JPH04257224A - Forming method for insulating film - Google Patents
Forming method for insulating filmInfo
- Publication number
- JPH04257224A JPH04257224A JP1813791A JP1813791A JPH04257224A JP H04257224 A JPH04257224 A JP H04257224A JP 1813791 A JP1813791 A JP 1813791A JP 1813791 A JP1813791 A JP 1813791A JP H04257224 A JPH04257224 A JP H04257224A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- microwave
- substrate
- film
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 230000005684 electric field Effects 0.000 claims abstract description 19
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims abstract description 17
- 230000005540 biological transmission Effects 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 20
- 229910052681 coesite Inorganic materials 0.000 description 12
- 229910052906 cristobalite Inorganic materials 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 12
- 235000012239 silicon dioxide Nutrition 0.000 description 12
- 229910052682 stishovite Inorganic materials 0.000 description 12
- 229910052905 tridymite Inorganic materials 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005513 bias potential Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 230000005596 ionic collisions Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、絶縁膜を備えた半導
体装置の製造方法に関し、特に、ECR (電子サイク
ロトロン) プラズマCVD法により半導体装置基板上
の段差部、例えば電極や配線等の上に絶縁膜を形成する
技術に関するものである。ECRプラズマCVD法が適
用されるECRプラズマCVD装置を、この発明では、
軸線上にマイクロ波透過窓を備え導入されたガスをプラ
ズマ化する軸対称のプラズマ生成室と、プラズマ生成室
を同軸に囲んでプラズマ生成室内にマイクロ波との電子
サイクロトロン共鳴磁場領域面を形成するコイルと、プ
ラズマ生成室のマイクロ波透過窓と対面する側に設けら
れたプラズマ引出し窓を介してプラズマ生成室と連通し
内部に被成膜基板が配される反応室とを備えた装置とし
ている。[Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device equipped with an insulating film, and in particular, to a method for manufacturing a semiconductor device equipped with an insulating film, and in particular, a method for manufacturing a semiconductor device equipped with an insulating film. The present invention relates to a technology for forming an insulating film. In this invention, an ECR plasma CVD apparatus to which the ECR plasma CVD method is applied,
An axially symmetrical plasma generation chamber with a microwave transmission window on the axis to turn the introduced gas into plasma, and an electron cyclotron resonance magnetic field area surface with the microwave that surrounds the plasma generation chamber on the same axis. The apparatus includes a coil and a reaction chamber that communicates with the plasma generation chamber through a plasma extraction window provided on the side facing the microwave transmission window of the plasma generation chamber and in which a substrate to be deposited is disposed. .
【0002】0002
【従来の技術】半導体集積回路の層間絶縁膜やパッシベ
ーション膜 (表面保護膜) としては、通常、絶縁膜
の原料となるガス分子の励起に熱エネルギーを用いる熱
CVD法や、高周波電圧印加によるプラズマ放電により
ガス分子を励起する高周波プラズマCVD法により形成
された酸化膜, 窒化膜等が用いられている。しかし、
近年、半導体装置の集積化および高密度化が進み、配線
間隔や配線幅等の構造寸法がサブミクロン領域に移行す
るのに伴って絶縁膜の高品質化が要求されるようになり
、上記の成膜方法以外の手法が種々試みられている。そ
のうちの1つとして、低温成膜が可能で、耐酸性, 緻
密性に優れた絶縁膜を形成できるECRプラズマCVD
法が開発されている。[Prior Art] Interlayer insulating films and passivation films (surface protective films) for semiconductor integrated circuits are usually formed using thermal CVD methods that use thermal energy to excite gas molecules, which are the raw materials for insulating films, or plasma using high-frequency voltage application. Oxide films, nitride films, etc. formed by the high-frequency plasma CVD method, in which gas molecules are excited by electric discharge, are used. but,
In recent years, as semiconductor devices have become more integrated and denser, and structural dimensions such as interconnect spacing and interconnect width have moved to the submicron range, higher quality insulating films have been required. Various methods other than film formation methods have been attempted. One of these is ECR plasma CVD, which can be formed at low temperatures and can form insulating films with excellent acid resistance and density.
laws are being developed.
