JPH0428467B2 - - Google Patents
Info
- Publication number
- JPH0428467B2 JPH0428467B2 JP58188288A JP18828883A JPH0428467B2 JP H0428467 B2 JPH0428467 B2 JP H0428467B2 JP 58188288 A JP58188288 A JP 58188288A JP 18828883 A JP18828883 A JP 18828883A JP H0428467 B2 JPH0428467 B2 JP H0428467B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- furnace
- casting
- alloy
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005266 casting Methods 0.000 claims description 72
- 239000000956 alloy Substances 0.000 claims description 71
- 229910045601 alloy Inorganic materials 0.000 claims description 70
- 238000002844 melting Methods 0.000 claims description 30
- 230000008018 melting Effects 0.000 claims description 30
- 230000003647 oxidation Effects 0.000 claims description 17
- 238000007254 oxidation reaction Methods 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 239000011261 inert gas Substances 0.000 claims description 14
- 238000010079 rubber tapping Methods 0.000 claims description 13
- 229910002804 graphite Inorganic materials 0.000 claims description 10
- 239000010439 graphite Substances 0.000 claims description 10
- 238000007664 blowing Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 36
- 239000002184 metal Substances 0.000 description 36
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 28
- 238000000034 method Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 15
- 229910052786 argon Inorganic materials 0.000 description 14
- 238000000465 moulding Methods 0.000 description 14
- 229910000601 superalloy Inorganic materials 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229910000851 Alloy steel Inorganic materials 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000007711 solidification Methods 0.000 description 8
- 230000008023 solidification Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- SZMZREIADCOWQA-UHFFFAOYSA-N chromium cobalt nickel Chemical compound [Cr].[Co].[Ni] SZMZREIADCOWQA-UHFFFAOYSA-N 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000036316 preload Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- VRKNSQQFHRIXPD-UHFFFAOYSA-N chromium cobalt iron nickel Chemical compound [Fe][Ni][Cr][Co] VRKNSQQFHRIXPD-UHFFFAOYSA-N 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007528 sand casting Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001067 superalloy steel Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/023—Alloys based on nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/04—Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、1400℃より高い鋳込み温度をもち溶
融状態で酸化され易い合金から鋳造品を製造する
ための装置に係り、より特定的には、多少複雑な
形状を有し大きな熱応力下で使用される厚みの薄
い又は厚い鋳造部材の製造装置に係る。対象とな
る部材は、主として鉄含量20%未満の超合金製部
材と、20%を越える鉄を含む耐熱合金又は高合金
鋼の部材である。これらの超合金はクロム合金で
あつて、ニツケルをベースとするか、コバルトを
ベースとするか、又は鉄−ニツケル−クロム、鉄
−ニツケル−クロム−コバルトの如くニツケル又
はコバルトと鉄とをベースとする合金である。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for producing a casting from an alloy having a casting temperature higher than 1400°C and which is easily oxidized in the molten state, and more particularly, The present invention relates to an apparatus for manufacturing thin or thick cast members having a somewhat complicated shape and used under large thermal stress. The target parts are mainly superalloy parts with an iron content of less than 20%, and heat-resistant alloy or high-alloy steel parts with an iron content of more than 20%. These superalloys are chromium alloys that are nickel-based, cobalt-based, or nickel- or cobalt- and iron-based, such as iron-nickel-chromium, iron-nickel-chromium-cobalt. It is an alloy that
本発明は、また低合金鋼の部材と普通の鋼の部
材との鋳造にも係る。これらの鋼も溶融状態では
極めて酸化され易い。 The invention also relates to the casting of parts of low alloy steel and parts of ordinary steel. These steels are also extremely susceptible to oxidation in the molten state.
[従来の技術]
超合金及び高合金鋼は、時に金属機械工業、航
空工業、航空宇宙工業等の分野で熱間作動部材
(冶金用の炉、機械、タービンのロータ、レール
上及び道路上を走行する車両)の製造に使用され
る。[Prior Art] Superalloys and high-alloy steels are sometimes used in hot working parts (metallurgical furnaces, machines, turbine rotors, on rails and on roads) in fields such as the metal machinery industry, the aviation industry, and the aerospace industry. used in the manufacture of moving vehicles).
合金鋼はまた「特殊鋼」或いは「精鋼
(refinedsteel)」とも称する。 Alloy steel is also called "special steel" or "refined steel."
このような部材の一製法として、合金(超合
金、高合金特殊鋼)又は低合金特殊鋼)を誘導炉
の如き電気溶解炉内で調製し、これを重力により
鋳型に鋳込む方法が知られている。 One known method for manufacturing such members is to prepare an alloy (superalloy, high-alloy special steel, or low-alloy special steel) in an electric melting furnace such as an induction furnace, and then cast it into a mold using gravity. ing.
誘導炉の主な利点は浸炭雰囲気が無いことと、
極めて高い温度が得られることとにあり、これは
特殊鋼にとつて有利である。しかしながらこの炉
では金属を撹拌するため、ガス状介在物発生の危
険があることから。超合金又は耐熱合金にとつて
は不利である。また、現在の製法では、酸化及び
巣等の欠陥のために廃棄され鋳造製品の率が高い
場合が時々見うけられる。更に、重力による型込
めは酸化及び巣形成の危険性をを増大させると共
に、合金鋳込み効率が余り高くないという欠点も
有している。この「効率」とは鋳造製品の正味の
重量と型内に導入された合金の合計重量との間の
比を意味する。この効率を低くする原因は鋳造製
品から切り離さなければならないシユート及び湯
口の重量と、やはり切り離す必要のある重い押湯
の存在とにある。この押湯は巣の形成を最大限に
回避するためのものであるが、必ずしも満足のい
く結果は得られない。 The main advantages of induction furnaces are that there is no carburizing atmosphere;
Extremely high temperatures can be obtained, which is an advantage for special steels. However, since this furnace stirs the metal, there is a risk of gaseous inclusions being generated. This is disadvantageous for superalloys or high temperature alloys. Additionally, current manufacturing methods sometimes result in a high percentage of cast products being discarded due to defects such as oxidation and voids. Furthermore, gravity filling increases the risk of oxidation and void formation, and also has the disadvantage that the alloy casting efficiency is not very high. By "efficiency" we mean the ratio between the net weight of the cast product and the total weight of the alloy introduced into the mold. This inefficiency is due to the weight of the chute and sprue, which must be separated from the cast product, and the presence of a heavy feeder, which also must be separated. Although this riser is intended to avoid the formation of cavities to the maximum extent possible, it does not always give satisfactory results.
また、非常に高い鋳込み温度(約1400℃)の合
金は、溶融状態では非常に酸化され易い。したが
つて、鋳込み合金の生成および鋳込み中の酸化を
回避するいことが必要である。また、この種合金
の鋳造時における凝固や鋳造品における巣の形成
を一切避けるよとするなら、溶融状金属に乱流を
もたらす撹拌を一切避けなければならない。 Also, alloys with very high casting temperatures (approximately 1400°C) are highly susceptible to oxidation in the molten state. It is therefore necessary to avoid the formation of pouring alloys and oxidation during pouring. Furthermore, if we are to avoid any solidification during casting of this type of alloy and the formation of cavities in the cast product, we must avoid any agitation that would cause turbulence in the molten metal.
本出願人は既に夫々1974年12月24日、1977年3
月21日及び1979年5月2日の仏国特許出願第
7442713号(公開番号2295808)、第7708364号(公
開番号2384568)及び第7911067号(公開番号
2455491)において、種々の低圧力下型込め法を
提供してきた。これらの方法では、鋳造すべき部
材の厚みが厚い場合に巣ができるのを阻止し、鋳
込み金属の効率を向上させ、且つ多少とも複雑な
形状の製品を無傷で製造すべく、鋳型を縦形導管
の出湯口に密着させて圧力下で下から上へと金属
を供給する。しかし乍らこれらの方法には酸化し
易い合金を鋳込む場合の配慮がなされていない。 The applicant has already filed the
French Patent Application No. 21 May 1979 and 2 May 1979
No. 7442713 (Publication No. 2295808), No. 7708364 (Publication No. 2384568) and No. 7911067 (Publication No.
2455491) have provided various low pressure mold filling methods. In these methods, the mold is connected to a vertical conduit in order to prevent the formation of cavities when the part to be cast is thick, to improve the efficiency of the cast metal, and to produce products of more or less complex shapes without damage. The metal is supplied from the bottom to the top under pressure by placing the metal in close contact with the spout. However, these methods do not take into consideration the case where alloys that are easily oxidized are cast.
[発明が解決しようとする問題点]
本発明の目的は、上記のような従来技術の問題
点を解決することにある。[Problems to be Solved by the Invention] An object of the present invention is to solve the problems of the prior art as described above.
即ち、本発明の目的は、1400℃より高い鋳込み
温度を持ち溶融状態で酸化され易い合金の生成及
び鋳込みを、閉鎖状またはほぼ閉鎖状容器を用
い、酸化を回避しながら、かつ低圧下でできるだ
け速い鋳込み速度で行う、酸化されやすい合金か
ら鋳造品を製造するための装置を提供することに
ある。 That is, an object of the present invention is to produce and cast an alloy that has a casting temperature higher than 1400°C and is easily oxidized in the molten state, using a closed or nearly closed container, while avoiding oxidation, and under as low pressure as possible. The object of the present invention is to provide an apparatus for producing castings from easily oxidized alloys at high casting speeds.
