower rotational speed control means 22 so as to correspond to the amount of power generated by the battery 1 . The reason for this is that when the amount of power generated by the fuel cell 1 changes,
This is because the air used for cooling needs to be controlled according to the temperature of the fuel cell 1, and the amount of air used for reaction at the air electrode 4 needs to be controlled according to the amount of power generation. In that case, qualitatively speaking, if the amount of power generation decreases, the amount of heat generated will also decrease.
Both reaction air and cooling air need to be reduced.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記従
来の技術による燃料電池の空冷方式では、空気量の制御
において、例えば発電量の減少により反応用空気と冷却
用空気を共に減少させる場合のそれぞれの減少量が異な
るため、反応用空気と冷却用空気はそれぞれ独立に制御
する必要があった。このため燃料電池に冷却用空気を供
給するための送風機7と、反応用空気を供給する送風機
6の合計2台の送風機が必要で、送風機が1台の場合に
比べて設置スペースが大きくなったり、故障確率が増加
したりする問題点があった。また、燃料電池冷却用通路
の入口には冷却用空気を多数設けられている冷却用空気
通路5に分配するための複雑なマニホールド10が必要
であった。さらに、燃料電池1の温度を検出して冷却用
空気送風機7の送風量を制御するための温度検出手段1
1、送風機回転数制御手段13等が必要であった。この
ように、従来の技術では、燃料電池1へ空気を供給する
ための装置が複雑になり、これらの装置を設置するため
のスペースも大きくなるという問題点があった。
[Problems to be Solved by the Invention] However, in the air cooling system for fuel cells according to the above-mentioned conventional technology, when controlling the amount of air, for example, when reducing both reaction air and cooling air due to a decrease in the amount of power generation, each Since the amount of reduction was different, it was necessary to control the reaction air and the cooling air independently. Therefore, a total of two blowers are required: blower 7 to supply cooling air to the fuel cell and blower 6 to supply reaction air, which requires a larger installation space than when only one blower is used. , there was a problem that the probability of failure increased. In addition, a complicated manifold 10 is required at the entrance of the fuel cell cooling passage to distribute cooling air to a large number of cooling air passages 5. Furthermore, a temperature detection means 1 for detecting the temperature of the fuel cell 1 and controlling the amount of air blown by the cooling air blower 7.
1. Blower rotation speed control means 13 and the like were required. As described above, the conventional technology has the problem that the devices for supplying air to the fuel cell 1 are complicated and the space for installing these devices is also large.

【0005】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、簡単で省スペースな装
置構成で、燃料電池冷却用空気と反応用空気の供給を共
通に行いながら、燃料電池冷却用空気量と反応用空気量
を独立に制御できる燃料電池冷却方式を提供することに
ある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a simple and space-saving device configuration, while simultaneously supplying fuel cell cooling air and reaction air. Another object of the present invention is to provide a fuel cell cooling method that can independently control the amount of air for cooling the fuel cell and the amount of air for reaction.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の燃料電池冷却方式においては、燃料極,燃
料極側通路構成材,電解質,酸素極,酸素極側通路構成
材から成る発電層と冷却用空気通路を有する燃料電池に
おいて、前記冷却用空気通路の出口および/または前記
燃料電池をバイパスするように設けられた冷却用空気バ
イパス通路の出口に冷却用空気流量調節機構を設け、燃
料電池の温度が高くなった場合には前記冷却用通路を通
過する空気量が多くなるように、燃料電池の温度が低く
なった場合は前記冷却用通路を通過する冷却用空気量が
少なくなるように、前記冷却用空気流量調節機構を動作
させることを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the fuel cell cooling system of the present invention includes a fuel electrode, a fuel electrode side passage member, an electrolyte, an oxygen electrode, and an oxygen electrode side passage member. In a fuel cell having a power generation layer and a cooling air passage, a cooling air flow rate adjustment mechanism is provided at the outlet of the cooling air passage and/or the outlet of a cooling air bypass passage provided to bypass the fuel cell. When the temperature of the fuel cell increases, the amount of air passing through the cooling passage increases, and when the temperature of the fuel cell decreases, the amount of cooling air passing through the cooling passage decreases. The present invention is characterized in that the cooling air flow rate adjustment mechanism is operated so that the cooling air flow rate adjustment mechanism is operated.

