JPH042625A - Production of highly homogeneous silica glass - Google Patents
Production of highly homogeneous silica glassInfo
- Publication number
- JPH042625A JPH042625A JP10180490A JP10180490A JPH042625A JP H042625 A JPH042625 A JP H042625A JP 10180490 A JP10180490 A JP 10180490A JP 10180490 A JP10180490 A JP 10180490A JP H042625 A JPH042625 A JP H042625A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- pure water
- temperature
- slurry
- silica glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000843 powder Substances 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 16
- 239000002002 slurry Substances 0.000 claims abstract description 16
- 238000005245 sintering Methods 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000001307 helium Substances 0.000 claims abstract description 10
- 229910052734 helium Inorganic materials 0.000 claims abstract description 10
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims abstract description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000460 chlorine Substances 0.000 claims abstract description 6
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 6
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 4
- 239000011259 mixed solution Substances 0.000 claims abstract description 3
- 238000007731 hot pressing Methods 0.000 claims abstract 3
- 238000001914 filtration Methods 0.000 claims description 16
- 238000000465 moulding Methods 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 6
- 239000011521 glass Substances 0.000 abstract description 10
- 230000003287 optical effect Effects 0.000 abstract description 6
- 239000010419 fine particle Substances 0.000 abstract 1
- 239000011164 primary particle Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 21
- 238000002360 preparation method Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 206010040925 Skin striae Diseases 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 238000004017 vitrification Methods 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000009694 cold isostatic pressing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- -1 silicon alkoxide Chemical class 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
- C03B19/063—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction by hot-pressing powders
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
- C03B19/066—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B20/00—Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光学用高均質シリカガラスの製造方法に関す
るものである。特に(a)シリカ微粉末を原料とし、濾
過成型によりシリカガラス粉末成型体を形成し、(b)
1450℃以上の温度で前記成型体の焼結を行い、(c
)焼結体をホットプレス(以下、HP)処理によって所
望の高均質シリカガラスを得る方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing highly homogeneous optical silica glass. In particular, (a) a silica glass powder molded body is formed by filtration molding using silica fine powder as a raw material, and (b)
The molded body is sintered at a temperature of 1450°C or higher, and (c
This invention relates to a method for obtaining a desired highly homogeneous silica glass by subjecting a sintered body to a hot press (hereinafter referred to as HP) treatment.
[従来の技術]
最近の半導体分野においてレーザーを使用した装置、例
えば縮小投影露光装置、CVD用薄膜製造装置等の開発
が進んでおり、より集積したものへの要望により、使用
レーザーの波長も短波長へと移行している。その光学用
のガラスには、紫外域の透過性に優れたシリカガラスが
使用され、光学系の精密制御、及び光学系の設計に適し
た屈折率の均質なガラス部材が望まれている。[Prior Art] Recently, in the semiconductor field, the development of equipment using lasers, such as reduction projection exposure equipment and thin film manufacturing equipment for CVD, is progressing, and due to the demand for more integrated equipment, the wavelength of the laser used is also becoming shorter. wavelength. Silica glass, which has excellent transmittance in the ultraviolet region, is used as the optical glass, and a glass member with a homogeneous refractive index suitable for precise control of the optical system and design of the optical system is desired.
従来のシリカガラスには、天然水晶の溶融品、四塩化ケ
イ素からの合成シリカガラスがあり、それぞれ高均質な
ものが得られているが、原料からの不純物、脈理部、低
均質部の除去に起因する歩留まりの問題等、光学的ある
いは工業的に満足のできるものではない。Conventional silica glass includes fused natural quartz and synthetic silica glass made from silicon tetrachloride, each of which is highly homogeneous, but it is necessary to remove impurities, striae, and low homogeneity from the raw materials. It is not optically or industrially satisfactory due to yield problems caused by this.
また最近のシリカガラス製造法では、ゾル−ゲル法があ
り精力的に研究がおこなわれているが、現状では、粉末
成型体作製での長時間の乾燥、乾燥時の割れ等に関係す
る大型化の問題など、工業化についての問題は多い。In addition, as a recent silica glass manufacturing method, there is a sol-gel method, which is being actively researched. There are many problems with industrialization, such as the problem of.