[問題点を解決するための手段]
本発明の装置は前記のような合金をガラフアイ
トバー付き閉鎖電気炉で生成し、この金属浴を該
炉内で不活性ガスの圧力下におき、鋳型を該溶解
炉の出湯口に密着させ、該溶融合金を低圧下で下
から上へ鋳型に供給すべく、前記不活性ガスの駆
動圧力(pression motrice)下で溶解炉から該鋳
型へと直接送り込み、このようにして溶解炉と鋳
型との集合体を、鋳込み時に不活性ガス圧力下に
おかれる閉鎖容器として用いることを特徴とす
る。[Means for Solving the Problems] The apparatus of the present invention produces the above-mentioned alloy in a closed electric furnace equipped with galafite bars, places this metal bath under the pressure of inert gas in the furnace, and molds the metal bath. is placed in close contact with the outlet of the melting furnace, and is fed directly from the melting furnace to the mold under the inert gas compression motrice so as to feed the molten alloy from bottom to top into the mold under low pressure. In this way, the assembly of the melting furnace and the mold is used as a closed container that is placed under inert gas pressure during casting.
本発明の装置は基本成分として、クロム、ニツ
ケル、コバルト及び鉄から選択された金属を含む
合金の生成に使用される。 The apparatus of the invention is used for producing alloys containing metals selected from chromium, nickel, cobalt and iron as basic constituents.
本発明により、1400℃より高い鋳込み温度をも
ち溶融状態で酸化され易い合金から鋳造品を製造
するための装置が提供される。本発明の装置は、
互いに合体して密封閉鎖容器状低圧鋳込みアセン
ブリを形成し得る溶解炉と鋳型とからなつてお
り、前記炉は、密閉し得る装入口、炉内の溶融合
金を輻射によつて加熱するためのグラフアイトバ
ー、および、炉内に不活性ガス流を導入するため
の導管を具備する傾倒可能な電気炉タイプのもの
であり、前記鋳型は、鋳型の鋳込み口を介して炉
の出湯口に密封当接され、かつ、鋳込み時に鋳型
中のガスを排出するための少なくも1つの小径の
管路または通路からなる揚りを具備しており、前
記路の前記鋳型とは、一端が路の内部空間に連通
していると共に他方の自由端が鋳型に連通して出
湯口を形成する環状横断面の出湯樋によつて連結
され、さらに、少なくとも出湯口のまわりに不活
性ガスを吹きつけるための環状リングを具備して
いることを特徴とする。 The present invention provides an apparatus for producing castings from alloys that have casting temperatures higher than 1400° C. and are susceptible to oxidation in the molten state. The device of the present invention includes:
The furnace comprises a melting furnace and a mold which can be combined with each other to form a sealed closed vessel low pressure casting assembly, the furnace having a sealable charging port, a graph for heating the molten alloy in the furnace by radiation. of the tiltable electric furnace type, comprising an inert bar and a conduit for introducing a flow of inert gas into the furnace, said mold being connected to the tap of the furnace through an inlet of the mold in a sealing fit; The channel is connected to the mold and has at least one small-diameter pipe or channel for discharging gas in the mold during casting, and one end of the channel is connected to the inner space of the channel. connected by a tapping trough of annular cross section, the other free end of which communicates with the mold and forms a tap opening, and further includes an annular tap trough for blowing inert gas at least around the tap tap. It is characterized by having a ring.
本発明の一実施態様によると、前記炉が台枠の
軸受上に載置されたローラによつて支持されてお
り、前記ローラの一方は歯車付電動機によつて駆
動され、その結果、前回の鋳込み後に前記炉が傾
倒されて出湯樋が上昇方向に向くようになつてい
る。 According to one embodiment of the invention, the furnace is supported by rollers mounted on bearings in the underframe, one of the rollers being driven by a geared electric motor, so that the previous After pouring, the furnace is tilted so that the tapping trough faces upward.
本発明の別の実施態様によると、前記鋳型が、
鋳型の上面に載置されたピストン棒の先端に取り
付けられた穿孔プレートにより推力を加えること
によつて、鋳型の鋳込み口を介して炉の出湯口に
密封当接している。 According to another embodiment of the invention, the mold comprises:
By applying thrust with a perforated plate attached to the tip of a piston rod placed on the upper surface of the mold, the piston rod is brought into sealing contact with the outlet of the furnace through the casting spout of the mold.
さらに別の態様によると、前記鋳型が、その上
部に吸引管が取り付けられた排気鐘の下に密封的
に配置されている。 According to a further embodiment, the mold is placed in a sealed manner under an exhaust bell, on the top of which a suction tube is attached.
本発明の他の特徴及び利点は、添付図面に基づ
く以下の非限定具体例の説明から明らかにされよ
う。 Other characteristics and advantages of the invention will become apparent from the following description of non-limiting embodiments based on the accompanying drawings, in which: FIG.
第1図及び第2図の具体例によれば本発明の装
置は主として溶解炉1と鋳型2とから成り、これ
ら溶解路と鋳型とが合体して密封可能な閉鎖容器
状鋳込みアセンブリを形成する。 According to the embodiment of FIGS. 1 and 2, the apparatus of the invention essentially consists of a melting furnace 1 and a mold 2, which together form a sealable closed vessel casting assembly. .
より詳細には、溶解炉1は電気炉であり、台枠
の軸受5上に載置されたローラ4に支持されてい
る弓形湾曲台3を介して傾倒する。ローラ4の一
方は駆動ローラであり歯車付電動機(減速装置)
6によつて回転する。炉1は反射型であり、水平
グラフアイトバー7の輻射によつて加熱される。
炉1のアーチが輻射熱を金属浴上へ反射するので
ある。炉1は取外し可能なドア又は蓋9により密
閉し得る装入口8と、閉鎖した又は管状の横断面
をもつ出湯樋10とを備えている。該出湯樋は一
端が炉の内部空間に連通し、他端が自由端であつ
て該樋上面上に好ましくは円錐台状の出湯口11
を形成している。この出湯口11は後述の如く鋳
型2の鋳込み口と密封的に接合される。管12は
炉1の内部空間に連通して加圧された不活性ガス
流を金属浴Mの液面N上方に導入する。この不活
性ガスはアルゴンが好ましい。該管12上には、
金属浴M上方の炉内空間の圧力を測定する測定板
を備えた圧力調整装置13が載置してある。この
圧力調整には圧力低下(mise a′ la de′charge)
も含まれる。第1図及び第2図では該調整測定装
置を簡略に示した。鋳型2(第1図)はこの具体
例では成形粘結剤で固めた砂を枠内部に密に詰め
て経営した砂型であるが、枠のない抜き枠砂型、
枠内で充填物を詰める樹脂砂製鋳造マスク、砂で
覆われた又は覆われていない金属製冷し鋳型、又
はグラフアイト製鋳型等を使用してもよい。 More specifically, the melting furnace 1 is an electric furnace and is tilted via an arcuate curved table 3 supported by rollers 4 mounted on bearings 5 of the underframe. One of the rollers 4 is a drive roller and has a geared electric motor (reduction device).
Rotate by 6. The furnace 1 is of the reflection type and heated by radiation from a horizontal graphite bar 7.
The arch of the furnace 1 reflects the radiant heat onto the metal bath. The furnace 1 has a charging opening 8 which can be closed by a removable door or lid 9 and a tap trough 10 with a closed or tubular cross section. One end of the tapping gutter communicates with the internal space of the furnace, the other end is a free end, and a tap spout 11 preferably in the shape of a truncated cone is provided on the upper surface of the gutter.
is formed. This tap 11 is hermetically connected to the pouring port of the mold 2, as will be described later. The tube 12 communicates with the interior space of the furnace 1 and introduces a pressurized inert gas flow above the liquid level N of the metal bath M. This inert gas is preferably argon. On the tube 12,
A pressure regulating device 13 equipped with a measuring plate for measuring the pressure in the furnace space above the metal bath M is mounted. This pressure adjustment requires a pressure drop (mise a′ la de′charge).
Also included. In FIGS. 1 and 2, the adjusting and measuring device is shown in a simplified manner. In this specific example, mold 2 (Fig. 1) is a sand mold made by densely packing sand hardened with a molding binder inside the frame, but it is also possible to use a punched frame sand mold without a frame.
Plastic sand casting masks with fillers in the frame, metal cold molds covered or uncovered with sand, or graphite molds, etc. may be used.
図の具体例では鋳型2は2つの部分から成つて
おり、中空回転体状部材の製造に使用されるた
め、固めた砂で形成されたコア14を有してい
る。従つて成形用空洞部15は、外側の適切な鋳
型2と該コア14との間の環状スペースで構成さ
れている。成形用空洞部15の下方部分には注入
器即ち溶融合金供給路16が前記回転体状部材の
軸X−Xに従い連通している。該供給路16は開
口17を介して鋳型2の底面に連通しているが該
開口17は例えば円錐台形であり、適切な材料の
シールリング18を介して炉1の出湯樋10の出
湯口11に公知の方法で密封的に接合される。 In the embodiment shown, the mold 2 consists of two parts and has a core 14 made of compacted sand, since it is used for the production of hollow rotary bodies. The molding cavity 15 is thus constituted by the annular space between the outer suitable mold 2 and the core 14. A syringe or molten alloy feed channel 16 communicates with the lower part of the molding cavity 15, following the axis X--X of the rotary member. The feed channel 16 communicates with the bottom of the mold 2 via an opening 17, which has the shape of a truncated cone, for example, and which is connected to the outlet 11 of the tap trough 10 of the furnace 1 via a sealing ring 18 of a suitable material. are hermetically joined by a method known to those skilled in the art.