【0007】[0007]

【作用】本発明の燃料電池冷却方式では、送風機が燃料
電池冷却用空気と反応用空気の供給を共通に行い、燃料
電池の冷却用空気通路,冷却用空気バイパス通路の出口
に冷却用空気流量調節機構を設けることにより、冷却用
空気と反応用空気の空気量を独立に制御できるようにす
る。これにより、燃料電池冷却用空気供給のための送風
機と反応用空気供給のための送風機を兼用できるように
するとともに、冷却用空気を別個に燃料電池冷却用通路
に分配するためのマニホールドを不要にし、装置構成を
簡単化する。
[Operation] In the fuel cell cooling system of the present invention, the blower commonly supplies fuel cell cooling air and reaction air, and the cooling air flow rate is applied to the outlet of the fuel cell cooling air passage and cooling air bypass passage. By providing an adjustment mechanism, the amounts of cooling air and reaction air can be independently controlled. This allows the blower to be used for both fuel cell cooling air supply and reaction air supply, and eliminates the need for a separate manifold for distributing cooling air to the fuel cell cooling passages. , simplifying the device configuration.

【0008】[0008]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0009】図1は本発明の第1の実施例の構成を示す
燃料電池の正面からの立断面図、図2,図3は図1の燃
料電池をAの矢示方向から見た動作状態を示す斜視図、
図4は水平断面図である。
FIG. 1 is an elevational sectional view from the front of a fuel cell showing the configuration of a first embodiment of the present invention, and FIGS. 2 and 3 are operational states of the fuel cell in FIG. 1 viewed from the direction of arrow A. A perspective view showing
FIG. 4 is a horizontal sectional view.

【0010】これらの図において、1は燃料電池、2は
燃料電池1を収容する容器、3は燃料極,燃料極側通路
構成材、4は空気極(酸素極),空気極(酸素極)側通
路構成材、5は冷却用空気通路、14は排気空気管、1
5は熱回収用熱交換器、16は冷却用空気と反応用空気
を供給する送風機、17は冷却用空気と反応用空気を供
給する管、18は冷却用空気バイパス通路、21は燃料
電池の発電量検出手段、23は冷却用空気と反応用空気
の送風機回転数制御手段、30は冷却用空気流量調節機
構、31は冷却用空気バイパス量を調節する流量調節機
構、32は形状記憶合金、40は電解質を示している。 燃料電池は、燃料極,燃料極側通路構成材3と、電解質
40と、空気極,空気極側通路構成材4とから形成され
る発電層が積層され、その発電層数層毎に冷却用空気通
路5が設けられて成る。
In these figures, 1 is a fuel cell, 2 is a container that houses the fuel cell 1, 3 is a fuel electrode, a fuel electrode side passage forming material, and 4 is an air electrode (oxygen electrode), an air electrode (oxygen electrode). Side passage constituent material, 5 is a cooling air passage, 14 is an exhaust air pipe, 1
5 is a heat exchanger for heat recovery, 16 is a blower that supplies cooling air and reaction air, 17 is a pipe that supplies cooling air and reaction air, 18 is a cooling air bypass passage, and 21 is a fuel cell 23 is a blower rotation speed control means for cooling air and reaction air; 30 is a cooling air flow rate adjustment mechanism; 31 is a flow rate adjustment mechanism for adjusting the cooling air bypass amount; 32 is a shape memory alloy; 40 indicates an electrolyte. In a fuel cell, power generation layers formed of a fuel electrode, a fuel electrode side passage member 3, an electrolyte 40, an air electrode and an air electrode side passage member 4 are stacked, and each of the power generation layers has a cooling layer. An air passage 5 is provided.