【0003】このECRプラズマCVD法は、所定強度
の磁場中にガスを導入し、ここに磁場強度に対応した周
波数のマイクロ波を入射することによって、マイクロ波
のエネルギーを偶存電子に共鳴吸収させ、エネルギーを
得た偶存電子の衝突によってガス分子が電離することに
より増殖する電子にもエネルギーを吸収させることによ
り高密度に生成されたプラズマを、反応ガスとともに基
板上に導き成膜するものである。[0003] This ECR plasma CVD method introduces gas into a magnetic field of a predetermined strength and injects microwaves with a frequency corresponding to the magnetic field strength, thereby causing the microwave energy to be resonantly absorbed by incidental electrons. In this method, gas molecules are ionized by the collision of energy-gathered incidental electrons, and the electrons that proliferate also absorb energy. This generates a high-density plasma, which is then guided onto the substrate along with the reactive gas to form a film. be.
【0004】ここで、基板上の段差 (例えば、基板上
に形成された電極や配線等による凹凸面) の上に絶縁
膜を形成する場合には、絶縁特性を向上させ、あるいは
、多層構造を形成可能とするためには、平坦化処理を施
す必要がある。この平坦化処理を特別に必要とすること
なく平坦化が可能であり、かつ、基板上の段差被覆が良
好である絶縁膜の形成方法として、基板に高周波バイア
スを印加し、基板の自己バイアス効果によって基板表面
に負電位を生じさせ、エッチングとデポジションとを同
時に行うバイアススパッタリング法が知られている。こ
の高周波バイアスの印加は、ECRプラズマCVD法に
おいても施すことが可能であり、これにより、絶縁膜の
段差被覆性の改善と、膜質の改善とが期待されている。[0004] When forming an insulating film on a level difference on a substrate (for example, an uneven surface due to electrodes, wiring, etc. formed on a substrate), it is necessary to improve the insulation properties or to form a multilayer structure. In order to enable formation, it is necessary to perform a planarization process. As a method for forming an insulating film that can be flattened without requiring special planarization treatment and that provides good step coverage on the substrate, a high-frequency bias is applied to the substrate, and the self-bias effect of the substrate can be applied. A bias sputtering method is known in which etching and deposition are performed simultaneously by generating a negative potential on the substrate surface. Application of this high frequency bias can also be applied in the ECR plasma CVD method, and is expected to improve the step coverage of the insulating film and the film quality.
【0005】このECRプラズマCVD法を適用する装
置として、本発明が対象とするECRプラズマCVD装
置の構造例を図5に示す。図5の装置による絶縁膜の形
成は、絶縁膜が例えばSiO2 膜である場合、軸対称
に形成されたプラズマ生成室5を同軸に囲むコイル4に
より、プラズマ生成室5内にマイクロ波周波数との電子
サイクロトロン共鳴磁場領域面 (以下ECR領域面も
しくはECR面と略記する)を形成した後、プラズマ生
成室5内に第1ガス導入系3からO2 ガスを導入する
とともに、図示されないマイクロ波源で発振されたマイ
クロ波を導波管1を通し、マイクロ波透過窓2を透過さ
せてプラズマ生成室5内へ導入することにより、ECR
領域面近傍でO2 ガスを電離度高く電離してO2 ガ
スプラズマを生成し、このプラズマをコイル4が形成す
る発散磁界に沿って反応室6内へ導くとともに、第2ガ
ス導入系7から反応ガスとしてSiH4 ガスを反応室
6内へ導入してO2ガスプラズマにより分解,活性化し
、基板上にSiO2 分子を堆積させることにより行わ
れる。FIG. 5 shows an example of the structure of an ECR plasma CVD apparatus to which the present invention is applied, as an apparatus to which this ECR plasma CVD method is applied. When the insulating film is, for example, an SiO2 film, the insulating film is formed using the apparatus shown in FIG. After forming an electron cyclotron resonance magnetic field region surface (hereinafter abbreviated as ECR region surface or ECR surface), O2 gas is introduced into the plasma generation chamber 5 from the first gas introduction system 3, and is oscillated by a microwave source (not shown). ECR is achieved by introducing the generated microwaves through the waveguide 1, through the microwave transmission window 2, and into the plasma generation chamber 5.
O2 gas is highly ionized near the region surface to generate O2 gas plasma, and this plasma is guided into the reaction chamber 6 along the divergent magnetic field formed by the coil 4, and the reaction gas is introduced from the second gas introduction system 7. This is carried out by introducing SiH4 gas into the reaction chamber 6, decomposing and activating it by O2 gas plasma, and depositing SiO2 molecules on the substrate.