鋳込み時に吸引によつてガスの排出を容易にし
且つ鋳型のキヤビテイ即ち空洞部15への溶融合
金Mの導入を促進すべく、該空洞部は針穴の如く
直径の小さい管路又は通路から成る揚り19を介
して鋳型2の上面に接続されている。 In order to facilitate the discharge of gas by suction during casting and to promote the introduction of the molten alloy M into the cavity 15 of the mold, the cavity is constructed of a pipe or passage with a small diameter, such as a needle hole. It is connected to the upper surface of the mold 2 via a groove 19.
鋳型2を、シールリング18を押しつぶすか又
は少なくとも圧迫する程強く、出湯口11状に当
接し密着させるために、ジヤツキ(図示せず)の
ピストン棒21先端に具備された軸X−Xをもつ
穿孔プレート20が圧力により鋳型2の上面に押
しつけられる。 In order to bring the mold 2 into close contact with the spout 11 so as to crush or at least compress the seal ring 18, a jack (not shown) has an axis X-X provided at the tip of the piston rod 21. A perforated plate 20 is pressed against the upper surface of the mold 2 by pressure.
鋳型2がこのように出湯樋10の出湯口11上
に当接されると、該樋自体も地上の支持部材22
などに押しつけられる。この支持部材22は仏語
でベキーユ(be′quille)とも称し、該具体例では
高さが固定されているが、例えばネジ−ナツトシ
ステムとハンドルとにより高さを調整できるよう
にしてもよい。鋳型2は排気鐘23の下に配置さ
れているが、該排気鐘は本質的に鋳型2の上面と
前記穿孔プレート20とを覆い、下端に鋳型2側
面に当接する環状パツキン24を備えている。該
パツキン24は鋳型の周縁が円形の場合は円環状
であつてよく、又は単一リツプパツキンが或いは
鋳型側面の外周に応じて円形、正方形、長方形等
の形状をもつスカートであつてもよい。前記排気
鐘23の上部には穿孔プレート20の上方に伸長
して真空源(図示せず)に接続された管25が具
備されている。この管25は吸引管であつて、鋳
込み時に前記揚り19とプレート20の孔とを会
してガスが鋳型2から流出するのを容易にするた
めのものである。ジヤツキ21は鋳型2移動装置
(図示せず)上に載置されている、。 When the mold 2 is brought into contact with the outlet 11 of the tap trough 10 in this way, the trough itself also rests on the support member 22 on the ground.
Being forced by others. This support member 22, also called be'quille in French, has a fixed height in this embodiment, but may also be adjustable in height, for example by means of a screw-nut system and a handle. The mold 2 is placed under an exhaust bell 23, which essentially covers the upper surface of the mold 2 and the perforated plate 20, and is provided with an annular packing 24 at the lower end that abuts against the side surface of the mold 2. . The packing 24 may be annular if the periphery of the mold is circular, or it may be a single lip packing or a skirt having a circular, square, rectangular, etc. shape depending on the outer circumference of the sides of the mold. A pipe 25 is provided at the top of the exhaust bell 23 and extends above the perforated plate 20 and is connected to a vacuum source (not shown). This pipe 25 is a suction pipe and is used to connect the lift 19 with the hole in the plate 20 during casting so that gas can easily flow out of the mold 2. The jack 21 is placed on a mold 2 moving device (not shown).
本発明では更に出湯口11の周りに、そしてド
ア9が開いている場合は炉1の装入口8の周りに
も、アルゴンの如き不活性ガスを吹きつけるため
の吹込みリング26を使用する。 The invention also uses a blow ring 26 for blowing an inert gas, such as argon, around the tap 11 and also around the charging port 8 of the furnace 1 when the door 9 is open.
[実施例]
本発明の装置による鋳造品の製法
本発明の装置の構成・使用法・作用・効果をさ
らに詳細に説明するために、本発明の装置を用い
る鋳造方法について説明する。[Example] Method for manufacturing a cast product using the apparatus of the present invention In order to explain in more detail the structure, usage, action, and effect of the apparatus of the present invention, a casting method using the apparatus of the present invention will be described.
本発明の装置を用いる鋳造方法では先ず一部を
合金組成の最も酸化し難い成分(特にニツケル、
コバルト、鉄)を含む液体装入物の形で炉内に装
入し、次いで一部を最も酸化し易い成分(特にク
ロム)を含む固体装入物の形で装入することによ
り、前述の合金の溶融速度を増大させる。 In the casting method using the apparatus of the present invention, first a part of the alloy composition is made of the most difficult to oxidize component (particularly nickel,
The previously mentioned Increases the melting rate of the alloy.
このようにすれば固体装入物は本質的に炉内へ
予め導入しておいた金属浴への浸漬によつて溶解
し、一方輻射によるグラフアイトバーの加熱が該
浴の温度を上昇させる役割を果たす。 In this way, the solid charge is essentially melted by immersion in a metal bath previously introduced into the furnace, while the heating of the graphite bars by radiation serves to raise the temperature of said bath. fulfill.
既に述べたように、本出願人は既に夫々1974年
12月24日、1977年3月21日及び1979年5月2日の
仏国特許出願第7442713号(公開番号2295808)、
第7708364号(公開番号2384568)及び第7911067
号(公開番号2455491)において、種々の低圧力
下型込め法を提供してきた。これらの方法では、
鋳造すべき部材の厚みが厚い場合に巣ができるの
を阻止し、鋳込み金属の効率を向上させ、且つ多
少とも複雑な形状の製品を無傷で製造すべく、鋳
型を縦形導管の出湯口に密着させて圧力下で下か
ら上へと金属を供給する。しかし乍ら、これらの
方法には、酸化し易い合金を鋳込む場合の配慮が
なされていない。 As already mentioned, the applicants have already filed their respective documents in 1974.
French Patent Application No. 7442713 (Publication No. 2295808) of December 24, March 21, 1977 and May 2, 1979;
No. 7708364 (publication number 2384568) and No. 7911067
(Publication No. 2455491), various low pressure molding methods have been provided. In these methods,
The mold is tightly attached to the outlet of the vertical conduit in order to prevent the formation of cavities when the part to be cast is thick, to improve the efficiency of the casting metal, and to produce products with more or less complex shapes without damage. The metal is fed from the bottom to the top under pressure. However, these methods do not take into consideration the case where alloys that are easily oxidized are cast.
本発明の装置を用いる鋳造方法においては、鋳
型充填時の酸化防止対策として、鋳型への鋳込み
サイクル中に溶解炉内の吹活性ガスの駆動圧力を
以下の如く複数の段階に分けて変化させる。 In the casting method using the apparatus of the present invention, as a measure to prevent oxidation during mold filling, the driving pressure of the blown active gas in the melting furnace is changed in a plurality of stages as described below during the casting cycle into the mold.
−「低圧値」又は「予圧力値(pre′pression)」
と称する圧力値を用いて出湯口近傍に合金を導
入する予段階、
−鋳型に合金を充填すべく圧力を前記の低圧値又
は予圧値から急速に高圧値に上昇させる第1段
階、
−鋳型内に導入された溶融合金の動きを静めるべ
く、第1段階で最終的に得られた前記高圧値の
圧力を第1段階より大幅に長い時間に亘つて維
持する第2段階、
−乱流を完全に阻止し且つ押湯効果を得るべく、
即ち出湯口レベルの合金を溶融状態に維持すべ
く、第1段階より長い時間をかけて第1段階よ
り緩慢に圧力を上げながら第1段階の前述の高
圧値よりかなり赤い過剰圧力値たる最大値を得
るための圧力上昇及び押湯効果発生用第3段
階、
−圧力を鋳型内の部材のみが完全に凝固するまで
鋳込みサイクルの合計時間に比べてかなり長い
間第3段階で得られた最大過剰圧力値に維持す
る第4段階、
−合金が凝固している鋳型を空にすることなく鋳
込み路を少なくとも部分的に空にすべく、不活
性ガス圧力を短時間のうちに前記最大過剰圧力
値から初期の低圧値又は予圧値でまで降下させ
る第5段階。- “low pressure value” or “pre′pression value”
- a preliminary step of introducing the alloy in the vicinity of the tap opening using a pressure value called - a first step of rapidly increasing the pressure from said low pressure value or pre-pressure value to a high pressure value in order to fill the mold with the alloy; - in the mold; a second stage of maintaining said high pressure value finally obtained in the first stage for a significantly longer time than the first stage in order to calm the movement of the molten alloy introduced into the flow; - to completely eliminate the turbulence; In order to prevent this and obtain the boiling water effect,
That is, in order to maintain the alloy at the tap level in a molten state, the pressure is increased more slowly than in the first stage over a longer period of time than in the first stage, and the maximum value is an excess pressure value that is considerably redder than the above-mentioned high pressure value of the first stage. a third stage for the rise of pressure and the generation of a feeder effect in order to obtain - the maximum excess of pressure obtained in the third stage for a considerable time compared to the total time of the casting cycle until only the parts in the mold are fully solidified; a fourth stage of maintaining the inert gas pressure at said maximum overpressure value within a short period of time, in order to at least partially empty the casting channel without emptying the mold in which the alloy is solidifying; The fifth step is to lower the pressure from the pressure to the initial low pressure value or pre-pressure value.
このように鋳込みサイクル中に圧旅を変化させ
ると、鋳型内の合金の乱流が、従つて成形用空洞
部の内部又は表面への酸化性ガスの流入が完全に
回避され、巣も全く発生せずに無傷の鋳造品が得
らる、勝つ出湯口に固り(bouchon又はcarotte、
即ち合金が凝固したもの)が生じることもない。 By varying the pressure travel during the casting cycle in this way, turbulence of the alloy in the mold and therefore the inflow of oxidizing gases into the interior or surface of the forming cavity is completely avoided and no cavities are formed. An intact casting is obtained without any hardening (bouchon or carotte,
In other words, no solidified alloy is formed.
本発明では、鋳込み合金生成の間浴中の乱流を
完全に回避せしめるグラフアイトバー付溶解炉の
選択に加えて、このような鋳造対策もとられてい
る。 In the present invention, such casting measures are taken in addition to the selection of a melting furnace with graphite bars that completely avoids turbulence in the bath during the production of the cast alloy.
成形用空洞部15をもつ鋳型2内で軸X−Xを
もつ環状回転部体材、例えばタービンのロータを
鋳造する。 An annular rotating member having an axis X--X, for example a rotor of a turbine, is cast in a mold 2 having a molding cavity 15.
一例として、次の組成(単位:重量%)の超合
金(ニツケル−クロム−コバルトの合金)を溶解
炉1内で生成する。生成された超合金は金属浴M
として使用される。 As an example, a superalloy (nickel-chromium-cobalt alloy) having the following composition (unit: weight %) is produced in the melting furnace 1. The produced superalloy is placed in metal bath M
used as.
− クロム…7〜15%
− コバルト…5〜40%
−チタン及びアルミニウム…7〜10.5%、チタン
及びアルミニウム間の比は0.6乃至1.4
− ホウ素…0.005〜0.1%
− 炭素…0.05〜0.5%
− ケイ素…0〜0.8%
− マンガン…0〜1%
− 鉄…0〜10%
− ジルコニウム…0〜0.2%
−残り、不純物以外はニツケルからなる(14乃至
75%)
この合金は高温で圧力をかけた場合の破壊強さ
が大きく、約1600℃の鋳込み温度を有する。- Chromium...7-15% - Cobalt...5-40% - Titanium and aluminum...7-10.5%, the ratio between titanium and aluminum is 0.6-1.4 - Boron...0.005-0.1% - Carbon...0.05-0.5% - Silicon ...0 to 0.8% - Manganese...0 to 1% - Iron...0 to 10% - Zirconium...0 to 0.2% - The rest, other than impurities, consists of nickel (14 to
75%) This alloy has high fracture strength when pressure is applied at high temperatures, and has a casting temperature of approximately 1600℃.
別の例として、500乃至900℃の温度下で使用さ
れる部材を形成するための耐熱合金鋼を溶解炉1
で生成する。この合金鋼(鉄も含むクロム−ニツ
ケル−コバルト合金)の組成は次の通り(重量
%)。 As another example, a heat-resistant alloy steel for forming parts to be used at temperatures between 500 and 900 degrees Celsius is melted in a melting furnace.
Generate with . The composition of this alloy steel (chromium-nickel-cobalt alloy containing iron) is as follows (wt%).
− クロム…13〜23%
− ニツケル…13〜28%
− コバルト…22〜28%
− ホウ素…0.001〜0.5%
− タングステン…0〜5%
− モリブデン…0〜5%
− ニオブ…0〜5%
− タンタル…0〜5%
− チタン…0〜5%
− バナジウム…0〜5%
− 炭素…0.05〜0.45%
− マンガン…)2%まで
− ケイ素…1%まで
− 鉄及び不純物…残り(50%未満)
本発明の装置を用いる鋳造方法は、この合金
(前記超合金又は前記耐熱合金鋼)を生成し、炉
1と鋳型2との合体により形成された閉鎖容器を
用いて該合金を鋳込み、該容器内への空気の流入
による酸化と溶融時及び鋳込み時における溶融合
金の乱流とを完全に回避することにある。そのた
めこの鋳造方法では、輻射によつて加熱され且つ
密閉し得るグラフアイトバー付溶融炉1を使用
し、本出願人により1982年9月28日に出願された
特許出願第8216427号に開示の装入手段、即ち炉
1内部に深く装入される装入手段、を用いて液体
装入物及び固体挿入物を順次炉1内に装入し、炉
1内のアルゴン(又は場合により窒素)の圧力を
後述の方法で適切に調整して鋳型内に溶融合金M
を導入し、且つ、鋳型の交換を速やかに行う。さ
らに、吹込み環状リング26を用いて炉1への装
入時、鋳込み時及び鋳型2交換時に炉1の開口と
鋳型2の開口とを適宜適切に保護する。- Chromium...13-23% - Nickel...13-28% - Cobalt...22-28% - Boron...0.001-0.5% - Tungsten...0-5% - Molybdenum...0-5% - Niobium...0-5% - Tantalum...0 to 5% - Titanium...0 to 5% - Vanadium...0 to 5% - Carbon...0.05 to 0.45% - Manganese...up to 2% - Silicon...up to 1% - Iron and impurities...remaining (less than 50%) ) The casting method using the apparatus of the present invention involves producing this alloy (the superalloy or the heat-resistant alloy steel), casting the alloy using a closed container formed by combining the furnace 1 and the mold 2, and casting the alloy. The aim is to completely avoid oxidation due to the inflow of air into the container and turbulence of the molten alloy during melting and casting. Therefore, in this casting method, a melting furnace 1 equipped with a graphite bar that can be heated by radiation and sealed is used, and the melting furnace 1 is equipped as disclosed in patent application No. 8216427 filed by the applicant on September 28, 1982. The liquid charge and the solid charge are sequentially charged into the furnace 1 using a charging means, that is, a charging means which is deeply inserted into the interior of the furnace 1, and the argon (or nitrogen as the case may be) in the furnace 1 is removed. Adjust the pressure appropriately using the method described below to place the molten alloy M in the mold.
and promptly replace the mold. Further, the blowing annular ring 26 is used to appropriately protect the opening of the furnace 1 and the opening of the mold 2 during charging into the furnace 1, during casting, and when replacing the mold 2.
この鋳造方法はより詳細には以下の如く実施さ
れる。 This casting method is carried out in more detail as follows.
(1) 溶解炉1への装入(第2図)
炉1の底には前回の鋳型への鋳込みの後に多
少の浴が残存していると想定して、樋10が上
方向へ傾斜し、その結果合金Mが出湯口11よ
り下に下がるように炉1を傾斜させる。こよう
にすれば合金Mの表面と空気との直接的接触が
回避される。この場合はアルゴン吹込みリング
26を用いて出湯口11をアルゴンの膜で閉鎖
するためより完璧に回避される。更に、本出願
人により1982年9月13日に出願された仏国特許
出願第8215556号に開示の手段−一部が出湯樋
10自体の管状壁面内に埋設(embedded)さ
れ、一部が該樋の外側にある電気的加熱手段−
を用いて出湯樋10内全体の合金Mの鋳込み温
度を1600℃に維持し、このようにして該出湯樋
10内で合金の凝固を回避する。ドア9を開放
し且つ必要であれば装入口8の入口に配置した
吹込みリング26を用いてアルゴンの保護膜を
円状に形成した後で、前述の仏国特許出願第
8216427号に記載の手段により液体装入物と固
体装入物とを順次導入する。この手段は図面簡
略化のため単一の装入樋27として第2図に簡
略に示した。(1) Charging into the melting furnace 1 (Fig. 2) Assuming that some bath remains at the bottom of the furnace 1 after the previous casting, the gutter 10 is tilted upward. As a result, the furnace 1 is tilted so that the alloy M is lowered below the tap 11. In this way, direct contact between the surface of alloy M and air is avoided. In this case, the argon blowing ring 26 is used to close the outlet 11 with an argon film, so that the problem can be more completely avoided. Furthermore, the means disclosed in French patent application no. Electrical heating means on the outside of the gutter -
is used to maintain the casting temperature of alloy M throughout the tapping trough 10 at 1600°C, thus avoiding solidification of the alloy within the tapping trough 10. After opening the door 9 and, if necessary, creating a circular protective layer of argon using the blow ring 26 placed at the entrance of the charging port 8, the above-mentioned French patent application no.
A liquid charge and a solid charge are introduced sequentially by the means described in No. 8216427. This means is simply shown in FIG. 2 as a single charging trough 27 to simplify the drawing.
外気との接触を完全に回避すべく、該装入樋
27の自由端は溶解炉1の空洞内へできるだけ
深く挿入しなければならない。導管12を会し
て炉1の浴Mの液面N上方の空間にアルゴン
(又は窒素)雰囲気を吹入れる。 The free end of the charging trough 27 must be inserted as deep as possible into the cavity of the melting furnace 1 in order to completely avoid contact with the outside air. An argon (or nitrogen) atmosphere is blown into the space above the liquid level N of the bath M in the furnace 1 through the conduit 12.
(a) 液体装入物の装入
この液体装入物は前記の超合金又は合金鋼
の成分の中最も酸化し難いもの、即ちクロ
ム、チタン、アルミニウウ、マンガン及び炭
素以外の成分を含む。この液体装入物は超合
金の場合は全装入物の73乃至86重量%を占
め、多数の鋳込みサイクルを行う炉の容量が
例えば500Kgであれば全装入物500Kgの中400
Kgを占めることになる。 (a) Charge of Liquid Charge This liquid charge contains components other than the least oxidizable components of the superalloy or alloy steel, namely chromium, titanium, aluminum, manganese and carbon. This liquid charge accounts for 73 to 86% by weight of the total charge in the case of superalloys, and if the capacity of the furnace for multiple casting cycles is, say, 500 kg, then 400% of the total charge of 500 kg is
It will occupy Kg.
前述の耐熱合金鋼の場合には液体装入物は
全装入物の70乃至86重量%を占め、例えば全
装入物500Kgに対し350Kgである。 In the case of the aforementioned heat-resistant alloy steels, the liquid charge accounts for 70 to 86% by weight of the total charge, for example 350 kg compared to a total charge of 500 kg.
(b) 固体装入物の装入
固体装入物は前記超合金の場合は全装入物
の約14乃至27重量%、従つて液体装入物より
かなり少ない割合を占め、最も酸化し易い成
分即ちクロム、チタン、アルミニウム、マン
ガン、炭素を含み、全装入物量が500Kgの場
合例えば100Kgに相当する。 (b) Charge of the solid charge The solid charge accounts for about 14 to 27% by weight of the total charge in the case of the superalloys, and is therefore considerably less than the liquid charge, and is the most susceptible to oxidation. It contains the components chromium, titanium, aluminum, manganese and carbon, and corresponds to, for example, 100 kg if the total charge is 500 kg.
前記耐熱合金鋼の場合は全装入物の14乃至
30重量%で、例えば150Kgを占め、最も酸化
し易い成分即ちクロム、炭素の他タングステ
ンの全部又は一部、マンガンの全部又は一
部、ケイ素の全部又は一部を含む。液体装入
物と固体装入物とを順次装入する操作は本出
願人による前述の仏国特許出願第8216427号
に記載されている。 In the case of the above-mentioned heat-resistant alloy steel, the total charge is 14 to
It accounts for 30% by weight, for example 150 kg, and contains the most easily oxidized components, namely chromium, carbon, as well as all or part of tungsten, all or part of manganese, and all or part of silicon. The operation of sequentially charging liquid and solid charges is described in the aforementioned French Patent Application No. 8216427 by the applicant.
溶解炉1は未だ浴Mが幾らか残つていたた
め最初から熱かつたと仮定し、一定時間が経
過すると、装入された全ての装入物は溶融状
態になる。固体装入物はグラフイトバー7か
らの輻射熱のみによるより遥かに早く液体装
入物中に溶解した。しかもグラフアイトバー
7による加熱によつて溶解時に金属浴Mの撹
拌は一切回避された。一方、導管12を介し
て加圧アルゴンを吹込むことにより炉1内に
所定の予圧下の雰囲気を設定して合金を出湯
口11のレベルまで上昇せしめた。 It is assumed that the melting furnace 1 was hot from the beginning because some amount of the bath M still remained, and after a certain period of time, all the charged materials become molten. The solid charge dissolved into the liquid charge much faster than by radiant heat from the graft bar 7 alone. Furthermore, heating by the graphite bar 7 prevented stirring of the metal bath M at all during melting. Meanwhile, an atmosphere under a predetermined prepressure was established in the furnace 1 by blowing pressurized argon through the conduit 12, and the alloy was raised to the level of the tap 11.
合金が完全に溶融した後で、鋳型2への鋳
込み前に、溶解炉1の密封性を利用して次の
如く浴Mの脱酸素処理を行うことができる。
導管12を吸気源に接続して炉1の内部スペ
ースを真空又は負圧下におく。こうすると、
浴Mはその中に含まれた炭素と同浴内の酸素
との化学反応
C+O2→CO2
により脱酸素処理される。 After the alloy is completely melted and before being poured into the mold 2, the bath M can be deoxidized as follows by utilizing the hermeticity of the melting furnace 1.
Conduit 12 is connected to a suction source to place the interior space of furnace 1 under vacuum or negative pressure. In this way,
The bath M is deoxidized by a chemical reaction between the carbon contained therein and the oxygen in the bath: C+O 2 →CO 2 .
発生した炭酸ガスは導管12を介して排出
される。 The carbon dioxide gas generated is discharged via conduit 12.
(2) 鋳型の配置と鋳込み(第1図及び第3図)
溶融時間が経過して浴M全体が1400℃をかな
り上回る温度の液体になつたら鋳込みを行う。(2) Mold arrangement and casting (Figures 1 and 3) After the melting time has elapsed and the entire bath M becomes a liquid with a temperature considerably higher than 1400°C, casting is performed.
ジヤツキ21を担持した移動装置によつて鋳
型2を速やかに導入し、次いで穿孔プレート2
0により該鋳型2を出湯口11上に密封的い押
しつける。 The mold 2 is quickly introduced by a moving device carrying a jack 21, and then the perforated plate 2
0 to tightly press the mold 2 onto the tap 11.
排気鐘23を鋳型2の導入時に配置しておか
なかつた場合は、出湯口11と鋳型の鋳込み口
17との間にシールリング18を挿入した後で
この排気鐘23をパツキン24を介して密封性
が得られるように鋳型2にかぶせ、出湯樋10
が支持部材22上に当接するまで圧力によつて
鋳型2を出湯口11上に押しつけ続けながら、
歯車付電動機6によりローラ上で炉1を傾倒さ
せる。次いで、それ自体知られてはいるが理論
的である方法により、巣を完全に回避すべく超
合金又は耐熱含金の冷却順序を考慮して、鋳型
への充填を乱流を伴わずに行うよう鋳込みサイ
クルを次の如く実施する。最初に導入されて最
初に冷却されるべき合金は空洞部15の最上部
即ち供給管又は供給路16から最も遠い部分に
導入され、最後に凝固すべき従つて最も長い間
最も高い温度を維持することになる合金部分は
成形用空洞部15の最下部即ち供給路16に最
も近い部分を占めなければならない。 If the exhaust bell 23 is not placed in place when the mold 2 is introduced, the exhaust bell 23 is inserted through the packing 24 after the seal ring 18 is inserted between the tapping port 11 and the casting port 17 of the mold. Cover the mold 2 to ensure a tight seal, and open the tap water gutter 10.
While continuing to press the mold 2 onto the spout 11 with pressure until it abuts on the support member 22,
The furnace 1 is tilted on rollers by a geared electric motor 6. The mold is then filled without turbulence by a method known per se but theoretical, taking into account the cooling sequence of the superalloy or refractory metal in order to completely avoid cavities. The casting cycle is carried out as follows. The alloy that is introduced first and is to be cooled first is introduced at the top of the cavity 15, i.e. in the part furthest from the supply pipe or channel 16, and is to be solidified last and therefore maintains the highest temperature for the longest time. The alloy portion in question must occupy the lowest part of the forming cavity 15, i.e. the part closest to the feed channel 16.
鋳込み温度は1400℃より高く、例えば1420℃
であり得、最高が例えば1650℃であつてもよ
い。そのため超合金及び耐熱合金鋼の場合は
1400℃であり得る最低鋳込み温度と1700℃であ
り得る最高鋳込み温度との間に開きがある。こ
の最高温度を越えると、エネルギーが浪費され
るだけでなく鋳型内での凝固が遅くなる。ま
た、最低温度を下回る鋳型の供給路16で、又
は炉の出湯樋10の出湯口11辺りでさえも、
既に凝固してしまう危険がある。 The casting temperature is higher than 1400℃, e.g. 1420℃
and the maximum may be, for example, 1650°C. Therefore, in the case of superalloys and heat-resistant alloy steels,
There is a gap between the lowest pouring temperature, which can be 1400°C, and the highest pouring temperature, which can be 1700°C. Exceeding this maximum temperature not only wastes energy but also slows solidification in the mold. In addition, in the supply path 16 of the mold below the minimum temperature, or even around the outlet 11 of the tap trough 10 of the furnace,
There is a risk that it will already solidify.
従つて鋳込み温度は前述の範囲内の値に設定
する。 Therefore, the casting temperature is set to a value within the above-mentioned range.
鋳込みサイクル(第3図)
−予備段階OA:出湯口11近傍への合金導入
鋳型2を出湯樋10の出湯口11上に密封的
に押しつける時点では、導管12を介してアル
ゴンを導入することによつて、炉1の内部スペ
ースに予圧力P1即ち低圧力を維持しておく。
この値P1は圧力調整装置13を適切に調節す
ることによつて得られる。圧力がこの値P1に
設定されると液体金属は出湯樋10の出湯口1
1のすぐ下まで到達するが、これは大気圧が炉
1内部の圧力P1により高いことによる。この
値P1は例えば0.15バールである。Casting cycle (Fig. 3) - Preliminary stage OA: Introducing alloy near the tap 11 At the time when the mold 2 is pressed tightly onto the tap 11 of the tap trough 10, argon is introduced through the conduit 12. Therefore, a preload pressure P1, that is, a low pressure, is maintained in the internal space of the furnace 1.
This value P1 is obtained by appropriate adjustment of the pressure regulator 13. When the pressure is set to this value P1, the liquid metal flows to the outlet 1 of the outlet trough 10.
This is because the atmospheric pressure is higher than the pressure P1 inside the furnace 1. This value P1 is, for example, 0.15 bar.
−第1段階AB:鋳型2への充填
鋳型への充填を行うためには炉1内の圧力
P1を圧力P2に変える。値P2はP1より大きく、
例えば0.4バールである。値P1から値P2への圧
力上昇にかかる時間(t2−t1)、即ち鋳込みサ
イクルの伸展を示す線のA及びB間の時間は、
供給路16及び成形用空洞部15内での時期尚
早な凝固を完全に回避すべく十分短くしなけれ
ばならないが、この圧力変化は合金が乱流を伴
わずに層流の形で成形用空洞部15内に流入す
るより急速過ぎてもいけない。勿論、圧力上昇
速度は生産ピツチ上の明らかな理由に応じて決
定される。時間(t2−t1)は更に鋳型2内に導
入すべき合金の量にも依存する。- 1st stage AB: Filling the mold 2 In order to fill the mold, the pressure inside the furnace 1 must be
Change P1 to pressure P2. value P2 is greater than P1,
For example 0.4 bar. The time required for the pressure to rise from the value P1 to the value P2 (t2 - t1), that is, the time between A and B of the line indicating the extension of the casting cycle, is:
This pressure change must be short enough to completely avoid premature solidification in the feed channel 16 and the forming cavity 15, but this pressure change must ensure that the alloy flows laminarly into the forming cavity without turbulence. It must not flow too quickly into the section 15. Of course, the rate of pressure rise will be determined for obvious reasons on the production pitch. The time (t2 - t1) also depends on the amount of alloy to be introduced into the mold 2.
−第2段階BC:圧力の維持
成形用空洞部15全体に亘り、ほんの僅かの
間〓にも、導入路16と鋳込み口17とから最
も離れた最上部にも、金属が十分に充填される
よう、第1段階の時間より大幅に長い時間(t3
−t2)に亘つて高圧旅P2を維持する。水平部
BCで示された時間の間圧力P2を維持すると、
合金は少なくとも鋳込み口17から最も遠い成
形用空洞部再上部分では凝固を開始する。しか
し乍ら鋳込み口17に最も近い最下部では合金
Mは未だ溶融状態である。この液体状態は次の
段階でも維持されることになる。-Second stage BC: Maintaining pressure The metal is sufficiently filled throughout the molding cavity 15, even for a short time, and even at the top, which is farthest from the introduction path 16 and the casting port 17. , the time significantly longer than the time of the first stage (t3
−t2) to maintain high pressure journey P2. horizontal part
Maintaining pressure P2 for the time indicated by BC,
The alloy begins to solidify at least in the upper portion of the molding cavity furthest from the pour port 17. However, the alloy M is still in a molten state at the lowest part closest to the pouring port 17. This liquid state will be maintained in the next step as well.
−第3段階CD:圧力の上昇と押湯効果
従来の如く、鋳込み口から最も離れた凝固中
の最上部の供給時には未だ溶融状態である最下
部、即ち鋳込み口に最も近い部分ではホール又
は巣が形成され易い。本発明ではこらのホール
又は巣を埋めるべく、「熱い」溶融合金を補給
するためのリザーバ、ポケツト又は押湯を鋳型
に具備する代りに、圧力を高圧値P2から最大
値P3まで時間t3からt4の間に上昇させる。この
値P3は該具体例では0.7バールであり、t3から
t4までの時間は乱流を完全に回避すべく実験に
基づいて決定した値である。このような押湯効
果を与えと、高温の溶融金属が圧力下で鋳型の
下部に補給され、その結果鋳込み口17より最
も離れた最上部から、溶融金属が最終的に供給
炉16内の該鋳込み口17の上のレベルまで凝
固する最下部、即ち該鋳込み口17の最近傍部
へ向けて凝固が徐々に進行する間中、成形用空
洞部15全体に亘る完璧な充填状態が確実に得
られる。これが次の段階で得るべき結果であ
る。- Third stage CD: pressure rise and riser effect As in the past, holes or cavities occur in the lowest part, which is still in a molten state when the solidifying top part furthest from the casting spout is supplied, i.e., the part closest to the casting spout. is easily formed. In order to fill these holes or voids, the present invention instead of providing the mold with a reservoir, pocket or riser for replenishing the "hot" molten alloy, the pressure is increased from a high pressure value P2 to a maximum value P3 from time t3 to t4. rise between. This value P3 is 0.7 bar in the specific example, and from t3
The time until t4 is a value determined based on experiments in order to completely avoid turbulence. When such a feeder effect is provided, high-temperature molten metal is supplied to the lower part of the mold under pressure, and as a result, the molten metal is finally fed into the supply furnace 16 from the topmost part farthest from the pouring port 17. While the solidification progresses gradually toward the lowest part, that is, the part closest to the casting opening 17, where it solidifies to the level above the casting opening 17, a perfect filling condition throughout the molding cavity 15 is ensured. It will be done. This is the result to be obtained in the next step.
−第4段階DE:最大圧力の維持−凝固
この段階は最大圧力P3を低下させずに実施
し鋳造品が完全に凝固するまで時間(t5−t4)
に亘つて行う。この時間は鋳型に導入される合
金の量と、鋳型全体に及ぶ完全な充填の難しさ
とに依存する。- 4th stage DE: Maintaining the maximum pressure - Solidification This stage is carried out without reducing the maximum pressure P3, and it takes time (t5 - t4) until the casting is completely solidified.
This will be carried out over the following period. This time depends on the amount of alloy introduced into the mold and the difficulty of completely filling the entire mold.
この凝固は漸進的且つ緩慢であつて、特に上
方ら下方へと進行しなければならない。即ち最
初に凝固すべき全も遠い成形用空洞部15最上
部分から最後に凝固すべき最下部即ち鋳込み口
17の最近傍部へと下方向に進む必要がある。
時間t5では、凝固は供給路16の高さの1/2の
レベル、即ち成形用空洞部15の下方まで進ん
でいる。このように圧力P3を前述の時間に亘
つて維持すれば、巣のない良質の部材が得ら
れ、次いで成型用空洞部15内で使用されなか
つた過剰溶融金属を速やかに降下させることが
できる。ここで留意すべきこととしで成形用空
洞部15の形が複雑であるばある程又は複数の
部材を一度に製造すべく成形用空洞部内の凹図
の数が多ければ多い程t4及びt5間の圧力P3維持
時間は長くなる。即ちこの維持時間(t5−t4)
は成形用空洞部全体への充填の難しさと、該空
洞部内において巣を伴わずに完全に凝固させる
難しさとに依存する。 This solidification must be gradual and slow, particularly from the top to the bottom. That is, it is necessary to proceed downward from the uppermost part of the molding cavity 15, which is the furthest away to be solidified first, to the lowest part, that is, the part closest to the casting port 17, which is to be solidified last.
At time t5, the solidification has progressed to the level of 1/2 of the height of the supply channel 16, that is, below the molding cavity 15. By maintaining the pressure P3 for the above-mentioned period of time in this way, a high-quality member without cavities can be obtained, and then the excess molten metal that is not used in the molding cavity 15 can be quickly lowered. It should be noted here that the more complex the shape of the molding cavity 15 or the greater the number of concave shapes in the molding cavity to manufacture multiple parts at once, the more the time between t4 and t5 increases. The pressure P3 maintenance time becomes longer. That is, this maintenance time (t5−t4)
depends on the difficulty of filling the entire molding cavity and the difficulty of solidifying it completely without cavities within the cavity.
−第5段階FE:圧力の低下と溶融金属の降下
時間t5に達すると鋳造品は確実に完全な凝固
状態になる。この時点いで炉1内で圧力を予圧
力なる低圧値P1まで急激に降下させる。この
時も前記の圧力調整装置13を使用する。P3
らP1へのこの圧力降下は、供給炉16内に残
存し得るが、当然のことながら、金属が完全に
凝固した状態にある成形用空洞部15の外側に
存在する溶融金属全てを急速に下方へ戻すべ
く、t5からt6までの極めて短時間のうちに実施
する。P3からP1への圧力降下をこのように急
速にすることは、鋳込み金属の収率を向上させ
る上で重要である。尚この収率は所謂鋳造品を
構成する金属の重量と、鋳型2内で、従つて成
形用空洞部15と供給路16の一部とにおいて
凝固した金属の総重量との比である。- 5th stage FE: pressure reduction and molten metal fall. When time t5 is reached, the casting is ensured to be completely solidified. At this point, the pressure in the furnace 1 is rapidly lowered to a low pressure value P1, which is the preload pressure. At this time as well, the pressure regulator 13 described above is used. P3
This pressure drop from P1 to P1 may remain in the feed furnace 16, but will of course quickly force downwards all of the molten metal present outside the forming cavity 15, where the metal is in a fully solidified state. In order to return to , it will be carried out in an extremely short period of time from t5 to t6. This rapid pressure drop from P3 to P1 is important in improving the yield of cast metal. This yield is the ratio of the weight of the metal constituting the so-called casting to the total weight of the metal solidified in the mold 2 and thus in the forming cavity 15 and part of the feed channel 16.
これと同時に電動機6を作動させて炉1を第
2図の位置まで傾倒させると、出湯樋10が炉
1の内部スペース方向へ下がるよう傾斜し、そ
のため金属浴Mが該内部スペース内に容易に戻
され、該浴液面が出湯口11の下方まで容易に
降下する。未だ排気鐘23で被覆されたままの
鋳型2を時間t6で上方へ移動させ、鋳造品の型
ばらしを行うべく退去させる。時間t6の後は、
同一の排気鐘23で覆われた別の鋳型2を鋳込
みを完了した先行の鋳型の位置に配置しなけれ
ばならない。鋳込み終つた鋳型の移送と新しい
鋳型の導入との間に生じる空時間の間吹込みリ
ング26により出湯口11にアルゴンを吹きか
けると有利である。 At the same time, when the electric motor 6 is operated to tilt the furnace 1 to the position shown in FIG. 2, the tapping trough 10 is tilted downward toward the internal space of the furnace 1, so that the metal bath M can easily be poured into the internal space. The bath liquid level easily falls below the tapping port 11. The mold 2, which is still covered with the exhaust bell 23, is moved upward at time t6 and removed in order to demold the cast product. After time t6,
Another mold 2 covered with an identical exhaust bell 23 must be placed in the position of the previously cast mold. It is advantageous to spray the tap 11 with argon by means of the blow ring 26 during the idle time between the transfer of the finished mold and the introduction of a new mold.
勿論、新しい鋳型を導入する時にはシールリ
ング18を取り換える。鋳型への充填を行う第
1段階ABと、供給路16の一部を空にする最
終段階EFとにおいて、時間t2−t1とt6−t5とは
極めて短いがあまりにも急激な圧力上昇と圧力
降下とを生じる程過度に短くしてはならない。
これは炉の出湯樋10の出湯口11上における
鋳型からの流出、排出又は鋳型の接ぎあとを一
切回避するためである。実際出湯口11は、溶
融金属が漏出して凝固したものが付着している
ようにことのない出湯樋10側の上面に配置す
べきシールリング18を、鋳型を交換する毎に
受容するため常に清潔でなければならない。 Of course, the seal ring 18 is replaced when a new mold is introduced. In the first stage AB, which fills the mold, and the final stage EF, which empties a portion of the supply path 16, the times t2-t1 and t6-t5 are extremely short, but the pressure rises and drops too rapidly. It must not be so short as to cause
This is to avoid any outflow, discharge or mold splicing from the mold on the tap spout 11 of the tap trough 10 of the furnace. In fact, the tap hole 11 always receives the seal ring 18, which should be placed on the top surface of the tap gutter 10, where molten metal leaks and solidified material adheres, every time the mold is replaced. Must be clean.
[作用効果]
以上の説明から、本発明装置の使用法および作
用効果が明らかになつたものと思われるが、ここ
で本発明の装置の構造とその作用効果をまとめて
記載する。[Operations and Effects] From the above explanation, it seems that the method of use and the operations and effects of the device of the present invention have become clear. Here, the structure of the device of the present invention and its functions and effects will be summarized.
鋳込み時に溶解炉と鋳型とが互いに合体して形
成される密封された閉鎖容器状鋳込みアセンブリ
により、容器内に空気が流入して生起する合金の
酸化が回避され得、かつ合金の溶融時および鋳込
み時における溶融合金の乱流が完全に回避され得
る。 A sealed closed vessel casting assembly, formed by the melting furnace and the mold joining together during casting, can avoid oxidation of the alloy caused by air entering the vessel, and prevents oxidation of the alloy during melting and casting. Turbulence of the molten alloy at times can be completely avoided.
密閉し得る装入口を備えた傾倒可能な電気炉を
使用することにより、合金浴Mの表面と空気との
直接の接触が回避され得る。 By using a tiltable electric furnace with a sealable charging port, direct contact of the surface of the alloy bath M with air can be avoided.
炉内の溶融合金をグラフアイトバーで輻射加熱
することにより、溶融時の浴Mの撹拌と酸化が完
全に回避され得る。 By radiant heating of the molten alloy in the furnace with a graphite bar, stirring and oxidation of the bath M during melting can be completely avoided.
炉内に不活性ガスを導入するための導管と、鋳
込み口を介して炉の出湯口に密封当接し得、か
つ、一端が炉の内部空間に連通すると共に他方の
自由端が鋳型に連通して出湯口を形成している環
状横断面の出湯樋によつて前記炉に連結され得る
鋳型とが、互いに共同して、圧力下(もちろん大
気圧以下ではあるが)で鋳型の下から上へ向かつ
て溶融金属を供給する機能を果たし、その結果、
鋳造すべき部材が厚い場合でも巣ができるのが防
止され、鋳込み金属の効率が上昇し、しかも多少
とも複雑な形状の製品を、無傷で製造することが
できる。 A conduit for introducing an inert gas into the furnace, which can be brought into sealing contact with the outlet of the furnace through the pouring port, and has one end communicating with the interior space of the furnace and the other free end communicating with the mold. and a mold, which may be connected to said furnace by means of a tapping trough of annular cross-section forming a tapping spout, in cooperation with each other under pressure (though of course below atmospheric pressure) from the bottom of the mold to the top. It performs the function of supplying molten metal to the destination, and as a result,
Even when the part to be cast is thick, the formation of cavities is prevented, the efficiency of the casting metal is increased, and products of more or less complex shapes can be produced without damage.
鋳型に設けられた小径の揚りにより、鋳込み時
に吸引によるガスの排出が容易になると共に溶融
合金の鋳型キヤビテイ内への導入が促進される。 The small diameter ridge provided in the mold facilitates the discharge of gas by suction during casting and facilitates the introduction of molten alloy into the mold cavity.
少なくとも出湯口のまわりに不活性ガスを吹き
つけるための環状リングにより、特に溶融合金の
鋳型内挿入時および鋳込み時、さらには鋳型の交
換時の鋳型の開放と(場合によつては)炉の開放
が回避され得る。 An annular ring for blowing inert gas at least around the tap opening allows for the opening of the mold and (in some cases) the opening of the furnace, especially when inserting and pouring molten alloy into the mold, and also when changing the mold. Opening can be avoided.
これらの作用効果を総合して詳述する。 These effects will be comprehensively explained in detail.
(1) 超合金の酸化予防
本発明の装置では下記の酸化防止措置がとら
れている。(1) Prevention of oxidation of superalloy The following oxidation prevention measures are taken in the apparatus of the present invention.
空気の流入を阻止し、炉1の開口、時に装入
口8と鋳型2の出湯口11、特に鋳込み口17
の密封性を保持する。そのため、シールリング
18を介し且つ支持部材22に対向するプレー
ト20により推力を加えることによつて鋳型2
を出湯口11に密封的に押しつけ、炉1と鋳型
2との集合体からなる閉鎖容器を形成する。 Preventing the inflow of air, the opening of the furnace 1, sometimes the charging port 8 and the outlet 11 of the mold 2, especially the pouring port 17.
Maintains hermeticity. Therefore, by applying thrust by the plate 20 facing the support member 22 through the seal ring 18, the mold 2
is pressed against the tapping spout 11 in a sealed manner to form a closed container consisting of an assembly of the furnace 1 and the mold 2.
金属浴の液面N上方に炉1内スペースにアル
ゴンを導入して、溶融金属で占められていない
スペース全体にアルゴンを充満させるため、内
部に存在し得る空気が、従つて酸素が排気鐘2
3と穿孔プレート20と揚り19とを介して完
全に排出される。場合によつては吹込みリング
26によりアルゴンを噴霧して、装入時には装
入口8の入口に、鋳型への溶融金属鋳込み時に
は鋳込み口17、特に出湯口11上に未だ鋳型
が当接されていない場合はこの出湯口11の上
方(第2図)に、保護膜を形成することによつ
て前記の予防措置を補強する。 Argon is introduced into the space inside the furnace 1 above the liquid level N of the metal bath, so that the entire space not occupied by molten metal is filled with argon, so that any air that may be present inside, and therefore oxygen, is removed from the exhaust bell 2.
3, perforated plate 20 and lift 19. If necessary, argon may be sprayed by means of a blow ring 26 to inject the inlet of the charging port 8 during charging, and the pouring port 17, especially the tap port 11, during pouring of molten metal into the mold, even when the mold is still in contact with the mold. If not, the above-mentioned preventive measures are reinforced by forming a protective film above the tap hole 11 (FIG. 2).
鋳込み合金が低金属鋼の場合は、前述の吹込
みリング26を用いて装入口8と出湯口11と
にアルゴンを吹きつける措置を省略してもよ
い。 When the casting alloy is low metal steel, the step of blowing argon into the charging port 8 and the tap port 11 using the blow ring 26 described above may be omitted.
(2) 合金の乱流と成形された合金の巣とを回避す
るための予防措置
輻射熱によるグラフアイトバー7付炉を使用
するため炉内の浴Mの撹拌が完全に回避され
る。(2) Precautions to avoid turbulence in the alloy and cavities in the molded alloy Since a radiant heat furnace with graphite bar 7 is used, agitation of the bath M in the furnace is completely avoided.
鋳込みサイクル中、特に鋳型への充填を行う
段階ABで圧力を変化させるため、乱流を伴わ
ずに層流状に充填することができる。 Since the pressure is varied during the casting cycle, especially during stage AB when filling the mold, it is possible to fill the mold in a laminar flow without turbulence.
本発明の装置はその特徴として、これらの利
点を有しているため、緩慢溶解炉でも可能な限
り迅速且つ経済的に良質の部材を得ることがで
き、従つて溶融状態では極めて酸化され易く
1400℃より高い鋳込み温度をもつ合金の組成に
起因した問題と、例えば2mmまでの薄じ厚み
か、又は逆に厚い厚みをもつ多少複雑な形状の
成形用空洞部15に起因した問題、即ち押湯効
果を必要とする問題とが解決される。 The device according to the invention has these advantages as its characteristic, so that even in a slow melting furnace it is possible to obtain components of good quality as quickly and economically as possible, and which are therefore extremely susceptible to oxidation in the molten state.
Problems due to the composition of the alloy with a casting temperature higher than 1400°C and problems due to the somewhat complex shape of the forming cavity 15 with a thin or, conversely, thick thread thickness, e.g. up to 2 mm, i.e. pressing. Problems requiring the hot water effect are solved.
第1図は本発明の合体した溶解炉と鋳型とを示
す簡略断面図、第2図は溶融合金の一成分を装入
する間の溶解炉を示す第1図と類似の断面図、第
3図は鋳込みサイクルにおける溶解炉内の不活性
ガス圧Pの変化を時間tの関数として示すグラフ
である。
1……溶解炉、2……鋳型、4……ローラ、6
……歯車付電動機、7……グラフアイトバー、8
……装入口、10……出湯樋、11……出湯口、
12……導管、17……鋳込み口、19……揚
り、20……穿孔プレート、21……ピストン
棒、25……吸引管、26……吹込みリング。
FIG. 1 is a simplified cross-sectional view showing the combined melting furnace and mold of the present invention, FIG. 2 is a cross-sectional view similar to FIG. 1 showing the melting furnace during charging of one component of the molten alloy, and FIG. The figure is a graph showing the change in the inert gas pressure P in the melting furnace as a function of time t during the casting cycle. 1...Melting furnace, 2...Mold, 4...Roller, 6
...Electric motor with gears, 7...Graphite bar, 8
...charging inlet, 10...outlet gutter, 11...outlet,
12... Conduit, 17... Casting port, 19... Lifting, 20... Perforated plate, 21... Piston rod, 25... Suction pipe, 26... Blow ring.
Claims (1)
酸化され易い合金から鋳造品を製造するための装
置であつて、 互いに合体して密封閉鎖容器状低圧鋳込みアセ
ンブリを形成し得る溶解炉と鋳型とからなつてお
り、 前記炉は、密閉し得る装入口、炉内の溶融合金
を輻射によつて加熱するためのグラフアイトバ
ー、および、炉内に不活性ガス流を導入するため
の導管を具備する傾倒可能な電気炉タイプのもの
であり、 前記鋳型は、鋳型の鋳込み口を介して炉の出湯
口に密封当接され、かつ、鋳込み時に鋳型中のガ
スを排出するための少なくとも1つの小径の管路
または通路からなる揚りを具備しており、 前記炉と前記鋳型とは、一端が炉の内部空間に
連通していると共に他方の自由端が鋳型に連通し
て出湯口を形成する環状横断面の出湯樋によつて
連結され、さらに、 少なくとも出湯口のまわりに不活性ガスを吹き
つけるための環状リングを具備していることを特
徴とする装置。 2 前記炉が台枠の軸受上に載置されたローラに
よつて支持されており、前記ローラの一方は歯車
付電動機によつて駆動され、その結果、前回の鋳
込み後に前記炉が傾倒されて出湯樋が上昇方向に
向くようになつていることを特徴とする特許請求
の範囲第1項に記載の装置。 3 前記鋳型が、鋳型の上面に載置されたピスト
ン棒の先端に取り付けられた穿孔プレートにより
推力を加えることによつて、鋳型の鋳込み口を介
して炉の出湯口に密封当接していることを特徴と
する特許請求の範囲第1項又は第2項に記載の装
置。 4 前記鋳型が、その上部に吸引管が取り付けら
れた排気鐘の下に密封的に配置されていることを
特徴とする特許請求の範囲第1項〜第3項のいず
れか一項に記載の装置。[Scope of Claims] 1. Apparatus for producing castings from alloys susceptible to oxidation in the molten state with a casting temperature higher than 1400°C, which can be joined together to form a hermetically closed vessel-like low-pressure casting assembly. The furnace consists of a melting furnace and a mold, the furnace having a sealable charging port, a graphite bar for heating the molten alloy in the furnace by radiation, and introducing an inert gas flow into the furnace. The mold is of a tiltable electric furnace type and is equipped with a conduit for the purpose of discharging the gas in the mold during casting. said furnace and said mold have one end communicating with the interior space of the furnace and the other free end communicating with the mold. An apparatus characterized in that the apparatus is connected by a tapping trough with an annular cross section forming a tap opening, and further comprising an annular ring for blowing inert gas at least around the tap opening. 2. The furnace is supported by rollers mounted on bearings in the underframe, one of the rollers being driven by a geared electric motor, so that the furnace is tilted after the previous casting. 2. A device according to claim 1, characterized in that the tapping trough is oriented in the upward direction. 3. The mold is brought into sealing contact with the outlet of the furnace through the casting opening of the mold by applying thrust with a perforated plate attached to the tip of a piston rod placed on the upper surface of the mold. An apparatus according to claim 1 or 2, characterized in that: 4. The mold according to any one of claims 1 to 3, characterized in that the mold is disposed in a sealed manner under an exhaust bell to which a suction pipe is attached to the upper part of the mold. Device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8217120A FR2534167B1 (en) | 1982-10-11 | 1982-10-11 | METHOD FOR THE FOUNDRY MANUFACTURE OF MOLDED PARTS IN OXIDIZABLE METAL ALLOYS |
FR8217120 | 1982-10-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5987966A JPS5987966A (en) | 1984-05-21 |
JPH0428467B2 true JPH0428467B2 (en) | 1992-05-14 |
Family
ID=9278225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58188288A Granted JPS5987966A (en) | 1982-10-11 | 1983-10-06 | Casting method for manufacturing casting by alloy which can be oxidized |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS5987966A (en) |
FR (1) | FR2534167B1 (en) |
IT (1) | IT1160212B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104668521A (en) * | 2014-12-31 | 2015-06-03 | 南车戚墅堰机车车辆工艺研究所有限公司 | Low-pressure casting bath unit |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2556996B1 (en) * | 1983-12-26 | 1988-03-11 | Pont A Mousson | METHOD FOR SUPPLYING FOUNDRY MOLDS WITH METAL ALLOYS UNDER CONTROLLED DIFFERENTIAL PRESSURE |
FR2666036A1 (en) * | 1990-08-27 | 1992-02-28 | Pont A Mousson | INTERMEDIATE DEVICE FOR THE CASTING OF MOLDED PARTS. |
FR2773337B1 (en) * | 1998-01-07 | 2000-02-11 | Seva | LOW PRESSURE CASTING PROCESS AND INSTALLATION IN A CERAMIC SHELL MOLD |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2043804B1 (en) * | 1969-05-30 | 1977-07-08 | ||
DE2805751A1 (en) * | 1978-02-10 | 1979-08-16 | Protherm Ofenbau Gmbh | Low pressure casting of light metal and alloys etc. - using furnace with separate melting and holding zones |
DE2936418A1 (en) * | 1979-09-08 | 1981-03-26 | Siegerländer Kupferwerke GmbH, 5900 Siegen | METHOD AND DEVICE FOR CASTING METALS USING A MOLD |
-
1982
- 1982-10-11 FR FR8217120A patent/FR2534167B1/en not_active Expired
-
1983
- 1983-10-06 JP JP58188288A patent/JPS5987966A/en active Granted
- 1983-10-10 IT IT68038/83A patent/IT1160212B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104668521A (en) * | 2014-12-31 | 2015-06-03 | 南车戚墅堰机车车辆工艺研究所有限公司 | Low-pressure casting bath unit |
Also Published As
Publication number | Publication date |
---|---|
FR2534167B1 (en) | 1985-06-07 |
JPS5987966A (en) | 1984-05-21 |
IT1160212B (en) | 1987-03-04 |
FR2534167A1 (en) | 1984-04-13 |
IT8368038A0 (en) | 1983-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3435878A (en) | Method of casting metals by induction heating | |
US5638889A (en) | Semi-molten metal molding apparatus | |
US9381569B2 (en) | Vacuum or air casting using induction hot topping | |
CN110918940A (en) | Casting device and casting method for large-scale non-ferrous metal thin-wall structural part | |
CN104475693A (en) | Reduction casting compositing method and device for large iron ingots | |
CN104785757A (en) | Multi-core reducing multi-ladle co-casting method and device for casting large composite steel ingots | |
JPH04504981A (en) | Induced skull spinning of reactive alloys | |
CN1120067C (en) | Bimetallic plate | |
US3674315A (en) | Cast steel wheels for heavy-duty vehicles | |
CN107150109A (en) | The method and its device of composite ingot are dynamically poured into a mould in a kind of two-way cooling | |
JP2003522028A (en) | Method and apparatus for manufacturing metal castings | |
JPH0428467B2 (en) | ||
CN211191962U (en) | Casting device for large-scale non-ferrous metal thin-wall structural part | |
EP1085955B1 (en) | Investment casting using pour cup reservoir with inverted melt feed gate | |
US5119977A (en) | Continuous semi-liquid casting process and a furnace for performing the process | |
US3771588A (en) | Direct melt injection casting centre | |
CN112828264A (en) | Casting device with spiral magnetic field and casting method | |
GB2103132A (en) | A method and apparatus for low pressure casting of metals | |
US6453979B1 (en) | Investment casting using melt reservoir loop | |
JP2003311389A (en) | Method for casting metal and casting apparatus used therefor | |
EP0134510B1 (en) | Process for manufacturing metal products | |
MX2007002351A (en) | Method and device for casting molten metal. | |
CN2264054Y (en) | Compound movable electroslag smelting casting | |
CN206869045U (en) | A kind of two-way cooling dynamic pours into a mould the device of composite ingot | |
Campbell | Counter gravity casting |