【0011】本実施例の構成において、冷却用空気通路
5の入口と空気極側通路構成材4で形成される反応用空
気通路の入口は共通に冷却用空気と反応用空気を供給す
る管17に連通されている。この管17には冷却用空気
と反応用空気を共通に供給する送風機16が挿入され、
送風機16は発電量検出手段21で検出した燃料電池1
の発電量に応じてその空気量が送風機回転数制御手段2
3により制御される。各冷却用空気通路5の出口には、
少なくとも冷却用空気流量調節機構30が設けられ、適
宜な手段により燃料電池1の温度が設定値を保つように
各冷却用空気通路を開閉する。本実施例では、上記手段
として図2に示す形状記憶合金32を用いる。また、本
実施例では図2,図3に示すように、さらに冷却用空気
バイパス通路18を設け、その出口に上記流量調節機構
30の開閉とは逆動作する流量調節機構31を設ける。 上記において、冷却用空気通路5の周囲は熱伝導のよい
材料で、冷却用空気バイパス通路18の周囲は熱伝導の
悪い材料で構成する。これらの冷却用空気通路5,冷却
用空気バイパス通路18および空気極3の反応用空気通
路の各出口は、排気空気管14に合流されて熱回収用熱
交換器15に導かれる。
In the configuration of this embodiment, the inlet of the cooling air passage 5 and the inlet of the reaction air passage formed by the air electrode side passage member 4 are connected to a pipe 17 that supplies cooling air and reaction air in common. is communicated with. A blower 16 that commonly supplies cooling air and reaction air is inserted into this pipe 17,
The blower 16 is connected to the fuel cell 1 detected by the power generation amount detection means 21.
The amount of air is adjusted according to the amount of power generated by the blower rotation speed control means 2.
3. At the outlet of each cooling air passage 5,
At least a cooling air flow rate adjustment mechanism 30 is provided, and each cooling air passage is opened and closed by appropriate means so that the temperature of the fuel cell 1 is maintained at a set value. In this embodiment, a shape memory alloy 32 shown in FIG. 2 is used as the above means. Further, in this embodiment, as shown in FIGS. 2 and 3, a cooling air bypass passage 18 is further provided, and a flow rate adjustment mechanism 31 that operates in the opposite manner to the opening and closing of the flow rate adjustment mechanism 30 is provided at the outlet thereof. In the above, the area around the cooling air passage 5 is made of a material with good heat conduction, and the area around the cooling air bypass passage 18 is made of a material with poor heat conduction. The respective outlets of the cooling air passage 5, the cooling air bypass passage 18, and the reaction air passage of the air electrode 3 are joined to the exhaust air pipe 14 and guided to the heat recovery heat exchanger 15.

【0012】図2における形状記憶合金32としては、
リン酸型燃料電池では冷却空気の排気温度が100〜1
50℃であることから、変形温度が100〜150℃程
度である例えばCu−Zn−Al系の合金,Ti−Ni
系の合金,あるいはMn−Cu系の合金を用いることが
考えられる。
The shape memory alloy 32 in FIG.
In phosphoric acid fuel cells, the exhaust temperature of cooling air is 100 to 1
50°C, the deformation temperature is about 100 to 150°C, such as Cu-Zn-Al alloy, Ti-Ni.
It is conceivable to use a Mn-Cu based alloy or a Mn-Cu based alloy.

【0013】以上のように構成した第1の実施例の動作
および作用を述べる。
The operation and effects of the first embodiment configured as above will be described.

【0014】まず、図2,図3を用いて動作について説
明する。冷却用空気通路5の出口側に設けた冷却用空気
量を調節する流量調節機構30および冷却用空気バイパ
ス通路18の出口側に設けた冷却用空気のバイパス量を
調節する流量調節機構31は、燃料電池1の温度を制御
する。すなわち、燃料電池1の温度が高くなり冷却用空
気通路5の出口温度が高くなると、図2に示すように冷
却用空気通路5の流量調節機構30が形状記憶合金32
により開き、同時に冷却用空気バイパス通路18の流量
調節機構31が閉じる。この結果、燃料電池1の冷却が
促進される。ここで、流量調節機構31は、その開閉が
、流量調節機構30の開閉と逆動作になるように流量調
節機構30に取り付けられている。一方、燃料電池1の
温度が低くなり冷却用空気通路5の出口温度が低くなる
と、図3に示すように冷却用空気通路の流量調節機構3
0が形状記憶合金32により閉じ、同時に冷却用空気バ
イパス通路18の流量調節機構31が開く。この結果、
燃料電池1の冷却が抑制される。このようにして燃料電
池1の温度が設定値に保たれる。
First, the operation will be explained using FIGS. 2 and 3. The flow rate adjustment mechanism 30 provided on the exit side of the cooling air passage 5 to adjust the amount of cooling air and the flow rate adjustment mechanism 31 provided on the exit side of the cooling air bypass passage 18 to adjust the bypass amount of cooling air are as follows: Controls the temperature of the fuel cell 1. That is, when the temperature of the fuel cell 1 increases and the temperature at the outlet of the cooling air passage 5 increases, the flow rate adjustment mechanism 30 of the cooling air passage 5 changes to the shape memory alloy 32 as shown in FIG.
At the same time, the flow rate adjustment mechanism 31 of the cooling air bypass passage 18 closes. As a result, cooling of the fuel cell 1 is promoted. Here, the flow rate adjustment mechanism 31 is attached to the flow rate adjustment mechanism 30 so that its opening and closing are opposite to the opening and closing of the flow rate adjustment mechanism 30. On the other hand, when the temperature of the fuel cell 1 becomes low and the outlet temperature of the cooling air passage 5 becomes low, as shown in FIG.
0 is closed by the shape memory alloy 32, and at the same time, the flow rate adjustment mechanism 31 of the cooling air bypass passage 18 is opened. As a result,
Cooling of the fuel cell 1 is suppressed. In this way, the temperature of the fuel cell 1 is maintained at the set value.