【0006】[0006]
【発明が解決しようとする課題】ECRプラズマCVD
法により形成された絶縁膜は、成膜時に基板に到達する
プラズマの密度やエネルギー等に偏りが存在することか
ら、この方法で形成した絶縁膜には、膜厚および膜質の
均一性が悪いという欠点があり、半導体装置の高集積化
に伴う微細構造への適応性や絶縁特性の安定性に欠ける
という問題点と配線等の段差部の被覆性にも欠けるとい
う問題点を有していた。[Problem to be solved by the invention] ECR plasma CVD
Insulating films formed by this method are said to have poor uniformity in film thickness and film quality because there is a bias in the density and energy of the plasma that reaches the substrate during film formation. It has disadvantages, such as a lack of adaptability to fine structures and stability of insulation properties that accompany the increase in the degree of integration of semiconductor devices, and a problem of a lack of coverage of stepped portions such as wiring.
【0007】この発明の目的は、ECRプラズマCVD
装置の実質的な構造変更やコスト上昇を伴うことなく、
膜厚と膜質とが均一な絶縁膜を形成可能な絶縁膜の形成
方法を提供することである。[0007] The object of the present invention is to
without any substantial structural changes to the equipment or increased costs.
An object of the present invention is to provide a method for forming an insulating film that can form an insulating film with uniform thickness and quality.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、この発明においては、軸線上にマイクロ波透過窓を
備え導入されたガスをプラズマ化する軸対称のプラズマ
生成室と、プラズマ生成室を同軸に囲んでプラズマ生成
室内にマイクロ波との電子サイクロトロン共鳴磁場領域
面を形成するコイルと、プラズマ生成室のマイクロ波透
過窓と対面する側に設けられたプラズマ引出し窓を介し
てプラズマ生成室と連通し内部に被成膜基板が配される
反応室とを備えたECRプラズマCVD装置を用いて被
成膜基板に絶縁膜を形成する際の絶縁膜形成方法として
、コイルの幾何学的中心が、マイクロ波透過窓のプラズ
マ生成室内部空間側の面のプラズマ生成室内部空間と反
対側に位置するようにコイルを配置するとともに、コイ
ルによる電子サイクロトロン共鳴磁場領域面を、マイク
ロ波透過窓を透過したマイクロ波の電界強度の波高値位
置に形成し、かつ被成膜基板に高周波バイアスを印加し
て絶縁膜を形成する絶縁膜形成方法とするものとする。
ここで、電子サイクロトロン共鳴磁場領域面が形成され
るマイクロ波の電界強度波高値の位置を、マイクロ波透
過窓を透過したマイクロ波の最初の波高値位置とすれば
さらに好適である。また、この方法により絶縁膜を形成
する際の成膜条件を、被成膜基板の温度を室温〜150
℃, ガス圧力を1×10−4〜5×10−3tor
r, プラズマ生成室に入射されるマイクロ波電力を2
50 〜450 W, 被成膜基板に印加する高周波バ
イアス電力を600 〜1000Wに設定して絶縁膜を
形成すれば、この方法の目的を効果的に実現させること
ができる。[Means for Solving the Problems] In order to solve the above problems, the present invention provides an axially symmetrical plasma generation chamber that has a microwave transmission window on the axis and converts introduced gas into plasma; Coaxially surrounds the plasma generation chamber to form an electron cyclotron resonance magnetic field area with microwaves in the plasma generation chamber, and a plasma extraction window provided on the side facing the microwave transmission window of the plasma generation chamber. As an insulating film forming method when forming an insulating film on a deposition target substrate using an ECR plasma CVD apparatus equipped with a reaction chamber in which the deposition target substrate is placed in communication with the coil, the geometric center of the coil is The coil is placed so that the surface of the microwave transmission window facing the plasma generation chamber interior space is located on the opposite side of the plasma generation chamber interior space, and the electron cyclotron resonance magnetic field area surface due to the coil is The insulating film forming method is such that the insulating film is formed at the peak value of the electric field strength of the transmitted microwave, and a high frequency bias is applied to the substrate on which the film is formed. Here, it is more preferable to set the position of the peak value of the electric field strength of the microwave where the electron cyclotron resonance magnetic field region surface is formed to the position of the first peak value of the microwave transmitted through the microwave transmission window. In addition, the film forming conditions when forming an insulating film by this method are as follows: The temperature of the film-forming substrate is from room temperature to
°C, gas pressure 1 x 10-4 to 5 x 10-3 tor
r, the microwave power incident on the plasma generation chamber is 2
The purpose of this method can be effectively achieved by forming an insulating film by setting the high frequency bias power applied to the substrate to be 50 to 450 W and 600 to 1000 W.
