JPH04268359A - Stimulus-responsive hydrogel and production thereof - Google Patents
Stimulus-responsive hydrogel and production thereofInfo
- Publication number
- JPH04268359A JPH04268359A JP3050804A JP5080491A JPH04268359A JP H04268359 A JPH04268359 A JP H04268359A JP 3050804 A JP3050804 A JP 3050804A JP 5080491 A JP5080491 A JP 5080491A JP H04268359 A JPH04268359 A JP H04268359A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogel
- gel
- responsive
- polyvinyl alcohol
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 28
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 28
- 238000007127 saponification reaction Methods 0.000 claims abstract description 9
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000004327 boric acid Substances 0.000 claims abstract description 8
- 239000007864 aqueous solution Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 229910021645 metal ion Inorganic materials 0.000 claims description 9
- 238000006116 polymerization reaction Methods 0.000 claims description 8
- 238000007710 freezing Methods 0.000 claims description 7
- 230000008014 freezing Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 230000005684 electric field Effects 0.000 claims description 5
- 238000004108 freeze drying Methods 0.000 claims description 5
- 150000002016 disaccharides Chemical class 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 150000002772 monosaccharides Chemical class 0.000 claims description 4
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 2
- 239000000499 gel Substances 0.000 abstract description 67
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 abstract description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 19
- 239000008103 glucose Substances 0.000 description 19
- 230000008859 change Effects 0.000 description 16
- 235000010339 sodium tetraborate Nutrition 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 229910021538 borax Inorganic materials 0.000 description 12
- 239000004328 sodium tetraborate Substances 0.000 description 12
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 9
- 229910001424 calcium ion Inorganic materials 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 230000008602 contraction Effects 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 5
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 108010025899 gelatin film Proteins 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 230000002522 swelling effect Effects 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- -1 boric acid ions Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- NVIFVTYDZMXWGX-UHFFFAOYSA-N sodium metaborate Chemical compound [Na+].[O-]B=O NVIFVTYDZMXWGX-UHFFFAOYSA-N 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はポリビニルアルコールを
用いて、グルコース等の単糖類及び二糖類又は二価金属
イオンの濃度変化、pH、温度及び電場に応答して大き
な体積変化及び強度変化を起こす全く新しい高強度な刺
激応答性ヒドロゲル及びその製造方法に関する。[Industrial Application Field] The present invention uses polyvinyl alcohol to cause large changes in volume and intensity in response to changes in concentration of monosaccharides and disaccharides such as glucose or divalent metal ions, pH, temperature, and electric field. This invention relates to a completely new high-strength stimulus-responsive hydrogel and a method for producing the same.
【0002】0002
【従来の技術】ポリビニルアルコールゲルは現在最も多
く研究されているヒドロゲルの1つであり、優れた力学
的特性、保水性を有し、しかも安価で毒性も極めて低い
ことから医療、医薬分野においても種々の応用が試みら
れている。しかし、その試みは大きく分けて2つのカテ
ゴリーに限定され、1つはゲル中に薬物、酵素及び微生
物等を包埋した物質担体及び支持体としての利用であり
、もう1つは人工関節、人工角膜等の生体組織の代替と
しての利用である。しかし、これらは単にポリビニルア
ルコールゲルの持つ物質保持能、高含水性及び弾力性を
利用しているに過ぎなかつた。[Prior Art] Polyvinyl alcohol gel is one of the most studied hydrogels at present, and has excellent mechanical properties and water retention, is inexpensive, and has extremely low toxicity, so it is also used in the medical and pharmaceutical fields. Various applications have been attempted. However, these attempts have been largely limited to two categories: one is the use of gels as carriers and supports for drugs, enzymes, microorganisms, etc. embedded in them, and the other is for artificial joints and artificial joints. It is used as a substitute for living tissue such as the cornea. However, these merely utilize the substance retention ability, high water content, and elasticity of polyvinyl alcohol gel.
【0003】又、近年、荷電基を有する高分子(高分子
電解質)を用いて、外部のpH、温度及び溶媒組成等の
変化に応答して体積変化(膨潤収縮)するゲルが調製さ
れており、これらは機能性ゲルと総称されている。機能
性ゲルはゲルの応用分野に全く新しい道を開いたが、そ
の殆どは医療面への使用実績がなく毒性も未確認の高分
子電解質を用いたものであり、医療、医薬分野への応用
には程遠い段階である。更に糖の濃度変化に応答して膨
潤収縮するヒドロゲルは、従来の高分子電解質を用いた
ゲルにおいても報告例はない。In addition, in recent years, gels that change volume (swell and contract) in response to changes in external pH, temperature, solvent composition, etc. have been prepared using polymers with charged groups (polymer electrolytes). , these are collectively called functional gels. Functional gels have opened up a completely new field of gel application, but most of them use polymer electrolytes that have no track record of medical use and whose toxicity is unconfirmed, making it difficult to apply them to the medical and pharmaceutical fields. It is still a long way off. Furthermore, there have been no reports of hydrogels that swell and contract in response to changes in sugar concentration, even among gels using conventional polymer electrolytes.
【0004】0004
【発明が解決しようとする課題】本発明の目的は、ポリ
ビニルアルコールを用いた医療、医薬分野へ実用可能な
機能性ヒドロゲル及びその製造方法を提供することにあ
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a functional hydrogel using polyvinyl alcohol that can be used in the medical and pharmaceutical fields and a method for producing the same.
【0005】[0005]
【課題を解決するための手段】本発明はポリビニルアル
コールより作製した刺激応答性ヒドロゲルに係る。SUMMARY OF THE INVENTION The present invention is directed to stimuli-responsive hydrogels made from polyvinyl alcohol.
【0006】本発明者らは、上記問題点を解決するため
鋭意研究した結果、独自の製法により作製した高強度で
透明なポリビニルアルコールヒドロゲルをホウ酸及びホ
ウ酸塩で処理することにより、グルコース等の単糖類及
び二糖類又は二価金属イオンの濃度変化、pH、温度及
び電場等の種々の変化に応答して大きな膨潤収縮を示す
新しい機能性ヒドロゲルを見出し本発明を完成した。本
発明の刺激応答性ヒドロゲルは以下の様な機能を有し、
医療、医薬の分野で非常に有用である。[0006] As a result of intensive research to solve the above problems, the present inventors have found that by treating a high-strength and transparent polyvinyl alcohol hydrogel produced by an original production method with boric acid and borate, glucose, etc. The present invention was accomplished by discovering a new functional hydrogel that exhibits large swelling and contraction in response to various changes such as changes in the concentration of monosaccharides and disaccharides or divalent metal ions, pH, temperature, and electric field. The stimulus-responsive hydrogel of the present invention has the following functions,
Very useful in the medical and pharmaceutical fields.
【0007】(1)ゲルをホウ酸塩の水溶液中に入れ、
溶液中のグルコース濃度を増加減少させる。この時、グ
ルコース濃度を増大させるとゲルは収縮し、濃度を低下
させるとゲルは膨潤する。この収縮膨潤の変化量はグル
コースの濃度に比例して増加することから、本ヒドロゲ
ルは溶液中のグルコース濃度を決定できるグルコースセ
ンサーとして利用できる。感度は良好であり、血糖値等
の低濃度のグルコース測定にも応用可能である。現在一
般的に使用されているグルコースセンサーは酵素を用い
た複雑かつ高価なものであり、酵素の失活により使用不
能となる。本製法で得られるヒドロゲルをグルコースセ
ンサーとして使用すれば、安価でかつ簡便なグルコース
濃度の決定が可能であり、また長期間変質が起こらない
ので繰り返し使用できる。(1) Putting the gel in an aqueous solution of borate,
Increase or decrease the glucose concentration in the solution. At this time, when the glucose concentration is increased, the gel contracts, and when the concentration is decreased, the gel swells. Since the amount of change in contraction and swelling increases in proportion to the glucose concentration, this hydrogel can be used as a glucose sensor that can determine the glucose concentration in a solution. It has good sensitivity and can be applied to low-concentration glucose measurements such as blood sugar levels. Glucose sensors currently in common use are complex and expensive ones that use enzymes, and become unusable due to deactivation of the enzyme. If the hydrogel obtained by this production method is used as a glucose sensor, the glucose concentration can be determined easily and inexpensively, and since no deterioration occurs for a long period of time, it can be used repeatedly.
【0008】一方、溶液中にカルシウムイオン等の二価
金属イオンが一定濃度以上存在する時は、グルコース濃
度の増大に伴いゲルは膨潤し、濃度の低下に伴いゲルは
収縮する。この性質を利用して新しい糖尿病治療システ
ムが設計可能である。例えば、ゲル中にインシユリンを
封入しておき、ゲルを生体内に投与するかあるいは体外
に血液を循環させてゲルを接触させる。血糖値が上がる
とゲルが膨潤してゲルの網目構造が広がり、その結果封
入されていたインシユリンが放出され、血糖値の増加を
抑制するというシステムが考えられる。グルコース応答
性薬物徐放システムは数多い糖尿病患者からも待ち望ま
れているものである。On the other hand, when divalent metal ions such as calcium ions are present in the solution above a certain concentration, the gel swells as the glucose concentration increases, and contracts as the concentration decreases. A new diabetes treatment system can be designed using this property. For example, insulin is encapsulated in a gel and the gel is administered into a living body, or blood is circulated outside the body and brought into contact with the gel. One possible system is that when blood sugar levels rise, the gel swells and its network structure expands, and as a result, the encapsulated insulin is released, suppressing the increase in blood sugar levels. Glucose-responsive drug sustained release systems are also desired by many diabetic patients.
【0009】(2)ゲルをカルシウム、バリウム等の二
価金属イオンの水溶液に入れると急速に収縮し、体積が
初めの30%程度にまで減少する。収縮したゲルにエチ
レンジアミン四酢酸四ナトリウム等のイオンキレート化
剤を添加するとゲルは速やかに膨潤し、完全にもとの体
積となる。次に二価金属イオンを加えると再び収縮が起
こり、完全に可逆的な体積変化(膨潤収縮)を起こすこ
とが可能である。又、ゲルの両端を固定しておくと収縮
の際に非常に強い張力を発生する。すなわち化学的な刺
激を物理的な仕事に変換する機能を持つたヒドロゲルで
あると言える。この機能を利用して、例えば人工筋肉等
への応用が可能である。(2) When a gel is placed in an aqueous solution of divalent metal ions such as calcium or barium, it rapidly contracts and its volume decreases to about 30% of its original volume. When an ion chelating agent such as tetrasodium ethylenediaminetetraacetate is added to the contracted gel, the gel quickly swells and completely returns to its original volume. Next, when divalent metal ions are added, contraction occurs again, making it possible to cause a completely reversible volume change (swelling and contraction). Also, if both ends of the gel are fixed, a very strong tension will be generated during contraction. In other words, it can be said to be a hydrogel that has the function of converting chemical stimulation into physical work. Utilizing this function, it is possible to apply it to, for example, artificial muscles.
【0010】(3)ゲルのpHを6〜12の間で変化さ
せると、ゲルは酸性側に行くほど収縮し、アルカリ性側
に行くほど膨潤する。この体積変化は可逆的であり、変
化量は30%以上に及ぶ。これを利用してpH感受性の
薬物放出システムに応用可能である。(3) When the pH of the gel is changed between 6 and 12, the gel contracts as it becomes more acidic and swells as it becomes more alkaline. This volume change is reversible, and the amount of change is 30% or more. Utilizing this, it can be applied to pH-sensitive drug release systems.
【0011】(4)ゲルの温度を増加させると収縮が起
こり、温度を元に戻すと膨潤する。これは可逆的な変化
であり、この性質を利用して温度感受性の薬物放出シス
テム、例えば体温の変化に対応して薬物の供給を制御す
るシステムに応用可能である。(4) When the temperature of the gel is increased, the gel contracts, and when the temperature is returned to the original temperature, it swells. This is a reversible change, and this property can be utilized in temperature-sensitive drug release systems, such as systems that control drug delivery in response to changes in body temperature.
【0012】(5)ゲルを浸漬した水溶液に電場をかけ
ることにより、ゲルに膨潤収縮や屈曲運動をさせること
ができ、電気刺激による薬物放出システムや人工筋肉等
への応用が可能である。(5) By applying an electric field to the aqueous solution in which the gel is immersed, the gel can be caused to swell, contract, and bend, making it possible to apply it to drug release systems and artificial muscles using electrical stimulation.
【0013】以上述べたゲルの体積変化や張力変化の大
きさや速度は用いるポリビニルアルコールの種類、ゲル
の形状(薄膜状、棒状等)、ホウ酸塩等の濃度等によつ
て制御することができる。The magnitude and speed of the gel volume change and tension change described above can be controlled by the type of polyvinyl alcohol used, the shape of the gel (thin film, rod shape, etc.), the concentration of borate, etc. .
【0014】又、本発明は、上記刺激応答性ヒドロゲル
の製造方法を提供するものである。即ち、本発明のヒド
ロゲルは、けん化度97モル%以上、平均重合度100
0以上のポリビニルアルコール水溶液を用いて凍結乾燥
法により高強度で透明なヒドロゲルを得、このゲルを0
.001モル/l以上の濃度のホウ酸あるいはホウ酸塩
のpH7以上のアルカリ性水溶液中に30分以上浸漬し
て得ることができる。The present invention also provides a method for producing the stimulus-responsive hydrogel. That is, the hydrogel of the present invention has a saponification degree of 97 mol% or more and an average polymerization degree of 100%.
A high-strength and transparent hydrogel is obtained by freeze-drying using an aqueous solution of polyvinyl alcohol with a concentration of 0 or more.
.. It can be obtained by immersion for 30 minutes or more in an alkaline aqueous solution of boric acid or borate salt with a concentration of 0.001 mol/l or more and a pH of 7 or more.
【0015】本発明の製造方法は大きく分けて2つの工
程からなり、第1工程は凍結乾燥法により高強度で透明
なゲルを作製する工程である。即ち、けん化度97モル
%以上、平均重合度1000以上のポリビニルアルコー
ルの水溶液を、任意の形状の容器または成型用鋳型へ注
入後、これを非凍結下で乾燥させる。このときの含水率
は約5〜10%である。しかる後、この乾燥体を一定圧
の水蒸気中に放置して一定量の水分を吸着させる。この
操作により含水率は20〜40%となる。この試料を速
やかに−20℃以下で凍結し、凍結乾燥を行い、得られ
た試料を必要に応じ水中に浸漬することによりヒドロゲ
ルとする工程である。この高強度で透明なゲルはポリビ
ニルアルコール水溶液の乾燥、水蒸気中での水分吸着及
び凍結乾燥という3つの過程を経てはじめて得られるも
のであり、後記実施例で示すごとくこのうち1つの過程
が欠けても同様の性質を有するヒドロゲルは得られない
。又、ポリビニルアルコール水溶液を乾燥濃縮して含水
率を20〜40%として凍結乾燥を行つても、形状を維
持し得ない程度の弱いゲルが得られるだけである。第1
工程で得られるゲルの含水率はポリビニルアルコールの
種類、水蒸気圧によつて変化し、約40〜90%の範囲
となる。[0015] The production method of the present invention is roughly divided into two steps, and the first step is a step of producing a high-strength, transparent gel by freeze-drying. That is, an aqueous solution of polyvinyl alcohol having a saponification degree of 97 mol % or more and an average polymerization degree of 1000 or more is poured into a container of any shape or a mold, and then dried without freezing. The moisture content at this time is about 5 to 10%. Thereafter, this dried body is left in steam at a constant pressure to adsorb a certain amount of water. This operation results in a moisture content of 20 to 40%. This is a step in which the sample is quickly frozen at -20°C or lower, freeze-dried, and the resulting sample is immersed in water as needed to form a hydrogel. This high-strength, transparent gel can only be obtained through three processes: drying an aqueous polyvinyl alcohol solution, adsorbing water in steam, and freeze-drying, and as shown in the examples below, one of these processes is missing. However, hydrogels with similar properties cannot be obtained. Furthermore, even if a polyvinyl alcohol aqueous solution is dried and concentrated to a moisture content of 20 to 40% and freeze-dried, only a weak gel that cannot maintain its shape is obtained. 1st
The moisture content of the gel obtained in the process varies depending on the type of polyvinyl alcohol and water vapor pressure, and ranges from about 40 to 90%.
【0016】第2工程は、第1工程で得られたゲルを0
.001モル/l以上の濃度のホウ酸あるいはホウ酸塩
のpH7以上のアルカリ性水溶液中に30分以上浸漬す
る工程であり、これによりゲル内にホウ酸イオンによる
架橋が形成され、ゲルに荷電基が付与されることとなる
。[0016] In the second step, the gel obtained in the first step is
.. This is a process of immersing for 30 minutes or more in an alkaline aqueous solution of boric acid or boric acid salts with a pH of 7 or more with a concentration of 0.001 mol/l or more, which forms crosslinks with boric acid ions in the gel and creates charged groups in the gel. It will be granted.
【0017】本発明に用いるポリビニルアルコールのけ
ん化度は97モル%以上、好ましくは98モル%以上を
要する。また平均重合度は1000以上であることが必
要であり、これよりもけん化度及び重合度の低いポリビ
ニルアルコールを用いても得られるゲルの強度は低く、
目的は達成されない。The degree of saponification of the polyvinyl alcohol used in the present invention must be 97 mol% or more, preferably 98 mol% or more. In addition, the average degree of polymerization needs to be 1000 or more, and even if polyvinyl alcohol with a saponification degree and polymerization degree lower than this is used, the strength of the gel obtained is low.
The purpose is not achieved.
【0018】ポリビニルアルコールの水溶液は、その濃
度が高くなりすぎると溶液中から気泡を除去することが
困難となるため、その濃度は約40%程度以下の方が好
ましい。[0018] If the concentration of the aqueous solution of polyvinyl alcohol becomes too high, it becomes difficult to remove air bubbles from the solution, so the concentration is preferably about 40% or less.
【0019】ポリビニルアルコール水溶液を乾燥する際
の温度は水溶液が凍結せず、かつポリビニルアルコール
自身が融解しない温度範囲とする必要があり、−5〜6
0℃の範囲が好ましい。[0019] The temperature when drying the polyvinyl alcohol aqueous solution must be within a temperature range in which the aqueous solution does not freeze and the polyvinyl alcohol itself does not melt;
A range of 0°C is preferred.
【0020】水蒸気中でゲルに少量の水分を含有させる
過程も同様の温度範囲で行う必要がある。この際の水蒸
気圧が凍結前のゲルの含水量を決定し、最終的に得られ
るゲルの強度、透明度に影響する。例えば30〜80℃
の飽和水蒸気圧中に置くことにより、0.04〜0.3
atmの水蒸気圧とすることができる。又、温度を一定
にして水蒸気圧を調整することもできる。The process of incorporating a small amount of water into the gel in steam also needs to be carried out in a similar temperature range. The water vapor pressure at this time determines the water content of the gel before freezing, and affects the strength and transparency of the final gel. For example 30~80℃
By placing it in a saturated water vapor pressure of 0.04 to 0.3
It can be the water vapor pressure of ATM. Alternatively, the water vapor pressure can be adjusted while keeping the temperature constant.
【0021】凍結時の温度もゲルの強度に影響し、高強
度のゲルを得るためには−20℃以下、好ましくは−4
0℃以下が必要であり、−6℃〜−20℃ではゲルの強
度が低下する。[0021] The temperature at the time of freezing also affects the strength of the gel, and in order to obtain a gel with high strength, the temperature should be -20°C or lower, preferably -4°C.
A temperature of 0°C or lower is required, and the strength of the gel decreases at -6°C to -20°C.
【0022】ホウ酸塩としてはホウ砂(四ホウ酸ナトリ
ウム十水和物)、メタホウ酸ナトリウム、過ホウ酸ナト
リウム等を使用することができる。As the borate, borax (sodium tetraborate decahydrate), sodium metaborate, sodium perborate, etc. can be used.
【0023】ホウ酸塩水溶液の濃度、pH及び温度はゲ
ルの刺激応答性及びゲルの強度に大きく影響する。濃度
は例えばホウ酸を用いる場合、約0.01モル/l以上
、ホウ砂を用いる場合は約0.001モル/l以上とす
る必要があり、これ以下では十分な機能を発揮しない。
またpHはホウ酸が解離するアルカリ性領域とする必要
があり、約7以上、好ましくは9以上に調整する。温度
は50℃以上ではホウ酸塩による架橋が解離するため、
約50℃以下とする必要がある。本発明の刺激応答性ヒ
ドロゲルの機能は、高強度のポリビニルアルコールゲル
を作製しかつそれにホウ酸塩による架橋を施すという2
つの工程の相乗効果により初めて発揮されるものであり
、従来のポリビニルアルコールの水溶液にホウ酸塩を添
加して得られるゲルは非常に脆弱であり、その機能性を
調べる以前のものである。又、ポリビニルアルコールの
水溶液を繰り返し凍結解凍する従来の方法で調製したゲ
ルを本製法の第1工程で得られるゲルに代用することも
できるが、強度が低く不透明であるためその用途は大き
く限定される。The concentration, pH and temperature of the aqueous borate solution greatly influence the stimulus responsiveness and strength of the gel. For example, when using boric acid, the concentration needs to be about 0.01 mol/l or more, and when using borax, it needs to be about 0.001 mol/l or more, and if it is less than this, sufficient functionality will not be exhibited. Further, the pH needs to be in an alkaline range where boric acid dissociates, and is adjusted to about 7 or higher, preferably 9 or higher. At temperatures above 50°C, the crosslinks caused by borate dissociate, so
It is necessary to keep the temperature below about 50°C. The function of the stimulus-responsive hydrogel of the present invention is to create a high-strength polyvinyl alcohol gel and cross-link it with borate.
This phenomenon was first demonstrated through the synergistic effect of two steps, and the gel obtained by adding borate to a conventional aqueous solution of polyvinyl alcohol is extremely fragile, and its functionality has not yet been investigated. In addition, a gel prepared by the conventional method of repeatedly freezing and thawing an aqueous solution of polyvinyl alcohol can be used as a substitute for the gel obtained in the first step of this production method, but its use is largely limited due to its low strength and opacity. Ru.
【0024】[0024]
【実施例】参考例1
市販ポリビニルアルコール(けん化度98.8モル%、
平均重合度2000)の水溶液(4w/v%)をペトリ
皿に流延し、30℃の乾燥空気中で乾燥させた後、30
〜70℃の飽和水蒸気圧中に24時間放置し、得られた
試料を−40℃で12時間凍結させ、凍結乾燥を行つた
。これを蒸留水中で膨潤させて膜状のヒドロゲルを得た
。得られたヒドロゲルはいずれも強靭で透明な膜であつ
た。このゲルについて破断伸び及び引張強度試験の測定
を行つた。測定結果を表1に示す。[Example] Reference example 1 Commercially available polyvinyl alcohol (saponification degree 98.8 mol%,
An aqueous solution (4w/v%) with an average degree of polymerization of 2000) was cast into a Petri dish, dried in dry air at 30°C,
The sample was left in a saturated water vapor pressure of ~70°C for 24 hours, and the resulting sample was frozen at -40°C for 12 hours and freeze-dried. This was swollen in distilled water to obtain a membrane-like hydrogel. All of the obtained hydrogels were tough and transparent films. This gel was measured for elongation at break and tensile strength test. The measurement results are shown in Table 1.
【0025】[0025]
【表1】[Table 1]
【0026】実施例1
参考例1で得たヒドロゲル膜を0.03モル/lのホウ
砂水溶液に24時間浸漬し架橋処理を行つた。得られた
ゲルはいずれも透明であつた。得られたゲルの含水率及
び10%の引張り歪みを加えた時の弾性率を表2に示す
。Example 1 The hydrogel membrane obtained in Reference Example 1 was immersed in a 0.03 mol/l borax aqueous solution for 24 hours for crosslinking treatment. All of the gels obtained were transparent. Table 2 shows the water content and elastic modulus of the gel obtained when 10% tensile strain was applied.
【0027】[0027]
【表2】[Table 2]
【0028】比較例1
ポリビニルアルコール(けん化度98.8モル%、平均
重合度2000)の水溶液(10w/v%)をペトリ更
に流延し、その上に0.03モル/lのホウ砂水溶液を
加えてゲル化させた。得られたゲルは粘着性のゼリー状
であり、極めて強度の低いものであつた。Comparative Example 1 An aqueous solution (10 w/v %) of polyvinyl alcohol (saponification degree 98.8 mol %, average degree of polymerization 2000) was further cast on Petri, and a 0.03 mol/l borax aqueous solution was poured onto it. was added to form a gel. The resulting gel was sticky jelly-like and had extremely low strength.
【0029】比較例2
市販ポリビニルアルコール(けん化度98.8モル%、
平均重合度2000)の水溶液(10w/v%)を調製
し、−50℃での凍結と7℃での解凍を5回繰り返した
後、水中で膨潤させることにより、ヒドロゲルを作製し
た。このヒドロゲルを0.03モル/lのホウ砂水溶液
に24時間浸漬し架橋処理を行つた。得られたゲルは不
透明であり、このゲルに引張り歪みを加えたときの弾性
率は0.09MPaであり、実施例1で得たヒドロゲル
と比較してはるかに強度が低かつた。Comparative Example 2 Commercially available polyvinyl alcohol (saponification degree 98.8 mol%,
A hydrogel was prepared by preparing an aqueous solution (10 w/v %) with an average degree of polymerization of 2000), repeating freezing at -50°C and thawing at 7°C five times, and then swelling it in water. This hydrogel was immersed in a 0.03 mol/l borax aqueous solution for 24 hours for crosslinking treatment. The obtained gel was opaque, and the elastic modulus when tensile strain was applied to this gel was 0.09 MPa, which was much lower in strength than the hydrogel obtained in Example 1.
【0030】実施例2
実施例1で得た飽和水蒸気温度40℃のヒドロゲルにカ
ルシウムイオンを添加した時の応力、体積及び含水率の
変化を調べた。応力測定は0.03モル/lのホウ砂水
溶液にてゲルに10%の引張り歪みを加え、応力が一定
に達した後、外部溶液をホウ砂(0.03モル/l)/
塩化カルシウム(0.01モル/l)混合水溶液に交換
し、それに伴うゲル膜の応力変化を測定した。更にその
後外部溶液をホウ砂(0.03モル/l)/エチレジア
ミン四酢酸四ナトリウム(0.05モル/l)混合水溶
液に交換した。応力変化を図1に示す。Example 2 Changes in stress, volume, and water content when calcium ions were added to the hydrogel obtained in Example 1 at a saturated steam temperature of 40° C. were investigated. For stress measurement, a 10% tensile strain was applied to the gel using a 0.03 mol/l borax aqueous solution, and after the stress reached a constant level, the external solution was added to a borax solution (0.03 mol/l)/
The gel film was replaced with a mixed aqueous solution of calcium chloride (0.01 mol/l), and the resulting change in stress in the gel film was measured. Thereafter, the external solution was exchanged with a mixed aqueous solution of borax (0.03 mol/l)/tetrasodium ethylenediaminetetraacetate (0.05 mol/l). Figure 1 shows the stress changes.
【0031】カルシウムイオンの添加と同時に急激な応
力の増加が見られ、約10分で一定値に達した。次に外
部溶液をエチレンジアミン四酢酸四ナトリウムに交換す
ることにより応力は速やかに減少し、約10分でカルシ
ウムイオン添加前の応力値にまで回復した。再度カルシ
ウムイオンを添加することにより応力は増加し、以後も
可逆的な応力変化が起こつた。カルシウムイオン添加時
の応力は初めの約4倍に増加した。カルシウムイオン添
加による応力の増加量は約0.2MPaであり、非常に
大きな張力が発生した。A rapid increase in stress was observed upon addition of calcium ions, and reached a constant value in about 10 minutes. Next, the stress was rapidly reduced by replacing the external solution with tetrasodium ethylenediaminetetraacetate, and recovered to the stress value before addition of calcium ions in about 10 minutes. The stress increased by adding calcium ions again, and reversible stress changes occurred thereafter. The stress upon addition of calcium ions increased to about four times the initial stress. The increase in stress due to the addition of calcium ions was about 0.2 MPa, and a very large tension was generated.
【0032】ゲルの体積変化を図2に示す。体積変化は
カルシウムイオンの添加と同時に急速なゲルの収縮が起
こり、20分後には元の体積の半分以下となつた。その
後エチレンジアミン四酢酸四ナトリウムに交換すること
によるゲルの体積は完全に回復した。FIG. 2 shows the change in volume of the gel. As for the volume change, rapid contraction of the gel occurred simultaneously with the addition of calcium ions, and the gel volume decreased to less than half of its original volume after 20 minutes. The volume of the gel was then completely recovered by exchanging to tetrasodium ethylenediaminetetraacetate.
【0033】ゲルの含水率を表3に示す。カルシウムイ
オンの添加により含水率は20%以上減少した。またエ
チレンジアミン四酢酸四ナトリウムへの交換により含水
率は回復した。Table 3 shows the water content of the gel. Addition of calcium ions reduced the water content by more than 20%. Moreover, the water content was recovered by replacing it with tetrasodium ethylenediaminetetraacetate.
【0034】[0034]
【表3】[Table 3]
【0035】実施例3
実施例1で得た飽和水蒸気温度40℃のヒドロゲルに0
.03モル/lのホウ砂水溶液中にて10%の引張り歪
みを加え、溶液中のグルコース濃度を0〜125mMの
間で増加減少させ、ゲルの応力変化を測定した。応力変
化を図3に示す。グルコース濃度を増大させると応力は
増加し、濃度を低下させると応力は減少した。応力変化
量とグルコース濃度の関係は比例関係にあつた。従つて
本ヒドロゲルはグルコースセンサーとして利用できるこ
とが示された。Example 3 The hydrogel obtained in Example 1 with a saturated steam temperature of 40°C was
.. A tensile strain of 10% was applied to an aqueous solution of 0.03 mol/l of borax, and the glucose concentration in the solution was increased or decreased between 0 and 125 mM, and changes in stress of the gel were measured. Figure 3 shows the stress changes. Increasing the glucose concentration increased the stress, and decreasing the concentration decreased the stress. The relationship between stress change and glucose concentration was proportional. Therefore, it was shown that this hydrogel can be used as a glucose sensor.
【0036】実施例4
実施例1で得た飽和水蒸気温度40℃のヒドロゲルに0
.03モル/lのホウ砂水溶液中にて10%の引張り歪
みを加え、溶液のpHを6〜12の間で変化させ、ゲル
の応力変化、体積変化を25℃にて測定した。pHを1
2から6に低下させることにより、ゲルの応力は3倍以
上に増大した。再びpHを12に戻すと応力は減少し、
元の値となり、可逆的な応力変化を示した。一方、体積
変化はpHを12から6に低下させることにより、体積
は半分以下に収縮した。再びpHを12に戻すと膨潤し
て元の体積となり、可逆的なpH応答性を示した。Example 4 The hydrogel obtained in Example 1 with a saturated steam temperature of 40°C was
.. A 10% tensile strain was applied to an aqueous solution of 0.03 mol/l of borax, the pH of the solution was varied between 6 and 12, and changes in stress and volume of the gel were measured at 25°C. pH to 1
By lowering from 2 to 6, the gel stress increased more than three times. When the pH is returned to 12 again, the stress decreases,
The stress returned to its original value, indicating a reversible stress change. On the other hand, when the pH was lowered from 12 to 6, the volume shrunk to less than half. When the pH was returned to 12 again, it swelled to its original volume and exhibited reversible pH responsiveness.
【0037】実施例5
実施例1で得た飽和水蒸気温度40℃のヒドロゲルを0
.03モル/lのホウ砂水溶液に浸漬して液温を室温(
約22℃)から50℃に上げるとゲルは収縮し、約17
%体積が減少した。室温に戻すとゲルは膨潤し、体積は
回復した。Example 5 The hydrogel obtained in Example 1 with a saturated steam temperature of 40°C was
.. 0.03 mol/l borax aqueous solution to bring the temperature of the solution to room temperature (
When raised from about 22°C to 50°C, the gel shrinks and becomes about 17°C.
% volume decreased. When returned to room temperature, the gel swelled and regained its volume.
【0038】実施例6
実施例1で得た飽和水蒸気温度40℃のヒドロゲル膜を
短冊状に切つて0.03モル/lのホウ砂水溶液の入つ
たペトリ皿の中に置きその片端を固定した。二枚の白金
極板をゲル膜をはさんで平行に置き、極板間に40Vの
電圧を加えた。電圧の印加と同時にゲル膜は正極側に大
きく屈曲した。Example 6 The hydrogel film obtained in Example 1 with a saturated steam temperature of 40°C was cut into strips and placed in a Petri dish containing a 0.03 mol/l borax aqueous solution, and one end of the film was fixed. . Two platinum electrode plates were placed in parallel with a gel membrane in between, and a voltage of 40 V was applied between the electrode plates. Simultaneously with the application of voltage, the gel film was bent significantly toward the positive electrode.
【0039】[0039]
【発明の効果】本発明においてはグルコース等の単糖類
及び二糖類又は二価金属イオンの濃度変化、pH、温度
及び電場等の種々の変化に応答して大きな膨潤収縮を示
す新しい機能性ヒドロゲルを得ることができる。Effects of the Invention The present invention provides a new functional hydrogel that exhibits large swelling and contraction in response to various changes in concentration of monosaccharides and disaccharides such as glucose or divalent metal ions, pH, temperature, electric field, etc. Obtainable.
【図1】本発明のヒドロゲルの二価金属イオンに対する
応力変化を示す応答曲線である。FIG. 1 is a response curve showing the stress change of the hydrogel of the present invention to divalent metal ions.
【図2】本発明のヒドロゲルの二価金属イオンに対する
体積変化を示す応答曲線である。FIG. 2 is a response curve showing the volume change of the hydrogel of the present invention to divalent metal ions.
【図3】本発明のヒドロゲルのグルコースに対する応力
変化を示す応答曲線である。FIG. 3 is a response curve showing the stress change of the hydrogel of the present invention to glucose.
Claims (8)
激応答性ヒドロゲル。1. A stimulus-responsive hydrogel made from polyvinyl alcohol.
応答する請求項1の刺激応答性ヒドロゲル。2. The stimulus-responsive hydrogel of claim 1, which responds to changes in concentration of monosaccharides and disaccharides.
答する請求項1の刺激応答性ヒドロゲル。3. The stimuli-responsive hydrogel of claim 1, which responds to changes in the concentration of divalent metal ions.
刺激応答性ヒドロゲル。4. The stimuli-responsive hydrogel of claim 1, which is responsive to pH changes.
刺激応答性ヒドロゲル。5. The stimuli-responsive hydrogel of claim 1, which is responsive to temperature changes.
の刺激応答性ヒドロゲル。Claim 6: Claim 1 which responds to the application of an electric field.
stimulus-responsive hydrogels.
1000以上のポリビニルアルコール水溶液を用いて凍
結乾燥法により高強度で透明なヒドロゲルを得、このゲ
ルを0.001モル/l以上の濃度のホウ酸あるいはホ
ウ酸塩のpH7以上のアルカリ性水溶液中に30分以上
浸漬することを特徴とする刺激応答性ヒドロゲルの製造
方法。7. Obtain a high-strength, transparent hydrogel by freeze-drying using a polyvinyl alcohol aqueous solution with a saponification degree of 97 mol% or more and an average polymerization degree of 1000 or more. A method for producing a stimulus-responsive hydrogel, which comprises immersing it in an alkaline aqueous solution of boric acid or a borate salt having a pH of 7 or more for 30 minutes or more.
の水溶液を、任意の形状の容器または成型用鋳型へ注入
後、これを非凍結下で乾燥させ、しかる後、この乾燥体
を一定圧の水蒸気中に放置して一定量の水分を吸着させ
た後、速やかに−20℃以下で凍結し、凍結状態のまま
乾燥して得られた試料を必要に応じ水中に浸漬すること
によりヒドロゲルを得る方法である請求項7の刺激応答
性ヒドロゲルの製造方法。8. The freeze-drying method involves injecting an aqueous solution of polyvinyl alcohol into a container of any shape or into a mold, drying it without freezing, and then placing the dried product in water vapor at a constant pressure. A method of obtaining hydrogel by leaving the sample to absorb a certain amount of water, then immediately freezing it at -20℃ or below, drying it in the frozen state, and immersing the obtained sample in water as necessary. A method for producing a stimuli-responsive hydrogel according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3050804A JPH04268359A (en) | 1991-02-22 | 1991-02-22 | Stimulus-responsive hydrogel and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3050804A JPH04268359A (en) | 1991-02-22 | 1991-02-22 | Stimulus-responsive hydrogel and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04268359A true JPH04268359A (en) | 1992-09-24 |
Family
ID=12868962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3050804A Pending JPH04268359A (en) | 1991-02-22 | 1991-02-22 | Stimulus-responsive hydrogel and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04268359A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006096846A (en) * | 2004-09-29 | 2006-04-13 | Nippon Synthetic Chem Ind Co Ltd:The | Polyvinyl alcohol-based water-containing gel, method for producing the same, and adsorptive separating agent and method of adsorptive separation by using the same |
JP2013124317A (en) * | 2011-12-15 | 2013-06-24 | Kuraray Co Ltd | Polyvinyl alcohol-based polymer and method for producing hydrolyzable cellulose using the same |
JP2019531715A (en) * | 2016-08-31 | 2019-11-07 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Method for combining detection of biomolecules with a single assay using fluorescence in situ sequencing |
CN113248742A (en) * | 2021-06-15 | 2021-08-13 | 西华大学 | PH and light dual-response natural polysaccharide hydrogel and preparation method thereof |
US11293052B2 (en) | 2011-12-22 | 2022-04-05 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11293054B2 (en) | 2011-12-22 | 2022-04-05 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11299767B2 (en) | 2013-03-12 | 2022-04-12 | President And Fellows Of Harvard College | Method for generating a three-dimensional nucleic acid containing matrix |
US11312992B2 (en) | 2011-10-14 | 2022-04-26 | President And Fellows Of Harvard College | Sequencing by structure assembly |
US11473139B2 (en) | 2012-06-05 | 2022-10-18 | President And Fellows Of Harvard College | Spatial sequencing of nucleic acids using DNA origami probes |
US11542554B2 (en) | 2015-11-03 | 2023-01-03 | President And Fellows Of Harvard College | Method and apparatus for volumetric imaging |
US11713485B2 (en) | 2016-04-25 | 2023-08-01 | President And Fellows Of Harvard College | Hybridization chain reaction methods for in situ molecular detection |
US12098425B2 (en) | 2018-10-10 | 2024-09-24 | Readcoor, Llc | Three-dimensional spatial molecular indexing |
-
1991
- 1991-02-22 JP JP3050804A patent/JPH04268359A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4653992B2 (en) * | 2004-09-29 | 2011-03-16 | 日本合成化学工業株式会社 | Polyvinyl alcohol-based hydrogel, adsorption separation agent and adsorption separation method using the same |
JP2006096846A (en) * | 2004-09-29 | 2006-04-13 | Nippon Synthetic Chem Ind Co Ltd:The | Polyvinyl alcohol-based water-containing gel, method for producing the same, and adsorptive separating agent and method of adsorptive separation by using the same |
US11312992B2 (en) | 2011-10-14 | 2022-04-26 | President And Fellows Of Harvard College | Sequencing by structure assembly |
JP2013124317A (en) * | 2011-12-15 | 2013-06-24 | Kuraray Co Ltd | Polyvinyl alcohol-based polymer and method for producing hydrolyzable cellulose using the same |
US11566276B2 (en) | 2011-12-22 | 2023-01-31 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11549136B2 (en) | 2011-12-22 | 2023-01-10 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11293051B2 (en) | 2011-12-22 | 2022-04-05 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11293054B2 (en) | 2011-12-22 | 2022-04-05 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11976318B2 (en) | 2011-12-22 | 2024-05-07 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11639518B2 (en) | 2011-12-22 | 2023-05-02 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11566277B2 (en) | 2011-12-22 | 2023-01-31 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11293052B2 (en) | 2011-12-22 | 2022-04-05 | President And Fellows Of Harvard College | Compositions and methods for analyte detection |
US11473139B2 (en) | 2012-06-05 | 2022-10-18 | President And Fellows Of Harvard College | Spatial sequencing of nucleic acids using DNA origami probes |
US11299767B2 (en) | 2013-03-12 | 2022-04-12 | President And Fellows Of Harvard College | Method for generating a three-dimensional nucleic acid containing matrix |
US11542554B2 (en) | 2015-11-03 | 2023-01-03 | President And Fellows Of Harvard College | Method and apparatus for volumetric imaging |
US11713485B2 (en) | 2016-04-25 | 2023-08-01 | President And Fellows Of Harvard College | Hybridization chain reaction methods for in situ molecular detection |
US11718874B2 (en) | 2016-04-25 | 2023-08-08 | President And Fellows Of Harvard College | Hybridization chain reaction methods for in situ molecular detection |
JP2019531715A (en) * | 2016-08-31 | 2019-11-07 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Method for combining detection of biomolecules with a single assay using fluorescence in situ sequencing |
US11447807B2 (en) | 2016-08-31 | 2022-09-20 | President And Fellows Of Harvard College | Methods of combining the detection of biomolecules into a single assay using fluorescent in situ sequencing |
JP2022113158A (en) * | 2016-08-31 | 2022-08-03 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Methods of combining detection of biomolecules into single assay using fluorescent in situ sequencing |
US12098425B2 (en) | 2018-10-10 | 2024-09-24 | Readcoor, Llc | Three-dimensional spatial molecular indexing |
CN113248742B (en) * | 2021-06-15 | 2023-05-05 | 西华大学 | PH and light dual-response natural polysaccharide hydrogel and preparation method thereof |
CN113248742A (en) * | 2021-06-15 | 2021-08-13 | 西华大学 | PH and light dual-response natural polysaccharide hydrogel and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Hydrogels in bioapplications | |
US4746514A (en) | Hydrogel materials formed by radiation polymerization of carbohydrates and unsaturated monomers | |
Kim et al. | Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone | |
AU664255B2 (en) | Acrylic copolymer membranes for biosensors | |
Quinn et al. | Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly (ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors | |
JPH04268359A (en) | Stimulus-responsive hydrogel and production thereof | |
CN111150880A (en) | Antibacterial composite hydrogel and preparation method thereof | |
US3767759A (en) | Method of molding capillary drain for surgery | |
JP4280775B2 (en) | Polyvinyl alcohol gel | |
bt Ibrahim et al. | Sodium alginate film: The effect of crosslinker on physical and mechanical properties | |
JPS6134829B2 (en) | ||
KR101068499B1 (en) | A preparation method of Temperature and pH sensitive hydrogel | |
CN114456404B (en) | Liquid metal flexible wearable device and preparation method thereof | |
JPH02109570A (en) | Silkfibroin-containing molding | |
Bajpai | Swelling studies on hydrogel networks—a review | |
CN1212124C (en) | Preparation for injecting temperature sensitive gelatin embolism material | |
JP2507885B2 (en) | Silk fibroin hydrogel | |
JP2019085483A (en) | Shape-memory hydrogel | |
CN116589735A (en) | Preparation method and application of agarose-bacterial cellulose composite gel | |
CN113350572B (en) | Medical temperature-sensitive hydrogel and preparation method and application thereof | |
CN110123340A (en) | Fibroin albumen microneedle electrodes and its preparation and application | |
JPS5844699B2 (en) | Sugreta Seinou Oyuusuru Hydrogel Youkizai | |
Bajpai et al. | Evaluation of water sorption property and in vitro blood compatibility of poly (2-hydroxyethyl methacrylate)(PHEMA) based semi interpenetrating polymer networks (IPNs) | |
EP3395375A1 (en) | Device and production method for same | |
JPS601335B2 (en) | Manufacturing method for medical polymer materials |