【0015】流量調節機構30および31は冷却用空気
通路5および冷却用空気バイパス通路18のみを塞ぐよ
うになっており、反応用空気が通過する空気極4の反応
用空気通路は塞がない構造となっている。一方、図1に
おける送風機16の送風量は、発電量検出手段21によ
って検出された燃料電池1の発電量に応じて送風機回転
数制御手段23により送風機16の回転数を調節して制
御されるが、その送風量は燃料電池1の冷却に必要な充
分な空気量が加わったものになっている。このため空気
極4には、必要な量の反応用空気が供給されることにな
る。
The flow rate adjustment mechanisms 30 and 31 are designed to block only the cooling air passage 5 and the cooling air bypass passage 18, and do not block the reaction air passage of the air electrode 4 through which reaction air passes. It becomes. On the other hand, the amount of air blown by the blower 16 in FIG. The amount of air blown is such that a sufficient amount of air necessary for cooling the fuel cell 1 is added. Therefore, the air electrode 4 is supplied with a necessary amount of reaction air.

【0016】本実施例では、燃料電池1の冷却用空気と
反応用空気の供給を送風機16が共通に行いながら、冷
却用空気流量調節機構30,31により冷却用空気と反
応用空気を独立に制御することができる。従って、送風
機16が従来例における冷却用空気供給のための送風機
と反応用空気供給のための送風機を兼ねることができる
とともに、冷却用空気を別個に冷却用通路に分配するた
めのマニホールド等を不要にすることができ、装置構成
を簡単にすることができる。
In this embodiment, while the blower 16 commonly supplies cooling air and reaction air to the fuel cell 1, the cooling air flow rate adjustment mechanisms 30 and 31 independently supply the cooling air and reaction air. can be controlled. Therefore, the blower 16 can double as a blower for supplying cooling air and a blower for supplying reaction air in the conventional example, and there is no need for a manifold or the like for separately distributing cooling air to cooling passages. It is possible to simplify the device configuration.

【0017】次に、本発明の第2の実施例を説明する。Next, a second embodiment of the present invention will be described.

【0018】図5は、その構成を示す燃料電池の水平断
面図である。図において、14−1はバイパス空気排気
管、33は仕切板である。これ以外の構成部分は、第1
の実施例における同一符号の構成部分と同様である。
FIG. 5 is a horizontal sectional view of the fuel cell showing its configuration. In the figure, 14-1 is a bypass air exhaust pipe, and 33 is a partition plate. The other components are the first
Components with the same reference numerals are the same as those in the embodiment.

【0019】前述した第1の実施例では、冷却用空気通
路5を通った高温の空気と冷却用空気バイパス通路18
を通った低温の空気が混合して排気管14から排気され
るため、熱回収用熱交換器15での熱回収温度が低下す
る。そこで、本実施例では、冷却用空気通路5を通った
空気と冷却用空気バイパス通路18を通った空気の通路
の間に仕切板33を設け、さらに冷却用空気通路5を通
った空気を排気するための排気管14とは別に冷却用空
気バイパス通路18を通ったバイパス空気の排気管14
−1を設け、排気管14側に熱回収用熱交換器15を設
ける。これにより、熱回収用熱交換器15には冷却用空
気通路5を通った高温の空気のみが通るようにして熱回
収温度を高く保つ。
In the first embodiment described above, the high temperature air passing through the cooling air passage 5 and the cooling air bypass passage 18
Since the low-temperature air that has passed through is mixed and exhausted from the exhaust pipe 14, the heat recovery temperature in the heat recovery heat exchanger 15 decreases. Therefore, in this embodiment, a partition plate 33 is provided between the air passing through the cooling air passage 5 and the air passing through the cooling air bypass passage 18, and the air passing through the cooling air passage 5 is exhausted. A bypass air exhaust pipe 14 that passes through a cooling air bypass passage 18 separately from the exhaust pipe 14 for cooling.
-1 is provided, and a heat recovery heat exchanger 15 is provided on the exhaust pipe 14 side. Thereby, only the high temperature air that has passed through the cooling air passage 5 passes through the heat recovery heat exchanger 15, thereby maintaining the heat recovery temperature high.

【0020】なお、以上の実施例では、冷却用空気通路
5毎の各流量調節機構30に個別に形状記憶合金を設け
て独立に開閉させるようにしているが、すべての流量調
節機構30をリンク機構等により連結して、1つの形状
記憶合金により開閉させるようにしてもよい。また、複
数の形状記憶合金を使用し、変態温度を相互に数℃づつ
異なるようにしておけば、冷却空気の流量調節を連続的
に行える。さらに流量調節の精度を上げるには、流量調
節機構30を分割し、それぞれに形状記憶合金を設けて
独立に開閉させればよい。このように本発明は、その主
旨に沿って種々に応用され、種々の実施態様を取り得る
ものである。
In the above embodiment, each flow rate adjustment mechanism 30 for each cooling air passage 5 is individually provided with a shape memory alloy so that they can be opened and closed independently, but all flow rate adjustment mechanisms 30 are linked. They may be connected by a mechanism or the like and opened and closed by one shape memory alloy. Furthermore, if a plurality of shape memory alloys are used and the transformation temperatures are set to differ by several degrees centigrade, the flow rate of the cooling air can be continuously adjusted. In order to further improve the accuracy of flow rate adjustment, the flow rate adjustment mechanism 30 may be divided into parts, each provided with a shape memory alloy, and opened and closed independently. As described above, the present invention can be applied in various ways and can take various embodiments in accordance with the gist thereof.

【0021】[0021]

【発明の効果】以上の説明で明らかなように、本発明の
燃料電池冷却方式は、燃料電池冷却用空気と反応用空気
の供給を共通に行いながら、燃料電池冷却用空気量と反
応用空気量を独立に制御できるため、燃料電池への空気
供給系統を簡単にできるとういう利点がある。また冷却
用空気流量調節機構として形状記憶合金を使用すること
により冷却用空気流量制御手段が不要になるという利点
がある。
Effects of the Invention As is clear from the above explanation, the fuel cell cooling method of the present invention allows the fuel cell cooling air and the reaction air to be supplied in common, and the amount of fuel cell cooling air and the reaction air to be controlled. Since the amount can be controlled independently, it has the advantage of simplifying the air supply system to the fuel cell. Further, by using a shape memory alloy as the cooling air flow rate adjustment mechanism, there is an advantage that a cooling air flow rate control means is not required.

【0022】また、本発明の請求項2の発明によれば、
特に、冷却用空気流量調節機構として形状記憶合金を使
用することにより、燃料電池の温度を検出して冷却用空
気流量調節機構を制御するための装置が不要になり、さ
らに装置構成が簡単になる利点が得られる。
[0022] Furthermore, according to the invention of claim 2 of the present invention,
In particular, by using a shape memory alloy as the cooling air flow rate adjustment mechanism, there is no need for a device to detect the temperature of the fuel cell and control the cooling air flow rate adjustment mechanism, further simplifying the device configuration. Benefits can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を示す燃料電池の正面か
らの立断面図
FIG. 1 is an elevational sectional view from the front of a fuel cell showing a first embodiment of the present invention.

【図2】上記第1の実施例の動作状態を示す斜視図[Fig. 2] A perspective view showing the operating state of the first embodiment.

【図
3】上記第1の実施例の他の動作状態を示す斜視図
FIG. 3 is a perspective view showing another operating state of the first embodiment.

【図
4】上記第1の実施例の水平断面図
[Fig. 4] Horizontal cross-sectional view of the first embodiment

【図5】本発明の第
2の実施例を示す燃料電池の水平断面図
FIG. 5 is a horizontal sectional view of a fuel cell showing a second embodiment of the present invention.

【図6】従来例の燃料電池の正面からの立断面図[Figure 6] Elevated sectional view from the front of a conventional fuel cell

【符号
の説明】 1…燃料電池、2…燃料電池1を収容する容器、3…燃
料極,燃料極側通路構成材、4…空気極(酸素極),空
気極(酸素極)側通路構成材、5…冷却用空気通路、1
4…排気空気管、14−1…バイパス空気排気管、15
…熱回収用熱交換器、16…冷却用空気と反応用空気を
供給する送風機、17…冷却用空気と反応用空気を供給
する管、18…冷却用空気バイパス通路、21…燃料電
池の発電量検出手段、23…冷却用空気と反応用空気の
送風機回転数制御手段、30…冷却用空気流量調節機構
、31…冷却用空気バイパス量を調節する流量調節機構
、32…形状記憶合金、33…仕切板、40…電解質。
[Explanation of symbols] 1...Fuel cell, 2...Container housing fuel cell 1, 3...Fuel electrode, fuel electrode side passage construction material, 4...Air electrode (oxygen electrode), air electrode (oxygen electrode) side passage configuration Material, 5...Cooling air passage, 1
4...Exhaust air pipe, 14-1...Bypass air exhaust pipe, 15
...Heat exchanger for heat recovery, 16...Blower that supplies cooling air and reaction air, 17...Pipe that supplies cooling air and reaction air, 18...Cooling air bypass passage, 21...Power generation by fuel cell Quantity detection means, 23... Blower rotation speed control means for cooling air and reaction air, 30... Cooling air flow rate adjustment mechanism, 31... Flow rate adjustment mechanism for adjusting the amount of cooling air bypass, 32... Shape memory alloy, 33 ...Partition plate, 40...Electrolyte.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  燃料極,燃料極側通路構成材,電解質
,酸素極,酸素極側通路構成材から成る発電層と冷却用
空気通路を有する燃料電池において、前記冷却用空気通
路の出口および/または前記燃料電池をバイパスするよ
うに設けられた冷却用空気バイパス通路の出口に冷却用
空気流量調節機構を設け、燃料電池の温度が高くなった
場合には前記冷却用通路を通過する空気量が多くなるよ
うに、燃料電池の温度が低くなった場合は前記冷却用通
路を通過する冷却用空気量が少なくなるように、前記冷
却用空気流量調節機構を動作させることを特徴とする燃
料電池冷却方式。
1. A fuel cell having a power generation layer including a fuel electrode, a fuel electrode side passage member, an electrolyte, an oxygen electrode, and an oxygen electrode side passage member, and a cooling air passage, wherein an outlet of the cooling air passage and/or Alternatively, a cooling air flow rate adjustment mechanism is provided at the outlet of the cooling air bypass passage provided to bypass the fuel cell, and when the temperature of the fuel cell becomes high, the amount of air passing through the cooling passage is adjusted. The cooling air flow rate adjusting mechanism is operated so that the amount of cooling air passing through the cooling passage decreases when the temperature of the fuel cell becomes low. method.
【請求項2】  冷却用空気流量調節機構を形状記憶合
金を使用して動作させることを特徴とする請求項1記載
の燃料電池冷却方式。
2. The fuel cell cooling method according to claim 1, wherein the cooling air flow rate adjustment mechanism is operated using a shape memory alloy.
JP3050918A 1991-03-15 1991-03-15 Cooling system of fuel cell Pending JPH04286869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050918A JPH04286869A (en) 1991-03-15 1991-03-15 Cooling system of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050918A JPH04286869A (en) 1991-03-15 1991-03-15 Cooling system of fuel cell

Publications (1)

Publication Number Publication Date
JPH04286869A true JPH04286869A (en) 1992-10-12

Family

ID=12872177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050918A Pending JPH04286869A (en) 1991-03-15 1991-03-15 Cooling system of fuel cell

Country Status (1)

Country Link
JP (1) JPH04286869A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210348A (en) * 1999-11-17 2001-08-03 Equos Research Co Ltd Fuel cell device
JP2001332279A (en) * 1999-11-17 2001-11-30 Equos Research Co Ltd Fuel cell device
JP2001332278A (en) * 1999-11-17 2001-11-30 Equos Research Co Ltd Fuel cell device
JP2005216852A (en) * 2004-01-28 2005-08-11 Samsung Sdi Co Ltd Fuel cell system
JP2010020966A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof
JP2011023304A (en) * 2009-07-17 2011-02-03 Mitsubishi Heavy Ind Ltd Combined power generation system
JP2011518417A (en) * 2008-04-18 2011-06-23 ザ・ボーイング・カンパニー Alternative path cooling for high temperature fuel cells
JP2016147519A (en) * 2015-02-10 2016-08-18 八洲電業株式会社 Flight vehicle
DE102022113200A1 (en) 2021-06-02 2022-12-08 Toyota Jidosha Kabushiki Kaisha Air-cooled fuel cell system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686812B2 (en) * 1999-11-17 2011-05-25 株式会社エクォス・リサーチ Fuel cell device
JP2001332279A (en) * 1999-11-17 2001-11-30 Equos Research Co Ltd Fuel cell device
JP2001332278A (en) * 1999-11-17 2001-11-30 Equos Research Co Ltd Fuel cell device
JP2001210348A (en) * 1999-11-17 2001-08-03 Equos Research Co Ltd Fuel cell device
JP4686813B2 (en) * 1999-11-17 2011-05-25 株式会社エクォス・リサーチ Fuel cell device
JP2005216852A (en) * 2004-01-28 2005-08-11 Samsung Sdi Co Ltd Fuel cell system
JP4637596B2 (en) * 2004-01-28 2011-02-23 三星エスディアイ株式会社 Fuel cell system
US7514170B2 (en) 2004-01-28 2009-04-07 Samsung Sdi Co., Ltd. Fuel cell system
JP2011518417A (en) * 2008-04-18 2011-06-23 ザ・ボーイング・カンパニー Alternative path cooling for high temperature fuel cells
JP2010020966A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof
JP2011023304A (en) * 2009-07-17 2011-02-03 Mitsubishi Heavy Ind Ltd Combined power generation system
JP2016147519A (en) * 2015-02-10 2016-08-18 八洲電業株式会社 Flight vehicle
DE102022113200A1 (en) 2021-06-02 2022-12-08 Toyota Jidosha Kabushiki Kaisha Air-cooled fuel cell system
US11870115B2 (en) 2021-06-02 2024-01-09 Toyota Jidosha Kabushiki Kaisha Air-cooled fuel cell system

Similar Documents

Publication Publication Date Title
US8231697B2 (en) Rapid start fuel reforming systems and techniques
US20010010875A1 (en) Humidification system for a fuel cell
US7261968B2 (en) Device and method to expand operating range of a fuel cell stack
KR100562614B1 (en) Fuel cell system
JPH04286869A (en) Cooling system of fuel cell
US20050048333A1 (en) Multiple stage combustion process to maintain a controllable reformation temperature profile
US20070178347A1 (en) Coolant bypass for fuel cell stack
US6706430B2 (en) Electronic by-pass of fuel cell cathode gas to combustor
KR20200017059A (en) Humidification device for fuel cell
JP4464066B2 (en) Fuel cell system
US20040197620A1 (en) Fuel cell system including air flow control
BRPI0712585A2 (en) fuel cell system
JP2705242B2 (en) Reactor gas supply system for fuel cell
JPS62252075A (en) Temperature control device of air cooling type fuel cell
CN102986072B (en) Fuel cell system
JPH06314569A (en) Hybrid fuel cell
JP2002124278A (en) Fuel cell system
JPH04359871A (en) Fuel cell power generation apparatus
JP4887561B2 (en) Fuel cell system
JPS6322423B2 (en)
JP4019924B2 (en) Fuel cell system
CN219626695U (en) Air inlet temperature control device of fuel cell
US20040131899A1 (en) System and method for process gas stream delivery and regulation using down spool control
KR102474344B1 (en) Humidification device having structure for decreasing hydrogen concentration of fuel cell
JP2000164240A (en) Fuel cell