【0009】[0009]
【作用】プラズマ生成室内に発生したプラズマは、軸対
称なプラズマ生成室を同軸に囲むコイルが形成する発散
磁界の磁界強度勾配により、磁力線に沿って基板上へと
流れ、基板中央部で厚く周縁側で薄くなる膜厚分布を形
成しようとする。一方、基板には高周波バイアスが印加
され、基板表面に負のバイアス電位が生じており、この
電位による電界は反応室の周壁へ向かうから、電界強度
は基板の中央部より周縁側で大きくなり、基板へ向かう
プラズマ中のイオンを周縁側でより強く吸引しようとす
る。これにより、基板表面には膜厚のより均一な絶縁膜
が形成されるとともに、基板表面の負電位によりイオン
が加速されるので、イオンの衝突により、成膜された膜
をスパッタリングし、同時に成膜することにより緻密な
膜が形成されると考えられる。[Operation] The plasma generated in the plasma generation chamber flows along the magnetic lines of force onto the substrate due to the magnetic field strength gradient of the diverging magnetic field formed by the coil coaxially surrounding the axially symmetrical plasma generation chamber. An attempt is made to form a film thickness distribution that becomes thinner on the edge side. On the other hand, a high frequency bias is applied to the substrate, and a negative bias potential is generated on the substrate surface, and the electric field due to this potential is directed toward the peripheral wall of the reaction chamber, so the electric field strength is larger at the periphery than at the center of the substrate. Attempts are made to more strongly attract ions in the plasma toward the substrate on the peripheral edge side. As a result, an insulating film with a more uniform thickness is formed on the substrate surface, and since ions are accelerated by the negative potential on the substrate surface, the deposited film is sputtered by the ion collision, and the deposited film is sputtered at the same time. It is thought that a dense film is formed by forming a film.
【0010】また、コイルによるECR領域面を、マイ
クロ波を透過したマイクロ波の電界強度の波高値位置に
形成することにより、ガス分子を電離する電子に吸収さ
せるマイクロ波のエネルギーが大きくなり、この領域面
近傍で高密度のプラズマが生成され、また、マイクロ波
の波高値近傍では、波高値に近い電界領域の軸方向の幅
が広いことから、ECR領域面が多少湾曲している場合
にも、ECR領域面はこの幅内に存在し、プラズマ生成
室の半径方向にプラズマが均一に形成され、高周波バイ
アスの印加とあいまって、基板に到達するプラズマ密度
を基板の半径方向に均一化することができる。また、コ
イルの幾何学的中心がマイクロ波透過窓のプラズマ生成
室内部空間側の面よりプラズマ生成室内部空間と反対側
にあるため、コイルが形成する磁界は、プラズマ生成室
内のいずれの位置でもプラズマ引出し窓方向へ発散して
おり、プラズマ生成室内のプラズマがマイクロ波透過窓
へ向かうことはなく、マイクロ波透過窓の破損が防止さ
れ、安定した装置運転が可能になる。[0010] Furthermore, by forming the ECR region surface of the coil at the peak value of the electric field strength of the microwave that has passed through the microwave, the energy of the microwave that is absorbed by the electrons that ionize gas molecules is increased, and this High-density plasma is generated near the region surface, and near the wave height of the microwave, the axial width of the electric field region near the wave height is wide, so even if the ECR region surface is somewhat curved, , the ECR region surface exists within this width, plasma is uniformly formed in the radial direction of the plasma generation chamber, and together with the application of a high frequency bias, the plasma density reaching the substrate is made uniform in the radial direction of the substrate. Can be done. In addition, since the geometric center of the coil is located on the opposite side of the plasma generation chamber interior space from the surface of the microwave transmission window on the plasma generation chamber interior space side, the magnetic field formed by the coil can be applied at any position within the plasma generation chamber. The plasma in the plasma generation chamber is dispersed toward the plasma extraction window, and the plasma in the plasma generation chamber does not go toward the microwave transmission window. This prevents the microwave transmission window from being damaged and enables stable operation of the device.
【0011】以上により、基板上に形成される絶縁膜の
膜厚および膜質の面内均一性が向上する。高周波バイア
スを制御することにより、電極や配線等の段差被覆性や
平坦度の向上も可能になる。なお、ECR領域面を、マ
イクロ波透過窓を透過したマイクロ波の電界強度の最初
の波高値位置に形成する場合の作用、ならびに、基板温
度, ガス圧力などの成膜条件を上述のように設定する
場合の作用については、上記絶縁膜形成方法が適用され
るECRプラズマCVD装置の一実施例による構造と合
わせ、実施例の項で説明する。As described above, the in-plane uniformity of the thickness and quality of the insulating film formed on the substrate is improved. By controlling the high frequency bias, it is also possible to improve the step coverage and flatness of electrodes, wiring, etc. Note that the effect of forming the ECR region surface at the position of the first wave peak value of the electric field strength of the microwave transmitted through the microwave transmission window, and the film formation conditions such as substrate temperature and gas pressure are set as described above. The effect in this case will be explained in the Example section together with the structure of an example of an ECR plasma CVD apparatus to which the above insulating film forming method is applied.
【0012】0012
【実施例】まず、図1に、本発明による絶縁膜形成方法
を適用するECRプラズマCVD装置構造の一実施例を
示す。図において、図5と同一の部材には同一符号が付
されている。この装置が図5の装置と異なる所は、図2
に詳細を示すように、コイル4の幾何学的中心が、マイ
クロ波透過窓2のプラズマ生成室内部空間側の面のプラ
ズマ生成室内部空間と反対側へ十分離れた位置に位置す
るように、かつコイルの下端面が、マイクロ波透過窓2
を透過したマイクロ波の電界強度の最初の波高値位置近
傍に位置するようにコイルが配置され、かつ基板9が載
置される基板台10に高周波電源11が接続されている
点である。[Embodiment] First, FIG. 1 shows an embodiment of the structure of an ECR plasma CVD apparatus to which the insulating film forming method according to the present invention is applied. In the figure, the same members as in FIG. 5 are given the same reference numerals. The difference between this device and the device in FIG. 5 is shown in FIG.
As shown in detail in , the geometric center of the coil 4 is located at a position sufficiently far away from the plasma generation chamber interior space side of the surface of the microwave transmission window 2 on the plasma generation chamber interior space side. and the lower end surface of the coil is the microwave transmitting window 2
The coil is arranged so as to be located near the first peak value of the electric field strength of the microwave transmitted through the microwave, and the high frequency power source 11 is connected to the substrate table 10 on which the substrate 9 is placed.
【0013】装置をこのように形成し、コイル4に流す
電流を調整して、ECR領域面を前記マイクロ波の電界
強度の最初の波高値位置であるコイル下端面近傍に形成
すると、ECR領域面を比較的平坦な面に形成すること
ができ、従って、マイクロ波電界強度の波高値近傍領域
の軸方向幅内にECR領域面を存在させることができる
。また、マイクロ波の電界強度波高値は、プラズマ生成
室内で一旦プラズマが形成されると、マイクロ波の進行
方向に減衰するから、本実施例のように、マイクロ波透
過窓を透過したマイクロ波の電界強度が最初に波高値に
達する位置にECR領域面を形成するのが、成膜速度を
高めるためにも有効である。When the device is formed in this way and the current flowing through the coil 4 is adjusted to form the ECR region surface near the lower end surface of the coil, which is the position of the first peak value of the electric field strength of the microwave, the ECR region surface can be formed into a relatively flat surface, and therefore, the ECR region surface can be made to exist within the axial width of the region near the peak value of the microwave electric field strength. Furthermore, once plasma is formed in the plasma generation chamber, the peak value of the electric field strength of the microwave is attenuated in the direction of propagation of the microwave. Forming the ECR region surface at a position where the electric field strength first reaches its peak value is also effective for increasing the film formation rate.
【0014】そこで、図1に示すECRプラズマCVD
装置を用いてSiO2 膜を形成する場合の成膜条件を
表1のように設定したときのSiO2 膜の諸特性を以
下に説明する。なお、この成膜条件は、従来の通常の成
膜条件と比べ、プラズマ生成室内に投入されるマイクロ
波電力よりも基板に印加される高周波バイアス電力 (
RF電力) を大きくしている点が特徴である。すなわ
ち、この成膜条件では、マイクロ波電力と高周波バイア
ス電力との差異を、それぞれパルス状に印加される電力
のパルス幅とパルス周期との比、すなわちデューティの
差によって生じさせており、高周波バイアス電力のデュ
ーティを大きくすることにより、緻密な膜を形成するこ
とができる。
また、絶縁膜がSiN膜である場合には、SiH4 ガ
スに対するN2ガスの流量比をこの表のガス流量比と変
えて絶縁膜を形成する。Therefore, ECR plasma CVD shown in FIG.
Various characteristics of the SiO2 film will be described below when the film forming conditions for forming the SiO2 film using the apparatus are set as shown in Table 1. Note that, compared to conventional normal film forming conditions, this film forming condition requires less high frequency bias power applied to the substrate than microwave power input into the plasma generation chamber (
It is characterized by a large RF power. In other words, under these film-forming conditions, the difference between microwave power and high-frequency bias power is caused by the ratio of the pulse width and pulse period of the power applied in a pulsed manner, that is, the difference in duty. By increasing the duty of electric power, a dense film can be formed. Further, when the insulating film is a SiN film, the insulating film is formed by changing the flow rate ratio of N2 gas to SiH4 gas to the gas flow rate ratio shown in this table.
【0015】[0015]
【表1】[Table 1]
【0016】膜厚分布を示す図3に見られるように、従
来の発散磁場により形成されたSiO2 膜の膜厚は、
基板の半径方向外側に向かって薄くなっている。これは
、プラズマ生成室3内で発生するプラズマ密度の偏りを
反映していると考えられるが、本実施例により形成され
たSiO2 膜においては、基板外周縁に到るまで均一
な膜厚を有している。基板8に高周波バイアスを印加す
ることにより、プラズマ密度が均一化し、また、スパッ
タリング効果により平坦化され、従来よりも凹凸が緩和
されることによるものと思われる。As seen in FIG. 3, which shows the film thickness distribution, the film thickness of the SiO2 film formed by the conventional divergent magnetic field is
It becomes thinner toward the outside in the radial direction of the substrate. This is thought to reflect the bias in plasma density generated within the plasma generation chamber 3, but the SiO2 film formed in this example has a uniform film thickness up to the outer periphery of the substrate. are doing. This seems to be due to the fact that by applying a high frequency bias to the substrate 8, the plasma density becomes uniform, and the sputtering effect flattens the substrate 8, making the unevenness more relaxed than before.
【0017】図4は、SiO2 膜をBHF (バッフ
ァ弗酸, 50%弗酸を水で希釈した溶液) にてエッ
チングしたときのエッチング速度の分布を示したもので
ある。本実施例の成膜条件により形成されたSiO2
膜のエッチング速度の面内均一性は、従来の発散磁場で
形成した場合に較べて極めて優れている。また、全面的
に、従来よりエッチング速度が遅くなっており、全体と
しても膜質が向上している。これは、本実施例の成膜条
件の高周波バイアス印加によりプラズマ中のイオンが基
板上に衝突することにより、従来より緻密な膜が形成さ
れることによるものと考えられる。FIG. 4 shows the etching rate distribution when a SiO2 film is etched with BHF (buffered hydrofluoric acid, a solution of 50% hydrofluoric acid diluted with water). SiO2 formed under the film forming conditions of this example
The in-plane uniformity of the etching rate of the film is extremely superior to that of the conventional film formed using a divergent magnetic field. In addition, the etching rate is slower across the board than in the past, and the film quality is improved overall. This is thought to be due to the fact that ions in the plasma collide with the substrate due to the high frequency bias application under the film forming conditions of this example, resulting in the formation of a denser film than in the past.
【0018】以上、説明したように、膜厚と膜質双方の
面内均一性を向上させることができ、また、膜質自体も
従来よりも向上させることができた。As explained above, it was possible to improve the in-plane uniformity of both the film thickness and film quality, and the film quality itself was also able to be improved more than ever.
【0019】[0019]
【発明の効果】本発明においては、ECRプラズマCV
D法による絶縁膜の形成方法を上述のような方法とした
ので、以下に記載する効果が奏せられる。Effects of the Invention In the present invention, ECR plasma CV
Since the method for forming an insulating film by method D is as described above, the following effects can be achieved.
【0020】請求項1の方法では、プラズマ生成室内で
ECR領域面の位置とマイクロ波電界強度の波高値位置
とが一致し、かつ、マイクロ波電界強度の波高値近傍領
域の軸方向幅が広くECR領域面に多少の湾曲があって
もECR領域面がこの幅内に存在するようになるため、
高密度プラズマが半径方向に均一に形成され、このプラ
ズマが発散磁界と基板に印加された高周波バイアスによ
る基板表面の負のバイアス電位とにより、均一な密度で
基板に到達するため、膜厚,膜質の均一性が向上すると
ともに、基板表面の負のバイアス電位によるイオン衝撃
効果により膜質自体も向上する。In the method of claim 1, the position of the ECR region surface and the peak value position of the microwave electric field strength coincide with each other in the plasma generation chamber, and the axial width of the region near the peak value of the microwave electric field strength is wide. Even if the ECR area surface has some curvature, the ECR area surface will exist within this width, so
High-density plasma is formed uniformly in the radial direction, and this plasma reaches the substrate at a uniform density due to the divergent magnetic field and the negative bias potential on the substrate surface due to the high-frequency bias applied to the substrate. In addition to improving the uniformity of the film, the film quality itself also improves due to the ion bombardment effect caused by the negative bias potential on the substrate surface.