[発明が解決しようとする課題]
本発明は原料にシリカ微粉末を用い、粉末成型、焼結、
高温高圧処理の工程により、高純度な光学特性の均一な
シリカガラスを歩留まりよく提供しようとするものであ
る。[Problems to be solved by the invention] The present invention uses fine silica powder as a raw material, and processes such as powder molding, sintering,
The aim is to provide high-purity silica glass with uniform optical properties at a high yield through a high-temperature, high-pressure treatment process.
[課題を解決するための手段]
本発明者らは、上記の課題を解決するために鋭意検討を
行った結果、本発明を完成するに至ったものである。[Means for Solving the Problems] The present inventors have completed the present invention as a result of intensive studies to solve the above problems.
すなわち本発明は、
(a)シリカ微粉末を、純水または純水とフッ化水素酸
、フッ化アンモニウム、アンモニア、アルコールもしく
は酢酸との混合溶液に分散させスラリーを作製し、その
スラリーの濾過、乾燥によりシリカ微粉末を成型させる
工程、
(b)1450℃以上の温度のヘリウムガスまたはヘリ
ウムと塩素の混合ガス雰囲気中に上記成型体を投入し、
焼結させる工程、
及び
(e)1650℃以上の温度で、上記焼結体に50kg
f/cgff以上の圧力を一軸方向から与えるホットプ
レス処理を行う工程
からなることを特徴とする高均質シリカガラスの製造方
法である。以下、本発明を更に詳細に説明する。That is, the present invention includes: (a) preparing a slurry by dispersing fine silica powder in pure water or a mixed solution of pure water and hydrofluoric acid, ammonium fluoride, ammonia, alcohol, or acetic acid; filtering the slurry; a step of molding fine silica powder by drying, (b) introducing the molded body into an atmosphere of helium gas or a mixed gas of helium and chlorine at a temperature of 1450° C. or higher;
sintering step, and (e) applying 50 kg to the sintered body at a temperature of 1650°C or higher;
This is a method for producing highly homogeneous silica glass characterized by comprising a step of performing a hot press treatment in which a pressure of f/cgff or more is applied from one axis. The present invention will be explained in more detail below.
本発明のシリカガラスの製造では、出発原料をシリカ微
粉末とした。ここでいう微粉末とは、次粒子径で数ミク
ロンオーダー以下の粉末である。In producing the silica glass of the present invention, the starting material was silica fine powder. The fine powder here refers to powder with a particle diameter of several microns or less.
微粉末は、ゾル−ゲル法、スート法などにより得ること
ができるが、不純物の低減、粉末の粒径。Fine powder can be obtained by the sol-gel method, soot method, etc., but it is important to reduce impurities and the particle size of the powder.
表面積の制御の点で、テトラエトキシシラン等のシリコ
ンのアルコキシドの加水分解により得ることが好ましい
。From the viewpoint of controlling the surface area, it is preferable to obtain it by hydrolyzing a silicon alkoxide such as tetraethoxysilane.
成型法には一般に乾式、湿式があるが、本発明では湿式
成型法のひとつである濾過成型を行う。There are generally dry and wet molding methods, and in the present invention, filtration molding, which is one of the wet molding methods, is used.
濾過成型法は、シリカ微粉末のスラリーを使用するため
、成型時まで粉末が分散し、しかもメカニカルプレスに
よるものとは異なり全体に圧力がかかるため、均一なが
さ密度の均一な構造をもつ成型体にすることが可能とな
るからである。また成型時には、粉末同志がネッキング
を起こし、開孔を残しながらある程度強度を持った成型
体が作製されるからである。以上の方法により作製した
成型体に更に強度を与えるため、冷間静水圧をかけても
なんらさしつかえない。Since the filtration molding method uses a slurry of fine silica powder, the powder is dispersed until the time of molding, and unlike mechanical presses, pressure is applied to the entire body, resulting in a molded product with a uniform structure and uniform bulk density. This is because it becomes possible to do so. Further, during molding, the powders cause necking, and a molded body having a certain degree of strength is produced while leaving open holes. In order to give further strength to the molded body produced by the above method, there is no problem in applying cold hydrostatic pressure.
濾過成型による成型体は、メカニカルプレスなどによる
乾式成型法による成型体と比較して、焼結後の発泡量か
飛躍的に少なく、焼結後も均一な密度のガラスを与える
。しかも本発明の濾過成型法は、ゾル−ゲル法、スリッ
プキャスティングとは異なり、濾過により成型体中の水
分をある程度除去するため、他の湿式成型法よりも乾燥
時間を短縮することが可能となった。さらに濾過による
水分除去は、乾燥中の割れを回避できるため、大形化も
可能である。A molded body formed by filtration molding has a significantly smaller amount of foaming after sintering than a molded body formed by dry molding using a mechanical press, etc., and provides glass with a uniform density even after sintering. Moreover, unlike the sol-gel method and slip casting, the filtration molding method of the present invention removes a certain amount of water in the molded product through filtration, making it possible to shorten the drying time compared to other wet molding methods. Ta. Furthermore, removal of water by filtration avoids cracking during drying, so it is possible to increase the size.
そのスラリーは、純水または純水とフッ化水素酸、フッ
化アンモニウム、酢酸、アンモニアもしくはアルコール
との混合液中にシリカ微粉末を分散させ作製する。アル
コールとしてはエチルアルコールが好ましい。これらの
溶媒によって二次粒子の構造が異なり、ひいては密度、
強度の違いとなるので、必要に応じて溶媒の混合割合を
変えれば良い。分散の方法は、超音波分散、ボールミル
分散等いかなる方法でも構わない。スラリー濃度は、濾
過が可能な粘性であればいかなる濃度でもよいが、濾過
中に微粉末のチクソトロープ効果によりゲル化しないよ
うな濃度であることが好ましい。The slurry is prepared by dispersing fine silica powder in pure water or a mixture of pure water and hydrofluoric acid, ammonium fluoride, acetic acid, ammonia, or alcohol. Ethyl alcohol is preferred as the alcohol. The structure of the secondary particles differs depending on these solvents, and the density and
Since this will result in a difference in strength, the mixing ratio of the solvents may be changed as necessary. The dispersion method may be any method such as ultrasonic dispersion or ball mill dispersion. The slurry concentration may be any concentration as long as it has a viscosity that allows filtration, but it is preferably a concentration that does not cause gelation due to the thixotropic effect of the fine powder during filtration.
前記スラリーの濾過は、吸引濾過、加圧濾過などいかな
る方法であってもよい。この濾過と同時に成型を行う。The slurry may be filtered by any method such as suction filtration or pressure filtration. Molding is performed simultaneously with this filtration.
その方法にはとくに限定はないが、例えば底面のない型
をフィルター上に置き、そこへスラリーを流し込み、濾
過と成型を同時に行うことなどがあげられる。濾過時間
はフィルター上の成型体が形状を保持できるまで、具体
的には、およそ表面の水分がなくなるまで行う。このよ
うにして成型体かえられる。There are no particular limitations on the method, but for example, a mold without a bottom may be placed on a filter, slurry may be poured into it, and filtration and molding may be performed at the same time. The filtration time is continued until the molded body on the filter can maintain its shape, specifically, until the moisture on the surface approximately disappears. The molded body can be changed in this way.
乾燥工程はデシケータ−中、乾燥機中いかなる方法でも
よいが、乾燥初期の割れを防止するために加湿器中で什
うことが好ましい。The drying process may be carried out in a desiccator or in a dryer, but preferably in a humidifier to prevent cracking in the early stages of drying.
次に焼結を行うが、それに先立ちあらかじめ成型体を1
450℃未満で塩素処理することが好ましい。Next, sintering is performed, but prior to that, the molded body is
Preferably, the chlorination is carried out at a temperature below 450°C.
これにより成型体の脱水、金属不純物の除去を行える。This allows dehydration of the molded body and removal of metal impurities.
焼結工程は成型体がガラス化する1450℃以上で行う
。ガラス化時に、雰囲気がヘリウムあるいは、ヘリウム
と塩素の混合ガス中であれば、どの様な焼結方法であっ
ても構わない。例えば、より残留気泡の少ないガラスを
得るために、焼結炉端よりシリカ粉末成型体を10 +
am / min以下の速度で挿入することにより成型
体末端よりガラス化させることが好ましい。The sintering step is performed at a temperature of 1450° C. or higher, at which point the molded body becomes vitrified. Any sintering method may be used as long as the atmosphere is helium or a mixed gas of helium and chlorine during vitrification. For example, in order to obtain glass with fewer residual bubbles, 10 +
It is preferable to vitrify the molded body from the end by inserting it at a speed of less than am/min.
最終工程のHP処理は、1650℃以上に温度を上昇さ
せることにより、粉末の焼結を完全に終了させ、ガラス
構造の再配列により均一でしかも完全に近いガラス構造
をもたせる。また同時に、50kgf/cm2以上の圧
力により脈理の除去と残留気泡の除去を可能とし、無脈
理な無気泡の高均質なシリカガラスの製造を可能とした
。また熱間等方圧プレスと比較して、HP処理は成型体
が変形しに<<、所定の形状に仕上げやすい、ガスを使
わないため、成型体に溶は込んだガスが再加熱で発泡す
る恐れがないといった利点がある。HP処理の雰囲気は
、アルゴンガス、窒素ガス、酸素とアルゴンの混合ガス
などいかなるものでもよいか、圧力の昇降は、試料温度
が1200℃以下で行うことが好ましい。また、試料で
ある焼結体はそのままでもよいが、焼結体の初期形状を
保たせることからも、モリブデン製金属箔または白金箔
等の金属箔で包むことが好ましい。In the final step of HP treatment, the temperature is raised to 1650° C. or higher to completely complete the sintering of the powder and rearrange the glass structure to provide a uniform and nearly perfect glass structure. At the same time, striae and residual air bubbles can be removed using a pressure of 50 kgf/cm2 or higher, making it possible to produce striae-free, bubble-free, highly homogeneous silica glass. In addition, compared to hot isostatic pressing, HP processing prevents the molded product from deforming, makes it easier to finish into the desired shape, and because no gas is used, the gas that has melted into the molded product foams when reheated. It has the advantage that there is no fear of The HP treatment atmosphere may be any atmosphere such as argon gas, nitrogen gas, or a mixed gas of oxygen and argon, and it is preferable that the pressure be raised and lowered at a sample temperature of 1200° C. or lower. Although the sintered body as a sample may be left as is, it is preferably wrapped in metal foil such as molybdenum metal foil or platinum foil in order to maintain the initial shape of the sintered body.
[実施例コ
本発明を更に詳細に説明するため、以下に実施例をあげ
るが、本発明はこれらに限定されるものではない。[Examples] In order to explain the present invention in more detail, Examples are given below, but the present invention is not limited thereto.
なお、以下に示す均質性の測定はガラス製造後#140
の平面研削機によって仕上げ、1150℃の大気中でア
ニールした後、干渉計法を用いて、632.8nmの波
長光により屈折率差を測定したものである。In addition, the homogeneity measurement shown below was made using #140 glass after glass production.
After finishing with a surface grinder and annealing in the atmosphere at 1150° C., the refractive index difference was measured using interferometer method with light having a wavelength of 632.8 nm.
[実施例1]
a)シリカ微粉末の作製
シリカ微粉末としては、四塩化ケイ素を酸水素炎により
分解し、平均粒径(−成粒径)50nm、表面積50m
2/gの粉末を作製した。[Example 1] a) Preparation of fine silica powder Silica fine powder was prepared by decomposing silicon tetrachloride with an oxyhydrogen flame and having an average particle size (-particle size) of 50 nm and a surface area of 50 m.
2/g powder was prepared.
b)シリカスラリーの作製
重量比10:1の割合で粉末と純水を混合し、超音波を
1.5時間かけ粉末を純水中に分散させ、10μmのメ
ツシュを通しメツシュパスしたものをスラリーとして使
用した。b) Preparation of silica slurry Mix powder and pure water at a weight ratio of 10:1, apply ultrasonic waves for 1.5 hours, disperse the powder in pure water, and pass through a 10 μm mesh to form a slurry. used.
C)成型体作製
90mmφの塩化ビニル製の型と1.0μmの孔径をも
つ濾紙を用い、吸引濾過法により前記スラリーを濾過、
成型した。濾過は表面の水分がなくなるまで行い、その
後成型体を湿度90%、温度60℃の恒温恒湿器の中で
一週間乾燥させた。C) Preparation of molded body Filter the slurry using a suction filtration method using a 90 mmφ vinyl chloride mold and a filter paper with a pore size of 1.0 μm.
Molded. Filtration was performed until the moisture on the surface disappeared, and then the molded body was dried for one week in a constant temperature and humidity chamber at a humidity of 90% and a temperature of 60°C.
得られた成型体は直径90mmφ、厚さ20mm密度0
.8g/cm’であった。The obtained molded body has a diameter of 90 mmφ, a thickness of 20 mm, and a density of 0.
.. It was 8 g/cm'.
d)焼結
焼結工程は、塩素処理、ガラス化の2工程に分けられる
。まず、700℃〜1000℃で塩素処理を行い、その
後ヘリウムガスで置換し、1300℃まで温度を上げ1
時間保持し、成型体を収縮させ、炉端まで移動させた。d) Sintering The sintering process is divided into two steps: chlorination and vitrification. First, chlorine treatment is performed at 700°C to 1000°C, then replaced with helium gas, and the temperature is raised to 1300°C.
The molded body was held for a period of time to shrink, and then moved to the hearth.
その後炉内温度を1500℃まで上昇させ、温度を保持
しながら成型体を10mm/minの速度で0.5時間
かけて炉内中心部まで挿入しガラス化させた。Thereafter, the temperature inside the furnace was raised to 1500° C., and while the temperature was maintained, the molded body was inserted into the furnace at a speed of 10 mm/min over 0.5 hours to vitrify it.
e)高温高圧処理
上記焼結体を、金属モリブデン箔で包み、ホットプレス
装置に装填した。なお黒鉛粉末を充填粉として用いた。e) High temperature and high pressure treatment The above sintered body was wrapped in metal molybdenum foil and loaded into a hot press device. Note that graphite powder was used as the filling powder.
温度は、1700℃まで上昇させ1時間保持し、115
0℃まで自然降温さ−せ1時間保持し、その後200℃
/hrで室温まで降下させた。一方圧力は、温度上昇時
に1000℃より上下の一軸方向から250 k g
f / c m 2の圧力で圧縮した。圧力は温度降下
時に1200℃で抜き、その後は大気圧とした。The temperature was raised to 1700°C and held for 1 hour, and then heated to 115°C.
Let the temperature drop naturally to 0℃ and hold for 1 hour, then 200℃
/hr to lower the temperature to room temperature. On the other hand, the pressure is 250 kg from uniaxial direction above and below 1000℃ when the temperature rises.
Compressed at a pressure of f / cm 2. The pressure was released at 1200° C. when the temperature was lowered, and thereafter the pressure was set to atmospheric pressure.
以上の工程より得られたシリカガラスの均一性の測定結
果を表1に示す。Table 1 shows the measurement results of the uniformity of the silica glass obtained through the above steps.
[実施例2コ a)シリカ微粉末の作製 テトラエトキシシラン、エタノール、純水。[Example 2 a) Preparation of fine silica powder Tetraethoxysilane, ethanol, pure water.
28%アンモニア水をそれぞれ重量比1:2:0.7:
0.2の割合で混合し、濾過、乾燥し、酸素気流中で8
00℃の焼成を行い、平均粒径(−炭粒子径)0.8μ
m2表面積5m2/gの粉末を得た。28% ammonia water in a weight ratio of 1:2:0.7:
Mix at a ratio of 0.2, filter, dry, and dry in an oxygen stream.
Calcined at 00℃, average particle size (-charcoal particle size) 0.8μ
A powder with a m2 surface area of 5 m2/g was obtained.
b)シリカスラリーの作製
重量比10:1の割合で粉末と純水を混合し、ナイロン
製ボールを用いてボールミル粉砕を1時間行い、粉末を
純水中に分散させた。10μmのメツシュを通し、メツ
シュバスしたものをスラリとして使用した。b) Preparation of Silica Slurry Powder and pure water were mixed at a weight ratio of 10:1, and ball milling was performed for 1 hour using nylon balls to disperse the powder in pure water. The slurry was passed through a 10 μm mesh and used as a mesh bath.
C)成型体作製
90mmφの塩化ビニル製の型と0.3μmの孔径をも
つ濾紙を用い、吸引濾過法により前記スラリーを濾過、
成型した。濾過は表面の水分がなくなるまで行い、その
後成型体を湿度90%、温度60℃の恒温恒湿器の中で
一週間乾燥させた後、冷間静水圧を0.5tかけた。得
られた成型体は直径90mmφ、厚さ20mm、密度0
.8g/cm3であったO
d)焼結
焼結工程は、塩素処理、ガラス化の2工程に分けられる
。まず、700℃〜1000℃で塩素処理を行い、その
後ヘリウムガスで置換し、炉内温度を1500℃まで上
昇させガラス化させた。C) Preparation of molded body Filter the slurry using a suction filtration method using a 90 mmφ vinyl chloride mold and a filter paper with a pore size of 0.3 μm.
Molded. Filtration was performed until the moisture on the surface disappeared, and then the molded product was dried for one week in a constant temperature and humidity chamber at a humidity of 90% and a temperature of 60° C., and then a cold hydrostatic pressure of 0.5 t was applied. The obtained molded body has a diameter of 90 mmφ, a thickness of 20 mm, and a density of 0.
.. 8 g/cm3 d) Sintering The sintering process is divided into two steps: chlorination and vitrification. First, chlorine treatment was performed at 700° C. to 1000° C., followed by replacement with helium gas, and the temperature inside the furnace was raised to 1500° C. to vitrify it.
e)高温高圧処理
上記焼結体を、金属モリブデン箔で包み、ホットプレス
装置に装填した。なお黒鉛粉末を充填物として用いた。e) High temperature and high pressure treatment The above sintered body was wrapped in metal molybdenum foil and loaded into a hot press device. Note that graphite powder was used as a filler.
温度は、1750℃まで上昇させ1時間保持した後、降
下させた。温度降下条件は、実施例1と同様である。一
方圧力は、温度上昇時に1000℃より上下の一軸方向
から200kgf/cm2の圧力で圧縮し、温度降下時
、1200℃で抜き、その後は大気圧とした。The temperature was raised to 1750°C, held for 1 hour, and then lowered. The temperature lowering conditions are the same as in Example 1. On the other hand, the pressure was compressed at 200 kgf/cm 2 from 1000° C. in uniaxial directions above and below when the temperature was rising, and was released at 1200° C. when the temperature was falling, and then the pressure was set to atmospheric pressure.
以上の工程より得られたシリカガラスの均一性の測定結
果を表1に示す。Table 1 shows the measurement results of the uniformity of the silica glass obtained through the above steps.
[実施例3コ a)シリカ微粉末の作製 実施例]の粉末を用いた。[Example 3 a) Preparation of fine silica powder The powder of [Example] was used.
b)シリカスラリーの作製
重量比5:1の割合で粉末と0.02Mのフッ化水素酸
を混合し、24時間攪拌し、粉末を純水中に分散させた
。10μmのメツシュを通し、メツシュバスしたものを
スラリーとして使用した。b) Preparation of silica slurry Powder and 0.02M hydrofluoric acid were mixed at a weight ratio of 5:1, stirred for 24 hours, and the powder was dispersed in pure water. The slurry was passed through a 10 μm mesh and used as a mesh bath.
C)成型体作製
実施例1と同様な方法で成型した。得られた成型体密度
は0.7g/cm3であった。C) Preparation of molded body It was molded in the same manner as in Example 1. The density of the obtained molded body was 0.7 g/cm3.
d)焼結
成型体移動速度を5mm/minとし、1時間かけて炉
内中心部まで挿入した以外は実施例1と同様にして焼結
した。d) Sintering The mold was sintered in the same manner as in Example 1, except that the moving speed of the mold was 5 mm/min and the mold was inserted to the center of the furnace over a period of one hour.
e)高温高圧処理
上記焼結体を白金箔で包み、ホットプレス装置に装填し
た。なお黒鉛粉末を充填物として用いた。e) High temperature and high pressure treatment The above sintered body was wrapped in platinum foil and loaded into a hot press device. Note that graphite powder was used as a filler.
温度は1650℃まで上昇させ1時間保持し、自然降温
させた。一方圧力は、温度上昇時に1000℃より上下
の一軸方向より250kgf/cm2の圧力で圧縮し、
温度降下時、1200℃で抜き、その後は大気圧とした
。温度降下条件は、実施例1と同様に行った。The temperature was raised to 1650°C, held for 1 hour, and allowed to cool down naturally. On the other hand, the pressure is compressed at a pressure of 250 kgf/cm2 from uniaxial direction above and below 1000℃ when the temperature rises,
When the temperature decreased, the pressure was removed at 1200°C, and then the pressure was set to atmospheric pressure. The temperature lowering conditions were the same as in Example 1.
以上の工程より得られたシリカガラスの均一性の測定結
果を表1に示す。Table 1 shows the measurement results of the uniformity of the silica glass obtained through the above steps.
[比較例コ
実施例2の粉末を用い、冷間静水圧プレスにより成型し
、実施例1の条件でホットプレス処理し、直径50■、
厚さ20fflI11のガラスを得た。[Comparative Example] Using the powder of Example 2, it was molded by cold isostatic pressing, hot pressed under the conditions of Example 1, and the diameter was 50 cm.
A glass having a thickness of 20 fflI11 was obtained.
以上の工程より得られたシリカガラスの均一性の測定結
果を表1に示す。Table 1 shows the measurement results of the uniformity of the silica glass obtained through the above steps.
表 表1から明らかなように、 本発明法により製造 されたガラスは、 光学的均質性が格段に優れたち のであった。table As is clear from Table 1, Manufactured by the method of the present invention The glass that has been Exceptionally superior optical homogeneity It was.
Claims (1)
、フッ化アンモニウム、アンモニア、アルコールもしく
は酢酸との混合溶液に分散させスラリーを作製し、その
スラリーの濾過、乾燥によりシリカ微粉末を成型させる
工程、 (b)1450℃以上の温度のヘリウムガスまたはヘリ
ウムと塩素の混合ガス雰囲気中に上記成型体を投入し、
焼結させる工程、 及び (c)1650℃以上の温度で、上記焼結体に50kg
f/cm^2以上の圧力を一軸方向から与えるホットプ
レス処理を行う工程 からなることを特徴とする高均質シリカガラスの製造方
法。[Claims] In a method for producing silica glass, (a) silica fine powder is dispersed in pure water or a mixed solution of pure water and hydrofluoric acid, ammonium fluoride, ammonia, alcohol, or acetic acid to prepare a slurry. and molding fine silica powder by filtering and drying the slurry, (b) introducing the molded body into an atmosphere of helium gas or a mixed gas of helium and chlorine at a temperature of 1450 ° C. or higher,
sintering step, and (c) applying 50 kg to the sintered body at a temperature of 1650°C or higher;
A method for producing highly homogeneous silica glass, comprising a step of hot pressing in which a pressure of f/cm^2 or more is applied from one axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10180490A JP3203644B2 (en) | 1990-04-19 | 1990-04-19 | Method for producing highly homogeneous silica glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10180490A JP3203644B2 (en) | 1990-04-19 | 1990-04-19 | Method for producing highly homogeneous silica glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH042625A true JPH042625A (en) | 1992-01-07 |
JP3203644B2 JP3203644B2 (en) | 2001-08-27 |
Family
ID=14310327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10180490A Expired - Fee Related JP3203644B2 (en) | 1990-04-19 | 1990-04-19 | Method for producing highly homogeneous silica glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3203644B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002053338A (en) * | 2000-08-08 | 2002-02-19 | Sumitomo Metal Ind Ltd | Quartz glass for uv ray and its manufacturing method |
JP2004131378A (en) * | 2002-09-21 | 2004-04-30 | Heraeus Quarzglas Gmbh & Co Kg | Process for manufacturing opaque quartz glass material |
JP2005213118A (en) * | 2004-01-30 | 2005-08-11 | Tosoh Corp | Amorphous silica shaped body and its manufacturing method |
JP2008156224A (en) * | 2006-12-21 | 2008-07-10 | Schott Ag | Quartz glass body, and method and casting mold for manufacturing quartz glass body |
US10017413B2 (en) | 2014-11-26 | 2018-07-10 | Corning Incorporated | Doped silica-titania glass having low expansivity and methods of making the same |
JP2019172562A (en) * | 2018-03-29 | 2019-10-10 | パナソニック デバイスSunx株式会社 | Manufacturing method of quartz glass |
-
1990
- 1990-04-19 JP JP10180490A patent/JP3203644B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002053338A (en) * | 2000-08-08 | 2002-02-19 | Sumitomo Metal Ind Ltd | Quartz glass for uv ray and its manufacturing method |
JP2004131378A (en) * | 2002-09-21 | 2004-04-30 | Heraeus Quarzglas Gmbh & Co Kg | Process for manufacturing opaque quartz glass material |
JP2005213118A (en) * | 2004-01-30 | 2005-08-11 | Tosoh Corp | Amorphous silica shaped body and its manufacturing method |
JP4504036B2 (en) * | 2004-01-30 | 2010-07-14 | 東ソー株式会社 | Amorphous silica molded body and method for producing the same |
JP2008156224A (en) * | 2006-12-21 | 2008-07-10 | Schott Ag | Quartz glass body, and method and casting mold for manufacturing quartz glass body |
US10017413B2 (en) | 2014-11-26 | 2018-07-10 | Corning Incorporated | Doped silica-titania glass having low expansivity and methods of making the same |
JP2019172562A (en) * | 2018-03-29 | 2019-10-10 | パナソニック デバイスSunx株式会社 | Manufacturing method of quartz glass |
Also Published As
Publication number | Publication date |
---|---|
JP3203644B2 (en) | 2001-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2663275B2 (en) | Method for producing fused silica glass article | |
KR940005065B1 (en) | Silica glass base material | |
JPH0733258B2 (en) | Method for producing article containing high silica glass body | |
JP2001072427A (en) | Sintered material | |
US4961767A (en) | Method for producing ultra-high purity, optical quality, glass articles | |
KR20070110334A (en) | Method for producing ultra-high purity, optical quality, glass articles | |
US20040045318A1 (en) | Method of making silica-titania extreme ultraviolet elements | |
JP4175860B2 (en) | Method for producing molten glass products | |
EP1700829A1 (en) | Process for the production of glass-monoliths by means of the sol-gel process | |
JPH042625A (en) | Production of highly homogeneous silica glass | |
US6519976B2 (en) | Method for production of silica glass using sol-gel process | |
US5938805A (en) | Silica glass monolith fabricating method using sol-gel process | |
JPH04219333A (en) | Production of quartz glass | |
JPH11314925A (en) | Production of silica glass by sol-gel process | |
JP3406297B2 (en) | Method for producing high purity silica glass using sol-gel method | |
KR950008579B1 (en) | Fabrication of high-silica glass article | |
JP3158523B2 (en) | Method for producing oxynitride glass | |
KR100722377B1 (en) | A method of preparing transparent silica glass | |
JPH0764574B2 (en) | Method for manufacturing rod-shaped quartz glass preform | |
JP2611684B2 (en) | Manufacturing method of quartz glass | |
KR100258217B1 (en) | Fabricaion method of silica glass by sol-gel process | |
KR100824986B1 (en) | A composition for transparent silica glass and a method of preparing silica glass using the same | |
KR20000060200A (en) | Manufacturing method of silica glass for sol-gel process | |
KR100824985B1 (en) | A composition for transparent silica glass and a method of preparing silica glass using the same | |
KR20040056547A (en) | A method of preparing transparent silica glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |