JPH0427481B2 - - Google Patents

Info

Publication number
JPH0427481B2
JPH0427481B2 JP16916481A JP16916481A JPH0427481B2 JP H0427481 B2 JPH0427481 B2 JP H0427481B2 JP 16916481 A JP16916481 A JP 16916481A JP 16916481 A JP16916481 A JP 16916481A JP H0427481 B2 JPH0427481 B2 JP H0427481B2
Authority
JP
Japan
Prior art keywords
current
light
edge position
conversion element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16916481A
Other languages
Japanese (ja)
Other versions
JPS5870106A (en
Inventor
Makoto Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16916481A priority Critical patent/JPS5870106A/en
Publication of JPS5870106A publication Critical patent/JPS5870106A/en
Publication of JPH0427481B2 publication Critical patent/JPH0427481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】 本発明はエツジ位置検出装置に関し、工業計測
において比較的広範囲に板状体の周縁位置を光学
的に検出する際に用いて有用なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an edge position detection device, and is useful for optically detecting the peripheral edge position of a plate-like object over a relatively wide range in industrial measurement.

半導体の製造工程においてウエハを製造装置間
で移送する際には、ウエハ周辺上にある切欠部で
あるオリエンテーシヨンフラツトを同一角度に整
列させ、所定の位置に位置決めを行なう際にその
周縁の形状を検出するエツジ位置検出装置が必要
となつてくる。第1図は従来技術に係るこの種の
エツジ位置検出装置を示す原理図である。同図に
おいて、1は電荷結合素子イメージセンサ(以下
CCDイメージセンサと略称する)、2はCCDイメ
ージセンサ駆動回路で、クロツクを発振させ
CCDイメージセンサ1内のレジスタ及びフオト
トランスフアゲートを制御してこのCCDイメー
ジセンサ1を駆動する。3は読み取り処理回路、
4は計数回路、5は光源である。
When transferring wafers between manufacturing equipment in the semiconductor manufacturing process, the orientation flats, which are cutouts on the wafer periphery, are aligned at the same angle, and when positioning the wafer at a predetermined position, the edges of the orientation flats are aligned. An edge position detection device that detects the shape becomes necessary. FIG. 1 is a principle diagram showing this type of edge position detection device according to the prior art. In the figure, 1 is a charge-coupled device image sensor (hereinafter referred to as
2 is a CCD image sensor drive circuit, which oscillates the clock.
The CCD image sensor 1 is driven by controlling the register and phototransfer gate within the CCD image sensor 1. 3 is a reading processing circuit;
4 is a counting circuit, and 5 is a light source.

かかるエツジ位置検出装置では板状体6の周縁
位置xは、第2図aに示すシフトパルスからの同
図bに示すCCDイメージセンサ1の出力波形の
立上りまでのカウント数Nとして知ることができ
る。即ち、計数回路4でカウントされたNより周
縁位置xを求めている。
In such an edge position detection device, the peripheral edge position x of the plate-shaped body 6 can be known as the count number N from the shift pulse shown in FIG. 2a to the rise of the output waveform of the CCD image sensor 1 shown in FIG. 2b. . That is, the peripheral edge position x is determined from N counted by the counting circuit 4.

ところがかかるエツジ位置検出装置では、
CCDイメージセンサ1を駆動させるためにクロ
ツク発振回路、タイミングコントローラ等の複雑
な周辺回路が必要となるばかりでなく、CCDイ
メージセンサ1は多数の小さな光電変換素子から
構成されているので、分解能は前記光電変換素子
の大きさに依存し、特に広範囲で高分解能を得る
には構造及び製造が複雑となり価格が高騰すると
いう欠点もある。
However, in such an edge position detection device,
In order to drive the CCD image sensor 1, complex peripheral circuits such as a clock oscillation circuit and a timing controller are required, and since the CCD image sensor 1 is composed of many small photoelectric conversion elements, the resolution is It depends on the size of the photoelectric conversion element, and has the disadvantage that the structure and manufacturing become complicated, especially in order to obtain high resolution over a wide range, and the price rises.

また、PN接合型の光電流変換素子の一端に電
極を設けた例が特開昭54−11761号公報に示され
ている。
Further, an example in which an electrode is provided at one end of a PN junction type photocurrent conversion element is shown in Japanese Patent Laid-Open No. 11761/1983.

この方法は広範囲ではあるが、あとで述べるよ
うに位置の2乗の影響等の非線形性が出力に出て
来てしまい、出力を換算する必要があつた。
Although this method has a wide range of uses, as will be described later, nonlinearity such as the influence of the square of position appears in the output, and it is necessary to convert the output.

本発明は、上記従来技術の欠点に鑑み、比較的
広い範囲で経済的に且つ簡単な周辺回路により板
状体の周辺位置を検出し得るエツジ位置検出装置
を提供することを目的とする。かかる目的を達成
する本発明は、位置検出素子としてその両端に信
号取り出し用の電極を設けた光電流変換素子を用
い両電極に発生する電流の和を出力する点をその
技術思想の基礎とするものである。
SUMMARY OF THE INVENTION In view of the above drawbacks of the prior art, it is an object of the present invention to provide an edge position detection device capable of detecting the peripheral position of a plate-like object over a relatively wide range economically and with a simple peripheral circuit. The technical idea of the present invention, which achieves this object, is based on the fact that a photocurrent conversion element is used as a position detection element, and the electrodes for signal extraction are provided at both ends of the element, and the sum of the currents generated in both electrodes is output. It is something.

以下本発明の実施例を図面に基づき詳細に説明
する。なお従来技術と同一部分には同一番号を付
し重複する説明は省略する。第3図に示すよう
に、バイアス電源9によりバイアスされている
PN接合型の光電流変換素子7の光入射面の両端
には電流取り出し用の電極a,bが配設してあ
り、両電極a,bに発生する電流の和を出力信号
eとして送出するようになつている。この出力信
号eは電流測定部である電流増幅回路8で増幅さ
れ出力電圧e0として送出される。このとき電流増
幅回路8は最も簡単にはオペアンプ1個で構成し
得る。光源5は前記光電流変換素子7の上方に占
位しこの光電流変換素子7の光入射面に照度が均
一な光を照射する。このとき板状体6は光電流変
換素子7と光源5との間に占位せしめられる。
Embodiments of the present invention will be described in detail below based on the drawings. Note that parts that are the same as those in the prior art are given the same numbers and redundant explanations will be omitted. As shown in FIG. 3, it is biased by a bias power supply 9.
Current extraction electrodes a and b are arranged at both ends of the light incident surface of the PN junction type photocurrent conversion element 7, and the sum of the currents generated in both electrodes a and b is sent out as an output signal e. It's becoming like that. This output signal e is amplified by a current amplifier circuit 8, which is a current measuring section, and is sent out as an output voltage e0 . At this time, the current amplification circuit 8 can most simply be composed of one operational amplifier. The light source 5 is positioned above the photocurrent conversion element 7 and irradiates the light incident surface of the photocurrent conversion element 7 with light of uniform illuminance. At this time, the plate-like body 6 is positioned between the photocurrent conversion element 7 and the light source 5.

かかるエツジ位置検出装置では出力電圧e0は、
第4図に示すように、板状体6の周縁の位置xに
比例する。したがつて出力電圧e0を測定すること
により周縁位置xを求めることができる。このと
き出力電圧e0が周縁位置xに比例する理由は次の
通りである。即ち、第5図に示すように、光電流
変換素子7上の周縁位置xの微少長さdxに入射し
た光により発生し、電極側へ流れ出す単位面積当
りに生ずる光起電流をIとすると電極より取り出
される出力電流dI0は次のように表される。
In such an edge position detection device, the output voltage e 0 is
As shown in FIG. 4, it is proportional to the position x of the peripheral edge of the plate-like body 6. Therefore, the peripheral edge position x can be determined by measuring the output voltage e 0 . The reason why the output voltage e 0 is proportional to the peripheral edge position x at this time is as follows. That is, as shown in FIG. 5, if the photovoltaic current generated per unit area that is generated by light incident on the peripheral edge position x of the photocurrent conversion element 7 at a minute length d x and flows toward the electrode side is I, then The output current dI 0 taken out from the electrode is expressed as follows.

dI0=Idx …(1) したがつて、単位面積当りに生じる光起電流I
が周縁位置xによらず一定ならば、両電極a,b
の出力電流の和dI0を受光している部分である電
極aから周縁位置xまで積分した出力電流I0は、 I0=I・x …(2) となり、周縁位置xに比例する電流となる。
dI 0 = Id x …(1) Therefore, the photovoltaic current I generated per unit area
is constant regardless of the peripheral edge position x, both electrodes a and b
The output current I 0 that is obtained by integrating the sum of the output currents dI 0 from the receiving part of electrode a to the edge position x is I 0 = I x (2), and the current is proportional to the edge position x. Become.

ところで、PN接合型の光電流変換素子はそれ
自体ダイオードであり、かつPN接合部へ光の入
射効率を良くするために光入射面を薄く形成して
いるため表面抵抗が高くなつている。そのため、
入射光により発生した電流Iiが電極aおよび電極
bまでの表面抵抗を通つて流れだす前記光起電流
Iとダイオードによつて短絡して流れる電流Idに
分配されて流れだし、前記光起電流Iのみが光電
流変換素子の外へ出てくると考えられる。
Incidentally, the PN junction type photocurrent conversion element is itself a diode, and has a high surface resistance because the light incident surface is formed thin in order to improve the efficiency of light incident on the PN junction. Therefore,
The current I i generated by the incident light is divided into the photovoltaic current I flowing through the surface resistance up to electrode a and electrode b, and the current Id flowing short-circuited by the diode, and the photovoltaic current begins to flow. It is considered that only I comes out of the photocurrent conversion element.

したがつて、周縁位置xの微少長さdxに入射し
た光により発生する電流Iiは一定であつても、前
記光起電流Iは電極a,bまでの表面抵抗の大き
さとダイオードによる等価抵抗の大きさによつて
変化してしまう。
Therefore, even if the current I i generated by the light incident on the minute length d It changes depending on the size of resistance.

そこで、第5図の電極aからのみ出力電流Ia
取り出す場合には次のようになる。
Therefore, when the output current I a is taken out only from the electrode a in FIG. 5, the situation is as follows.

電極a近傍のみが光を受ける時には表面抵抗が
小さく光入射により発生した電流Iiのほとんどが
光起電流Iとなり、これが電極aより出力電流Ia
として出てくる。ところが、受光面が電極b側に
広がるにしたがつて、広がつた受光面部分は電極
aまでの距離が長くなり表面抵抗が大きくなる。
このように広がつた受光面部分においては、電極
aまでの表面抵抗が大きいだけ光入射により発生
した電流Iiの一部がダイオードによる等価抵抗に
流れる電流Idとなり、前記電流Iiのうち電極aに
向う光起電流Iとなるものが減少する。したがつ
て、電極aのみから出力電流Iaを取り出す場合に
は、受光面が電極aから電極bに向つて広くなる
と、受光面が広がることによる周縁位置xに比例
して増加する成分と、広がつた受光面部分の光起
電流Iが電極aまでの距離によつて減少すること
による周縁位置xの2乗に比例して減少する成分
とを持つた出力電流Iaが得られることになる。
When only the vicinity of electrode a receives light, the surface resistance is small and most of the current I i generated by the incident light becomes photovoltaic current I, which is the output current I a from electrode a.
It comes out as. However, as the light-receiving surface expands toward electrode b, the distance of the expanded light-receiving surface portion to electrode a becomes longer, and the surface resistance increases.
In the light-receiving surface area spread out in this way, a portion of the current I i generated by light incidence becomes a current Id flowing through the equivalent resistance of the diode because the surface resistance up to the electrode a is large, and part of the current I i flows through the electrode. The photovoltaic current I toward a decreases. Therefore, when output current I a is extracted only from electrode a, as the light-receiving surface widens from electrode a to electrode b, a component increases in proportion to the peripheral edge position x due to the widening of the light-receiving surface; The photovoltaic current I in the expanded light-receiving surface portion decreases with the distance to the electrode a, resulting in an output current I a having a component that decreases in proportion to the square of the peripheral edge position x. Become.

また、第5図の電極bからのみ出力電流Ibを取
り出す場合も同様に考えられ、受光面が電極aか
ら電極bに向つて広くなると、受光面が広がるこ
とによる周縁位置xに比例して増加する成分と、
広がつた受光面部分の光起電流Iが電極bまでの
距離によつて増加することによる周縁位置xの2
乗に比例して増加する成分とを持つた出力電流Ib
が得られる。
The same can be said for the case where the output current I b is taken out only from electrode b in Fig. 5, and when the light receiving surface becomes wider from electrode a to electrode b, the width of the light receiving surface increases in proportion to the peripheral edge position increasing components and
2 of the peripheral edge position x due to the photovoltaic current I of the expanded light-receiving surface portion increasing with the distance to the electrode b.
The output current I b has a component that increases proportionally to the power
is obtained.

一方、第5図の両電極a,bからの出力を加え
て出力電流I0として取り出す場合には次のように
なると考えられる。電極aに近い受光面部分では
光起電流Iのうちの大部分が表面抵抗の小さい電
極の側に流れ出し、一部が表面抵抗の大きい電極
b側に流れ出す。反対に電極bに近い受光面部分
では光起電流Iのうちの大部分が表面抵抗の小さ
い電極b側に流れ出し、一部が表面抵抗の大きい
電極a側に流れ出す。また、受光面の中央部では
光起電流Iは表面抵抗のほぼ等しい電極a側、電
極b側に両方にほぼ等しい電極a側、電極b側の
両方にほぼ同じ量が流れ出すことになる。したが
つて、両電極a,bからの出力を加えて出力電流
I0を取り出すと、一方の電極からのみ出力電流を
取り出す場合と比較して表面抵抗の大きい部分が
減少し、また電極a,b間で発生する光起電流I
の大きさ変動が小さくかつ対称となるので、周縁
位置xの2乗に比例する成分がなくなり、出力電
流I0と周縁位置xとの非線形が少なくなる。
On the other hand, when the outputs from both electrodes a and b in FIG. 5 are added together and taken out as an output current I 0 , the following is considered to be the case. In a portion of the light-receiving surface near electrode a, most of the photovoltaic current I flows out to the electrode side where the surface resistance is low, and a part flows out to the electrode b side where the surface resistance is high. On the other hand, in the light-receiving surface portion close to electrode b, most of the photovoltaic current I flows out to the electrode b side where the surface resistance is low, and a part flows out to the electrode a side where the surface resistance is high. Further, at the center of the light-receiving surface, approximately the same amount of photovoltaic current I flows out to both the electrode a side and the electrode b side, both of which have approximately equal surface resistances. Therefore, by adding the outputs from both electrodes a and b, the output current is
When I 0 is taken out, the area with large surface resistance is reduced compared to when the output current is taken out only from one electrode, and the photovoltaic current I generated between electrodes a and b is
Since the magnitude fluctuation of is small and symmetrical, there is no component proportional to the square of the edge position x, and the nonlinearity between the output current I 0 and the edge position x is reduced.

以上、実施例とともに具体的に説明したよう
に、本発明によれば両端に2つの電流取り出し用
の電極のあるPN接合型の光電流変換素子を用い
ることにより、簡単な周辺回路で、低価格で広範
囲に亘り板状体の周縁位置を高精度に検出するこ
とができる。また、光電流変換素子上に不感帯が
なく、連続した位置信号が得られるので、微積分
信号も容易に取り出せる。
As described above in detail with the embodiments, according to the present invention, by using a PN junction type photocurrent conversion element having two current extraction electrodes at both ends, a simple peripheral circuit is used and the cost is low. The peripheral edge position of the plate-shaped body can be detected with high accuracy over a wide range. Further, since there is no dead zone on the photocurrent conversion element and continuous position signals can be obtained, differential and integral signals can also be easily extracted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術に係るエツジ位置検出装置を
示す原理図、第2図a,bはその検出方法を説明
するための信号の波形図、第3図は本発明の実施
例を示す基本構成図、第4図は本発明の実施例に
用いるPN接合型の光電流変換素子の出力例を示
す特性図、第5図は上記実施例の出力が線形とな
ることを説明するための原理図である。 図面中、5は光源、6は板状体、7は光電変換
素子である。
Fig. 1 is a principle diagram showing an edge position detection device according to the prior art, Fig. 2 a and b are signal waveform diagrams for explaining the detection method, and Fig. 3 is a basic configuration showing an embodiment of the present invention. Fig. 4 is a characteristic diagram showing an example of the output of the PN junction type photocurrent conversion element used in the embodiment of the present invention, and Fig. 5 is a principle diagram for explaining that the output of the above embodiment is linear. It is. In the drawing, 5 is a light source, 6 is a plate-shaped body, and 7 is a photoelectric conversion element.

Claims (1)

【特許請求の範囲】[Claims] 1 エツジ位置を検出する方向に長辺を持つ矩形
形状で、かつ表面内部抵抗が均一な光入射面を持
つPN接合型の光電流変換素子と、前記光電流変
換素子の光入射面の前記エツジ位置を検出する方
向の両端に設けられた2つの電流取り出し用の電
極と、前記光電流変換素子の光入射面に対し反対
側の面に加えるバイアス電源と、前記2つの電流
取り出し用の電極より発生する電流の和を出力信
号とする電流測定部と、前記光電流変換素子の光
入射面上方で位置検出すべき板状体を挟み込む位
置を占めるとともに前記光電流変換素子の光入射
面に照度が均一な光を照射する光源とを有するこ
とを特徴とするエツジ位置検出装置。
1. A PN junction photocurrent conversion element having a rectangular shape with a long side in the direction of detecting the edge position and having a light incident surface with uniform surface internal resistance, and the edge position of the light incident surface of the photocurrent conversion element. two current extraction electrodes provided at both ends in the direction of detecting the position, a bias power supply applied to the surface opposite to the light incident surface of the photocurrent conversion element, and the two current extraction electrodes. A current measurement unit that outputs the sum of the generated currents as an output signal and a plate-shaped body whose position is to be detected above the light incidence surface of the photocurrent conversion element are sandwiched between the current measurement unit and the plate-shaped body whose position is to be detected. 1. An edge position detection device comprising: a light source that emits uniform light;
JP16916481A 1981-10-22 1981-10-22 Detector for edge position Granted JPS5870106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16916481A JPS5870106A (en) 1981-10-22 1981-10-22 Detector for edge position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16916481A JPS5870106A (en) 1981-10-22 1981-10-22 Detector for edge position

Publications (2)

Publication Number Publication Date
JPS5870106A JPS5870106A (en) 1983-04-26
JPH0427481B2 true JPH0427481B2 (en) 1992-05-12

Family

ID=15881449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16916481A Granted JPS5870106A (en) 1981-10-22 1981-10-22 Detector for edge position

Country Status (1)

Country Link
JP (1) JPS5870106A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210421A (en) * 1990-01-12 1991-09-13 Nippon Hoso Kyokai <Nhk> Position detector

Also Published As

Publication number Publication date
JPS5870106A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
US3896309A (en) Radiation detecting device
KR0166870B1 (en) Decision apparatus of human&#39;s displacement by using ray sensor
US4189753A (en) Document scanning head
JPH0427481B2 (en)
US4579450A (en) Distance detector device
JPH06100480B2 (en) Relative motion sensor
Middelhoek et al. Silicon and Hybrid Micro‐Electronic Sensors
JP3561788B2 (en) Radiation detection element and radiation detector
JPS61180104A (en) Measuring instrument for position displacement
JP3270176B2 (en) Triangular ranging photoelectric sensor
JPS629841B2 (en)
US8803059B2 (en) Sensor for determination of the incidence angle of radiation and method for measurement the incidence angle using such a sensor
Halsor et al. Radiation detecting device
JP2814909B2 (en) Position detection device
WO1987003140A1 (en) Large area, low capacitance photodiode and range finder device using same
JP2534113B2 (en) Ranging device
RU1452410C (en) Magnetic-sensitive apparatus
JPH02129517A (en) Detector for position displacement amount
JPH056386B2 (en)
Tang et al. Improvement of the position linearity in a comb-type one-dimensional position-sensitive detector
JPS60131469A (en) Semiconductor flow rate detecting element
JPH06241785A (en) Trigonometrical ranging photoelectric sensor
JP2822231B2 (en) Circular substrate positioning device
JPS62238402A (en) Sensor for detecting running position of magnetic tape
JPH04318415A (en) Position detecting apparatus