【0021】請求項2の方法では、ECR領域面が、マ
イクロ波電界強度の波高値のうち、マイクロ波透過窓に
最も近い最大波高値位置に形成されるため、生成される
プラズマの密度が最大となり、成膜速度がさらに向上す
る。In the method of claim 2, since the ECR region surface is formed at the position of the maximum wave peak value of the microwave electric field strength that is closest to the microwave transmission window, the density of the generated plasma is maximized. Therefore, the film formation rate is further improved.
【0022】請求項3の方法では、プラズマ生成室に投
入されるマイクロ波電力が小さく、基板に印加される高
周波バイアス電力が大きいため、この設定範囲内で両電
力を調整することにより、膜厚と膜質との半径方向の傾
きを、傾きを無くする方向に制御しつつ膜質の向上を図
ることが可能になる。In the method of claim 3, since the microwave power input to the plasma generation chamber is small and the high frequency bias power applied to the substrate is large, the film thickness can be adjusted by adjusting both powers within this setting range. It becomes possible to improve the film quality while controlling the radial inclination between the film and the film quality in a direction that eliminates the inclination.
【図1】本発明による絶縁膜形成方法を適用するECR
プラズマCVD装置構造の一実施例を示す縦断面図[Fig. 1] ECR applying the insulating film forming method according to the present invention
A vertical cross-sectional view showing an example of a plasma CVD device structure
【図
2】本発明による絶縁膜形成方法を示す説明図FIG. 2 is an explanatory diagram showing the insulating film forming method according to the present invention.
【図3】
本発明による絶縁膜形成方法のもとで成膜条件の一実施
例によりSiO2 膜を形成したときの膜厚分布を、従
来技術によりSiO2 膜を形成した場合と対比して示
す線図[Figure 3]
A diagram showing the film thickness distribution when a SiO2 film is formed according to an example of the film forming conditions under the insulating film forming method according to the present invention, in comparison with when the SiO2 film is formed using the conventional technique.
【図4】本発明による絶縁膜形成方法のもとで図3と同
一成膜条件によりSiO2 膜を形成したときのエッチ
ングレートを、従来技術によりSiO2 膜を形成した
場合と対比して示す線図FIG. 4 is a diagram showing the etching rate when an SiO2 film is formed using the insulating film forming method according to the present invention under the same film forming conditions as in FIG. 3, in comparison with when the SiO2 film is formed using the conventional technique.
【図5】従来の絶縁膜形成方法が適用されるECRプラ
ズマCVD装置の構造例を示す縦断面図[Fig. 5] A vertical cross-sectional view showing a structural example of an ECR plasma CVD apparatus to which a conventional insulating film forming method is applied.
2 マイクロ波透過窓 4 コイル 5 プラズマ生成室 6 反応室 8 プラズマ引出し窓 9 基板(被成膜基板) 11 高周波電源 2 Microwave transmission window 4 Coil 5 Plasma generation chamber 6 Reaction chamber 8 Plasma drawer window 9 Substrate (substrate to be film-formed) 11 High frequency power supply
Claims (3)
たガスをプラズマ化する軸対称のプラズマ生成室と、プ
ラズマ生成室を同軸に囲んでプラズマ生成室内にマイク
ロ波との電子サイクロトロン共鳴磁場領域面を形成する
コイルと、プラズマ生成室のマイクロ波透過窓と対面す
る側に設けられたプラズマ引出し窓を介してプラズマ生
成室と連通し内部に被成膜基板が配される反応室とを備
えたECRプラズマCVD装置を用いて被成膜基板に絶
縁膜を形成する際の絶縁膜形成方法であって、前記コイ
ルの幾何学的中心が、マイクロ波透過窓のプラズマ生成
室内部空間側の面のプラズマ生成室内部空間と反対側に
位置するようにコイルを配置するとともに、コイルによ
る電子サイクロトロン共鳴磁場領域面を、マイクロ波透
過窓を透過したマイクロ波の電界強度の波高値位置に形
成し、かつ被成膜基板に高周波バイアスを印加して絶縁
膜を形成することを特徴とする絶縁膜の形成方法。Claim 1: An axially symmetrical plasma generation chamber that has a microwave transmission window on the axis and converts introduced gas into plasma, and an electron cyclotron resonance magnetic field with the microwave that coaxially surrounds the plasma generation chamber. A reaction chamber is connected to the plasma generation chamber through a plasma extraction window provided on the side facing the microwave transmission window of the plasma generation chamber, and a reaction chamber in which a substrate to be deposited is arranged. An insulating film forming method for forming an insulating film on a substrate to be film-formed using an ECR plasma CVD apparatus equipped with The coil is placed so that the plane is located on the opposite side of the plasma generation chamber interior space, and the electron cyclotron resonance magnetic field area plane by the coil is formed at the peak value of the electric field strength of the microwave transmitted through the microwave transmission window. , and a method for forming an insulating film, characterized in that the insulating film is formed by applying a high frequency bias to a substrate on which the film is to be formed.
、電子サイクロトロン共鳴磁場領域面が形成されるマイ
クロ波の電界強度波高値の位置を、マイクロ波透過窓を
透過したマイクロ波の最初の波高値位置とすることを特
徴とする絶縁膜の形成方法。2. In the method for forming an insulating film according to claim 1, the position of the peak value of the electric field strength of the microwave at which the electron cyclotron resonance magnetic field region surface is formed is determined by adjusting the position of the peak value of the electric field strength of the microwave at the first point of the microwave transmitted through the microwave transmission window. A method of forming an insulating film characterized by forming the film at a peak value position.
成方法において、被成膜基板の温度を室温〜150 ℃
, ガス圧力を1×10−4〜5×10−3torr,
プラズマ生成室に入射されるマイクロ波電力を250
〜450 W, 被成膜基板に印加する高周波バイア
ス電力を600 〜1000Wとして絶縁膜を形成する
ことを特徴とする絶縁膜の形成方法。3. In the method for forming an insulating film according to claim 1 or 2, the temperature of the substrate on which the film is formed is set at room temperature to 150°C.
, gas pressure 1 x 10-4 to 5 x 10-3 torr,
The microwave power input to the plasma generation chamber is 250
A method for forming an insulating film, characterized in that the insulating film is formed by applying a high frequency bias power of 600 to 1000 W to a substrate on which the film is to be formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1813791A JP2921137B2 (en) | 1991-02-12 | 1991-02-12 | Method of forming insulating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1813791A JP2921137B2 (en) | 1991-02-12 | 1991-02-12 | Method of forming insulating film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04257224A true JPH04257224A (en) | 1992-09-11 |
JP2921137B2 JP2921137B2 (en) | 1999-07-19 |
Family
ID=11963219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1813791A Expired - Fee Related JP2921137B2 (en) | 1991-02-12 | 1991-02-12 | Method of forming insulating film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2921137B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007111075A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111092A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111074A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111076A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111098A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing same |
-
1991
- 1991-02-12 JP JP1813791A patent/JP2921137B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007111075A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111092A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111074A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111076A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing transparent barrier sheet |
WO2007111098A1 (en) | 2006-03-24 | 2007-10-04 | Konica Minolta Medical & Graphic, Inc. | Transparent barrier sheet and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP2921137B2 (en) | 1999-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5662819A (en) | Plasma processing method with controlled ion/radical ratio | |
KR100377582B1 (en) | Plasma processing method | |
KR0170387B1 (en) | High-frequency semiconductor wafer processing method using a negative self-bias | |
KR100238573B1 (en) | Method and apparatus for forming thin film | |
JPH10261498A (en) | Plasma treatment apparatus and plasma treatment method | |
JPH03170666A (en) | Plasma treating apparatus and method therefor | |
JPH10134995A (en) | Plasma processing device and processing method for plasma | |
JPH08255782A (en) | Plasma surface treating apparatus | |
JPH04257224A (en) | Forming method for insulating film | |
KR102498944B1 (en) | Process for performing self-limited etching of organic materials | |
JP3907444B2 (en) | Plasma processing apparatus and structure manufacturing method | |
JPH07135093A (en) | Plasma processing device and processing method | |
JP3530788B2 (en) | Microwave supplier, plasma processing apparatus and processing method | |
JP2003077904A (en) | Apparatus and method for plasma processing | |
JP4141021B2 (en) | Plasma deposition method | |
JPH0368771A (en) | Microwave plasma treating device | |
JP2001345312A (en) | Device and method for plasma treatment and method of manufacturing structure | |
KR100733241B1 (en) | Plasma etching apparatus | |
JP2819774B2 (en) | Method of forming insulating film | |
JPH0770510B2 (en) | Plasma processing device | |
JPH11214383A (en) | Plasma film formation method | |
JP2000138171A (en) | Non-terminated annular waveguide with circular slot and plasma treatment device and method using it | |
WO1996025834A1 (en) | Plasma processing apparatus | |
JP3071450B2 (en) | Microwave plasma processing equipment | |
JP3364131B2 (en) | Plasma processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |