JPH04222889A - Electrically conductive resin paste - Google Patents

Electrically conductive resin paste

Info

Publication number
JPH04222889A
JPH04222889A JP2418274A JP41827490A JPH04222889A JP H04222889 A JPH04222889 A JP H04222889A JP 2418274 A JP2418274 A JP 2418274A JP 41827490 A JP41827490 A JP 41827490A JP H04222889 A JPH04222889 A JP H04222889A
Authority
JP
Japan
Prior art keywords
silicone
paste
polyimide resin
diamine
dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2418274A
Other languages
Japanese (ja)
Inventor
Toshiro Takeda
敏郎 竹田
Takashi Suzuki
隆 鈴木
Yuji Sakamoto
有史 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2418274A priority Critical patent/JPH04222889A/en
Publication of JPH04222889A publication Critical patent/JPH04222889A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the subject paste excellent in close-contacting property, adhesivity and stress characteristics and suitable for the mounting of a large- sized semiconductor chip by compounding an electrically conductive filler, an insulating filler, a silicone-modified polyimide resin and an organic solvent at specific ratios. CONSTITUTION:The objective paste can be produced by compounding (A) an electrically conductive filler, (B) an insulating filler, (C) a silicone-modified polyimide resin composed of an aromatic acid dianhydride, an aromatic diamine compound and a compound of formula (R1 is 1-5C bivalent aliphatic group, etc.; R2 and R3 are univalent aliphatic group, etc.; l is 1-100), etc., containing >=5wt.% of the silicone component and having an imidation degree of the imidatable silicone-modified polyamic acid of >=80wt.% and (D) an organic solvent at weight ratios A/(B+C) of 50/50 to 90/10, B/(A+C) of 0.1/99.9 to 49/51 and D/(A+B+C) of 0.01/100 to 50/100.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、導電性フィラー、絶縁
性フィラー、シリコーン変性ポリイミド樹脂及び有機溶
剤からなり、IC、LSI等の半導体素子を金属フレー
ムやセラミック基板等に接着する導電性樹脂ペーストに
関するものである。更に詳しくは、セラミックパッケー
ジなどチップをパッケージ内に該ペーストを用いてマウ
ントした後、ハーメチックシールのように300℃以上
の高温に曝された場合でもチップとパッケージ内部との
密着強度が充分に保持され得る導電性樹脂ペーストに関
するものである。
[Industrial Application Field] The present invention is a conductive resin paste that is composed of a conductive filler, an insulating filler, a silicone-modified polyimide resin, and an organic solvent, and is used to bond semiconductor elements such as ICs and LSIs to metal frames, ceramic substrates, etc. It is related to. More specifically, after mounting a chip in a package such as a ceramic package using the paste, the adhesion strength between the chip and the inside of the package is maintained sufficiently even when exposed to high temperatures of 300°C or more like a hermetic seal. The present invention relates to a conductive resin paste obtained.

【0002】0002

【従来技術】従来、セラミックパッケージについては、
半導体素子をパッケージ内にマウントする際Au−Si
共晶法により接合し、次いでハーメチックシールによっ
て封止するのが普通であった。しかしながら、半導体素
子の高集積化によるチップサイズの増大により、熱履歴
を受けた際にチップに発生する応力が信頼性低下につな
がるため、マウント材自身に応力緩和性が求められるよ
うになってきている。近年エポキシ樹脂に銀粉等の導電
性フィラーを混合した導電性樹脂ペーストが作業性、量
産性、応力緩和性の点で従来のAu−Si共晶法に比べ
て優れるため用いられるようになってきているが、セラ
ミックパッケージの場合には300℃以上の高温でガラ
スシールする工程があり、エポキシ樹脂系では耐熱性の
点で不充分であり、シール中に分解ガスが大量に発生し
内部応力が増大してシール部が膨れてしまうという問題
があった。一方、耐熱性の優れているポリイミド系樹脂
に導電性フィラーを混合して導電性樹脂ペーストとする
試みもなされているが、耐熱性の優れるポリイミド樹脂
はガラス転移温度が高く、溶液化するためには有機溶剤
に溶解することが必要で、そのためにはポリイミド前駆
体であるポリアミド酸の状態でワニス化しなければなら
なかった。ところが、ポリアミド酸は分子内にアミド基
とカルボキシル基を有するため分子間の相互作用が極め
て強く、作業性の点で数十〜百ポイズの粘度の溶液を得
るには濃度を30重量%以下に抑える必要があった。こ
のように有機溶剤を70%以上含むポリアミド酸に導電
性フィラーを混合してペースト化した場合、溶剤量がマ
ウント樹脂中30重量%以上にもなり、チップをマウン
トした場合、硬化加熱時の溶剤の抜け跡として硬化物中
にボイドが生成し、接着強度の低下、電気電導度及び熱
伝導不良の原因となり、信頼性面から好ましくなかった
。これらのことから、半導体素子のマウント材には、密
着性、耐熱性、応力緩和性に優れ、しかも硬化物中にボ
イド等のない信頼性に優れた導電性樹脂ペーストが強く
要望されていた。
[Prior Art] Conventionally, regarding ceramic packages,
When mounting a semiconductor element in a package, Au-Si
It was common to join by eutectic method and then seal by hermetic seal. However, as the chip size increases due to the high integration of semiconductor devices, the stress generated in the chip when subjected to thermal history leads to a decrease in reliability, so the mounting material itself is required to have stress relaxation properties. There is. In recent years, conductive resin paste, which is a mixture of epoxy resin and conductive filler such as silver powder, has come into use because it is superior to the conventional Au-Si eutectic method in terms of workability, mass production, and stress relaxation. However, in the case of ceramic packages, there is a process of sealing the glass at a high temperature of 300°C or higher, and epoxy resin systems are insufficient in terms of heat resistance, and a large amount of decomposition gas is generated during sealing, increasing internal stress. There was a problem in that the seal portion would swell. On the other hand, attempts have been made to make conductive resin paste by mixing conductive filler with polyimide resin, which has excellent heat resistance, but polyimide resin, which has excellent heat resistance, has a high glass transition temperature and cannot be dissolved. It is necessary to dissolve it in an organic solvent, and to do so, it was necessary to make it into a varnish in the form of polyamic acid, which is a polyimide precursor. However, since polyamic acid has an amide group and a carboxyl group in its molecule, the interaction between molecules is extremely strong, and in order to obtain a solution with a viscosity of several tens to 100 poise, the concentration must be lower than 30% by weight. It was necessary to suppress it. When a conductive filler is mixed with polyamic acid containing 70% or more of an organic solvent and made into a paste, the amount of solvent becomes 30% or more by weight in the mounting resin, and when the chip is mounted, the solvent during curing heating is Voids were formed in the cured product as traces of removal, causing a decrease in adhesive strength and poor electrical conductivity and heat conduction, which was unfavorable from a reliability standpoint. For these reasons, there has been a strong demand for a highly reliable conductive resin paste as a mounting material for semiconductor devices, which has excellent adhesion, heat resistance, stress relaxation properties, and has no voids in the cured product.

【0003】0003

【発明の目的】本発明者らは、セラミックパッケージ内
でIC等の大型チップをマウントした後ハーメチックシ
ール時に発生ガスが少なく接着強度の低下が起こらず、
信頼性不良の原因となる硬化物中のボイドの発生も極め
て少ない導電性樹脂ペーストを得んとして鋭意研究を重
ねた結果、シリコーン変性ポリイミド樹脂を少量の有機
溶剤に溶かし、導電性フィラー及び絶縁性フィラーを添
加して得られる導電性樹脂ペーストが応力緩和性に優れ
、ガラスシール工程を経ても分解ガスの発生が少なく、
接着強度の低下も少なく、しかも硬化物中にボイドの発
生が極めて少ないことが判り、本発明を完成するに至っ
たものである。
[Object of the Invention] The present inventors have discovered that after mounting a large chip such as an IC in a ceramic package, there is little gas generated during hermetic sealing, and there is no decrease in adhesive strength.
As a result of extensive research in an attempt to obtain a conductive resin paste with extremely few voids in the cured product, which can cause poor reliability, we dissolved silicone-modified polyimide resin in a small amount of organic solvent and created a conductive filler and an insulating paste. The conductive resin paste obtained by adding filler has excellent stress relaxation properties, and generates little decomposition gas even after the glass sealing process.
It was found that there was little decrease in adhesive strength, and there were very few voids in the cured product, which led to the completion of the present invention.

【0004】その目的とするところは、マウント樹脂と
しての電気特性や機械特性、不純物濃度等の諸特性を満
足して優れた信頼性を有し、しかも応力緩和特性に優れ
た導電性樹脂ペーストを提供するにある。
[0004] The purpose is to create a conductive resin paste that satisfies various properties such as electrical properties, mechanical properties, and impurity concentration as a mounting resin, has excellent reliability, and has excellent stress relaxation properties. It is on offer.

【0005】[0005]

【発明の構成】本発明は、導電性フィラー(A)、絶縁
性フィラー(B)、シリコーン変性ポリイミド樹脂(C
)及び有機溶剤(D)よりなる導電性樹脂ペーストであ
って、(A)、(B)、(C)の重量割合が(A)/{
(B)+(C)}=50/50〜90/10、(B)/
{(A)+(C)}=0.1/99.9〜49/51で
あり、かつ(D)の重量割合が(D)/{(A)+(B
)+(C)}=0.01/100〜50/100である
ことを特徴とする導電性樹脂ペーストであり、シリコー
ン変性ポリイミド樹脂(C)が芳香族酸二無水物と、芳
香族ジアミン化合物及び式〔I〕及び/或いは〔II〕
Structure of the Invention The present invention comprises a conductive filler (A), an insulating filler (B), a silicone-modified polyimide resin (C
) and an organic solvent (D), wherein the weight ratio of (A), (B), and (C) is (A)/{
(B)+(C)}=50/50~90/10, (B)/
{(A)+(C)}=0.1/99.9 to 49/51, and the weight ratio of (D) is (D)/{(A)+(B
)+(C)}=0.01/100 to 50/100, and the silicone-modified polyimide resin (C) is an aromatic acid dianhydride and an aromatic diamine compound. and formula [I] and/or [II]

【0006】[0006]

【化2】[Case 2]

【0007】で示されるシリコーン化合物からなり、シ
リコーン成分が全樹脂分中少なくとも5重量%以上であ
って、且つイミド化され得るシリコーン変性ポリアミド
酸のうち、少なくとも80%以上がイミド化されている
ことを特徴とする導電性樹脂ペーストである。
It consists of a silicone compound represented by the following formula, the silicone component accounts for at least 5% by weight of the total resin content, and at least 80% or more of the silicone-modified polyamic acid that can be imidized is imidized. This is a conductive resin paste characterized by:

【0008】本発明に用いられる導電性フィラーとして
は、ニッケル、銅、銀、金、AI等の金属粉やカーボン
ブラックなどを挙げることができるが、特に限定される
ものではない。但し本発明において用いられる導電性フ
ィラーにおいては、ハロゲンイオン、アルカリ金属イオ
ン等のイオン性不純物の含量が好ましくは10ppm以
下であることが望ましい。また粒子の形状としては、フ
レーク状、樹枝状や球状等のものが用いられる。異なる
導電性フィラーを混合して用いることもできる。また粒
径についても、比較的粗いものと細かいものを適宜混合
してもよい。必要な特性を得るための粒径は0.01〜
50μmが望ましい。
[0008] Examples of the conductive filler used in the present invention include powders of metals such as nickel, copper, silver, gold, and AI, and carbon black, but are not particularly limited. However, in the conductive filler used in the present invention, the content of ionic impurities such as halogen ions and alkali metal ions is preferably 10 ppm or less. Further, the shape of the particles used may be flaky, dendritic, spherical, or the like. A mixture of different conductive fillers can also be used. Regarding the particle size, relatively coarse particles and fine particles may be appropriately mixed. The particle size to obtain the necessary properties is 0.01~
50 μm is desirable.

【0009】本発明に用いられる絶縁性フィラーとして
は、炭酸カルシウム、シリカ、炭化珪素、窒化珪素、ア
ルミナボレート、酸化アルミニウム、酸化亜鉛、酸化マ
グネシウム、酸化チタン、窒化ホウ素、窒化アルミニウ
ム等を挙げることができるが、特にこれらに限定される
ものではなく、異なる絶縁性フィラーを二種以上混合し
て用いてもよい。形状としては、フレーク状、樹枝状や
球状等のものが用いられる。異なる粒径のものを混合し
て用いても差し支えない。本発明において用いられる絶
縁性フィラーにおいては、ハロゲンイオン、アルカリ金
属イオン等のイオン性不純物の含量が好ましくは10p
pm以下であることが望ましい。
Examples of the insulating filler used in the present invention include calcium carbonate, silica, silicon carbide, silicon nitride, alumina borate, aluminum oxide, zinc oxide, magnesium oxide, titanium oxide, boron nitride, and aluminum nitride. However, it is not particularly limited to these, and two or more different insulating fillers may be used in combination. As for the shape, flaky, dendritic, spherical, etc. are used. There is no problem even if particles of different particle sizes are mixed and used. In the insulating filler used in the present invention, the content of ionic impurities such as halogen ions and alkali metal ions is preferably 10p.
It is desirable that it is below pm.

【0010】本発明において用いられる導電性フィラー
(A)はペースト硬化後の導電性付与のために必要であ
り、絶縁性フィラー(B)はペーストの硬化時の流動性
をコントロールし、ボイドが硬化物中に残らないように
するために必要である。これらのペーストにおける割合
は、バインダーであるシリコーン変性ポリイミド樹脂(
C)と合せて、(A)/{(B)+(C)}=50/5
0〜90/10、(B){(A)+(C)}=0.1/
99.9〜49/51であることが望ましい。導電性フ
ィラー(A)が(B)及び(C)に対して50重量%未
満であると、導電性が得られないので好ましくなく、ま
た90重量%を越えるとペーストの粘度が極めて上昇し
、作業性の点で好ましくない。また、絶縁性フィラー(
B)が(A)及び(C)に対して5重量%未満であると
、ペースト硬化時の流動性を充分にコントロールできな
くなるので好ましくなく、50重量%を越えると粘度が
上昇し、作業性の点で好ましくなく、充分な導電性が得
られなくなるので好ましくない。
The conductive filler (A) used in the present invention is necessary for imparting conductivity after the paste is cured, and the insulating filler (B) controls the fluidity of the paste when it is cured, and the voids are prevented from being cured. This is necessary to prevent it from remaining in things. The proportion of these pastes is based on the binder, silicone-modified polyimide resin (
Combined with C), (A)/{(B)+(C)}=50/5
0 to 90/10, (B) {(A) + (C)} = 0.1/
It is desirable that it is 99.9 to 49/51. When the conductive filler (A) is less than 50% by weight based on (B) and (C), conductivity cannot be obtained, which is not preferable, and when it exceeds 90% by weight, the viscosity of the paste increases significantly, Unfavorable in terms of workability. In addition, insulating filler (
If B) is less than 5% by weight based on (A) and (C), the fluidity during hardening of the paste cannot be sufficiently controlled, which is undesirable. If it exceeds 50% by weight, the viscosity increases and workability is This is undesirable from the point of view, and it is undesirable because sufficient conductivity cannot be obtained.

【0011】本発明において用いられるシリコーン変性
ポリイミド樹脂は、芳香族酸二無水物と芳香族ジアミン
化合物及び末端ジアミノシリコーン化合物及び/又は酸
無水物末端シリコーン化合物を反応させて得られるシリ
コーンポリアミド酸をイミド化して得られるものである
。さらに、シリコーン成分は全樹脂分中少なくとも5重
量%含まれていることが必要であり、イミド化率は少な
くとも80%以上であることが望ましい。シリコーン変
性率が5%未満であると、チップと基板との密着性が大
幅に低下し、300℃以上のガラスシール熱処理後の密
着強度も極めて小さいものになるので好ましくない。 またイミド化率が80%未満のものは、分子内にあるア
ミド基及びカルボキシル基の分子間水素結合によって相
互作用し、作業性の良好な100ポイズ以下の粘度の溶
液とするためには樹脂分濃度を30%以下にする必要が
あり、必然的にペースト中に含まれる有機溶剤が多くな
り、このため加熱硬化時にボイドの発生が顕著になるの
で好ましくない。
The silicone-modified polyimide resin used in the present invention is an imide of a silicone polyamic acid obtained by reacting an aromatic acid dianhydride with an aromatic diamine compound and a terminal diamino silicone compound and/or an acid anhydride-terminated silicone compound. It can be obtained by converting Further, it is necessary that the silicone component is contained in an amount of at least 5% by weight in the total resin content, and it is desirable that the imidization rate is at least 80% or more. If the silicone modification rate is less than 5%, the adhesion between the chip and the substrate will be significantly reduced, and the adhesion strength after glass seal heat treatment at 300° C. or higher will also be extremely low, which is not preferable. In addition, if the imidization rate is less than 80%, the amide group and carboxyl group in the molecule interact with each other through intermolecular hydrogen bonds, and in order to obtain a solution with a viscosity of 100 poise or less with good workability, it is necessary to The concentration needs to be 30% or less, which inevitably increases the amount of organic solvent contained in the paste, which is not preferable because it causes noticeable voids during heat curing.

【0012】本発明において使用されるシリコーン変性
ポリイミド樹脂を構成する酸無水物成分の例を挙げると
、ピロメリッ卜酸二無水物、3,3′,4,4′−ベン
ゾフェノンテトラカルボン酸二無水物、2,2′,3,
3′−ベンゾフェノンテトラカルボン酸二無水物、2,
3,3′,4′−ベンゾフェノンテトラカルボン酸二無
水物、ナフタレン−2,3,6,7−テトラカルボン酸
二無水物、ナフタレン−1,2,5,6−テトカルボン
酸二無水物、ナフタレン−1,2,4,5−テトラカル
ボン酸二無水物、ナフタレン−1,4,5,8−テトラ
カルボン酸二無水物、ナフタレン−1,2,6,7−テ
トラカルボン酸二無水物、4,8−ジメチル−1,2,
3,5,6,7−ヘキサヒドロナフタレン−1,2,5
,6−テトラカルボン酸二無水物、4.8−ジメチル−
1,2,3,5,6,7−ヘキサヒドロナフタレン−2
,3,6,7−テトラカルボン酸二無水物、2,6−ジ
クロロナフタレン−1,4,5,8−テトラカルボン酸
二無水物、2,7−ジクロロナフタレン−1,4,5,
8−テトラカルボン酸二無水物、2,3,6,7−テト
ラクロロナフタレン−1,4,5,8−テトラカルボン
酸二無水物、1,4,5,8−テトラクロロナフタレン
−2,3,6,7−テトラカルボン酸二無水物、3,3
′,4,4′−ジフェニルテトラカルボン酸二無水物、
2,2′,3,3′−ジフェニルテトラカルボン酸二無
水物、2,3,3′,4′−ジフェニルテトラカルボン
酸二無水物、3,3′′,4,4′′−p−テルフェニ
ルテトラカルボン酸二無水物、2,2′′,3,3′′
−p−テルフェニルテトラカルボン酸二無水物、2,3
,3′′,4′′−p−テルフェニルテトラカルボン酸
二無水物、2,2−ビス(2,3−ジカルボキシフェニ
ル)−プロパン二無水物、2,2−ビス(3,4−ジカ
ルボキシフェニル)−プロパン二無水物、ビス(2,3
−ジカルボキシフェニル)エーテル二無水物、ビス(3
,4−ジカルボキシフェニル)エーテル二無水物、ビス
(2,3−ジカルボキシフェニル)メタン二無水物、ビ
ス(3,4−ジカルボキシフェニル)メタン二無水物、
ビス(2,3−ジカルボキシフェニル)スルホン二無水
物、ビス(3,4−ジカルボキシフェニル)スルホン二
無水物、1,1−ビス(2,3−ジカルボキシフェニル
)エタン二無水物、1,1−ビス(3,4−ジカルボキ
シフェニル)エタン二無水物、ペリレン−2,3,8,
9−テトラカルボン酸二無水物、ペリレン−3,4,9
,10−テトラカルボン酸二無水物、ペリレン−4,5
,10,11−テトラカルボン酸二無水物、ペリレン−
5,6,11,12−テトラカルボン酸二無水物、フェ
ナンスレン−1,2,7,8−テトラカルボン酸二無水
物、フェナンスレン−1,2,6,7−テトラカルボン
酸二無水物、フェナンスレン−1,2,9,10−テト
ラカルボン酸二無水物、シクロペンタン−1,2,3,
4−テトラカルボン酸二無水物、ピラジン−2,3,5
,6−テトラカルボン酸二無水物、ピロリジン−2,3
,4,5−テトラカルボン酸二無水物、チオフェン−2
,3,4,5−テトラカルボン酸二無水物などがあげら
れるが、これらに限定されるものではない。
Examples of acid anhydride components constituting the silicone-modified polyimide resin used in the present invention include pyromellitic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride ,2,2',3,
3'-benzophenone tetracarboxylic dianhydride, 2,
3,3',4'-benzophenonetetracarboxylic dianhydride, naphthalene-2,3,6,7-tetracarboxylic dianhydride, naphthalene-1,2,5,6-tetocarboxylic dianhydride, naphthalene -1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8-tetracarboxylic dianhydride, naphthalene-1,2,6,7-tetracarboxylic dianhydride, 4,8-dimethyl-1,2,
3,5,6,7-hexahydronaphthalene-1,2,5
, 6-tetracarboxylic dianhydride, 4,8-dimethyl-
1,2,3,5,6,7-hexahydronaphthalene-2
, 3,6,7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,
8-Tetracarboxylic dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2, 3,6,7-tetracarboxylic dianhydride, 3,3
',4,4'-diphenyltetracarboxylic dianhydride,
2,2',3,3'-diphenyltetracarboxylic dianhydride, 2,3,3',4'-diphenyltetracarboxylic dianhydride, 3,3'',4,4''-p- Terphenyltetracarboxylic dianhydride, 2,2'',3,3''
-p-terphenyltetracarboxylic dianhydride, 2,3
, 3'',4''-p-terphenyltetracarboxylic dianhydride, 2,2-bis(2,3-dicarboxyphenyl)-propane dianhydride, 2,2-bis(3,4- dicarboxyphenyl)-propane dianhydride, bis(2,3
-dicarboxyphenyl)ether dianhydride, bis(3
, 4-dicarboxyphenyl)ether dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride,
Bis(2,3-dicarboxyphenyl)sulfone dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, 1 , 1-bis(3,4-dicarboxyphenyl)ethane dianhydride, perylene-2,3,8,
9-tetracarboxylic dianhydride, perylene-3,4,9
, 10-tetracarboxylic dianhydride, perylene-4,5
, 10,11-tetracarboxylic dianhydride, perylene-
5,6,11,12-tetracarboxylic dianhydride, phenanthrene-1,2,7,8-tetracarboxylic dianhydride, phenanthrene-1,2,6,7-tetracarboxylic dianhydride, phenanthrene -1,2,9,10-tetracarboxylic dianhydride, cyclopentane-1,2,3,
4-tetracarboxylic dianhydride, pyrazine-2,3,5
, 6-tetracarboxylic dianhydride, pyrrolidine-2,3
, 4,5-tetracarboxylic dianhydride, thiophene-2
, 3,4,5-tetracarboxylic dianhydride and the like, but are not limited thereto.

【0013】また酸無水物末端シリコーン化合物の例を
挙げると
[0013] Examples of acid anhydride-terminated silicone compounds include

【0014】[0014]

【化3】[Chemical formula 3]

【0015】などであるが、特に限定されるものではな
い。
[0015] etc., but there are no particular limitations.

【0016】本発明において用いられる芳香族ジアミン
の例を具体的に挙げると、3,3′−ジメチル−4,4
′−ジアミノビフェニル、4.6−ジメチル−m−フェ
ニレンジアミン、2,5−ジメチル−p−フェニレンジ
アミン、2,4−ジアミノメシチレン、4,4′−メチ
レンジ−o−トルイジン、4,4′−メチレンジ−2,
6−キシリジン、4,4′−メチレン−2,6−ジエチ
ルアニリン、2,4−トルエンジアミン、m−フェニレ
ン−ジアミン、p−フェニレン−ジアミン、4,4′−
ジアミノ−ジフェニルプロパン、3,3′−ジアミノ−
ジフェニルプロパン、4,4′−ジフェニルエタン、3
,3′−ジアミノ−ジフェニルエタン、4,4′−ジア
ミノ−ジフェニルメタン、3,3′−ジアミノージフェ
ニルメタン、4,4′−ジアミノ−ジフェニルスルフィ
ド、3,3′−ジアミノ−ジフェニルスルフィド、4,
4′−ジアミノ−ジフェニルスルホン、3,3′−ジア
ミノ−ジフェニルスルホン、4,4′−ジアミノ−ジフ
ェニルエーテル、3,3′−ジアミノ−ジフェニルエー
テル、ベンジジン、3,3′−ジアミノ−ビフェニル、
3,3′−ジメチル−4,4′−ジアミノ−ビフェニル
、3,3′−ジメトキシ−ベンジジン、4,4′′−ジ
アミノ−p−テルフェニル、3,3′′−ジアミノ−p
−テルフェニル、ビス(p−アミノ−シクロヘキシル)
メタン、ビス(p−β−アミノ−t−ブチルフェニル)
エーテル、ビス(p−β−メチル−δ−アミノペンチル
)ベンゼン、p−ビス(2−メチル−4−アミノ−ペン
チル)ベンゼン、p−ビス(1,1−ジメチル−5−ア
ミノ−ペンチル)ベンゼン、1,5−ジアミノ−ナフタ
レン、2,6−ジアミノ−ナフタレン、2,4−ビス(
β−アミノ−t−ブチル)トルエン、2,4−ジアミノ
−トルエン、m−キシレン−2,5−ジアミン、p−キ
シレン−2,5−ジアミン、m−キシリレン−ジアミン
、p−キシリレン−ジアミン、2,6−ジアミノ−ピリ
ジン、2,5−ジアミノ−ピリジン、2,5−ジアミノ
−1,3,4−オキサジアゾール、1,4−ジアミノ−
シクロヘキサン、ピペラジン、メチレン−ジアミン、エ
チレン−ジアミン、プロピレン−ジアミン、2,2−ジ
メチル−プロピレン−ジアミン、テトラメチレン−ジア
ミン、ペンタメチレン−ジアミン、ヘキサメチレン−ジ
アミン、2,5−ジメチル−ヘキサメチレン−ジアミン
、3−メトキシ−ヘキサメチレン−ジアミン、ヘプタメ
チレン−ジアミン、2,5−ジメチル−ヘプタメチレン
−ジアミン、3−メチル−ヘプタメチレン−ジアミン、
4,4−ジメチル−ヘプタメチレン−ジアミン、オクタ
メチレン−ジアミン、4,4−ジメチル−ヘプタメチレ
ン−ジアミン、オクタメチレン−ジアミン、ノナメチレ
ン−ジアミン、5−メチル−ノナメチレン−ジアミン、
2,5−ジメチル−ノナメチレン−ジアミン、デカメチ
レン−ジアミン、1,10−ジアミノ1,10−ジメチ
ル−デカン、2,11ジアミノ−ドデカン、1,12−
ジアミノ−オクタデカン、2,12−ジアミノ−オクタ
デカン、2,17−ジアミノ−アイコサンなどがあげら
れるが、これらに限定されるものではない。
Specific examples of the aromatic diamine used in the present invention include 3,3'-dimethyl-4,4
'-Diaminobiphenyl, 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diaminomesitylene, 4,4'-methylenedi-o-toluidine, 4,4'- Methylene di-2,
6-xylidine, 4,4'-methylene-2,6-diethylaniline, 2,4-toluenediamine, m-phenylene-diamine, p-phenylene-diamine, 4,4'-
Diamino-diphenylpropane, 3,3'-diamino-
diphenylpropane, 4,4'-diphenylethane, 3
, 3'-diamino-diphenyl ethane, 4,4'-diamino-diphenylmethane, 3,3'-diamino-diphenylmethane, 4,4'-diamino-diphenyl sulfide, 3,3'-diamino-diphenyl sulfide, 4,
4'-diamino-diphenyl sulfone, 3,3'-diamino-diphenyl sulfone, 4,4'-diamino-diphenyl ether, 3,3'-diamino-diphenyl ether, benzidine, 3,3'-diamino-biphenyl,
3,3'-dimethyl-4,4'-diamino-biphenyl, 3,3'-dimethoxy-benzidine, 4,4''-diamino-p-terphenyl, 3,3''-diamino-p
-terphenyl, bis(p-amino-cyclohexyl)
Methane, bis(p-β-amino-t-butylphenyl)
Ether, bis(p-β-methyl-δ-aminopentyl)benzene, p-bis(2-methyl-4-amino-pentyl)benzene, p-bis(1,1-dimethyl-5-amino-pentyl)benzene , 1,5-diamino-naphthalene, 2,6-diamino-naphthalene, 2,4-bis(
β-amino-t-butyl)toluene, 2,4-diamino-toluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylene-diamine, p-xylylene-diamine, 2,6-diamino-pyridine, 2,5-diamino-pyridine, 2,5-diamino-1,3,4-oxadiazole, 1,4-diamino-
Cyclohexane, piperazine, methylene-diamine, ethylene-diamine, propylene-diamine, 2,2-dimethyl-propylene-diamine, tetramethylene-diamine, pentamethylene-diamine, hexamethylene-diamine, 2,5-dimethyl-hexamethylene-diamine Diamine, 3-methoxy-hexamethylene-diamine, heptamethylene-diamine, 2,5-dimethyl-heptamethylene-diamine, 3-methyl-heptamethylene-diamine,
4,4-dimethyl-heptamethylene-diamine, octamethylene-diamine, 4,4-dimethyl-heptamethylene-diamine, octamethylene-diamine, nonamethylene-diamine, 5-methyl-nonamethylene-diamine,
2,5-dimethyl-nonamethylene-diamine, decamethylene-diamine, 1,10-diamino-1,10-dimethyl-decane, 2,11-diamino-dodecane, 1,12-
Examples include, but are not limited to, diamino-octadecane, 2,12-diamino-octadecane, and 2,17-diamino-icosane.

【0017】ジアミン末端シリコーン化合物の一例を挙
げると、
An example of a diamine-terminated silicone compound is:

【0018】[0018]

【化4】[C4]

【0019】があるが、特にこれに限定されるものでは
ない。
[0019] However, it is not particularly limited to this.

【0020】本発明において用いられるシリコーン変性
ポリイミドを溶解する有機溶剤は特に限定されるもので
はないが、均一溶解可能なものならば、一種類或いは二
種類以上を併用した混合溶媒であっても差し支えない。 この種の溶媒として代表的なものは、N,N−ジメチル
ホルムアミド、N,N−ジメチルアセトアミド、N,N
−ジエチルホルムアミド、N,N−ジエチルアセトアミ
ド、N,N−ジメチルメトキシアセトアミド、ジメチル
スルホキシド、ヘキサメチルフォスホアミド、N−メチ
ル−2−ピロリドン、ピリジン、ジメチルスルホン、テ
トラメチルスルホン、ジメチルテトラメチレスルホン、
γ−ブチロラクトン、ジグライム、テトラヒドロフラン
、塩化メチレン、ジオキサン、シクロヘキサノン等があ
り、均一に溶解できる範囲で貧溶媒を揮散調節剤、皮膜
平滑剤などとして使用することもできる。
[0020] The organic solvent for dissolving the silicone-modified polyimide used in the present invention is not particularly limited, but it may be one type or a mixed solvent of two or more types as long as it can be uniformly dissolved. do not have. Typical solvents of this type are N,N-dimethylformamide, N,N-dimethylacetamide, and N,N-dimethylformamide.
-diethylformamide, N,N-diethylacetamide, N,N-dimethylmethoxyacetamide, dimethylsulfoxide, hexamethylphosphoamide, N-methyl-2-pyrrolidone, pyridine, dimethylsulfone, tetramethylsulfone, dimethyltetramethylesulfone,
Examples include γ-butyrolactone, diglyme, tetrahydrofuran, methylene chloride, dioxane, cyclohexanone, etc., and a poor solvent can be used as a volatility regulator, a film smoothing agent, etc. as long as it can be uniformly dissolved.

【0021】本発明において用いられる有機溶剤(D)
の重量割合は、導電性フィラー(A)、絶縁性フィラー
(B)、シリコーン変性ポリイミド樹脂(C)とからな
るペースト中、(D)/{(A)+(B)+(C)}=
0.01/100〜50/100であることが望ましい
。0.01/100未満であるとペーストの粘度が極め
て高くなり作業性の点で好ましくなく、50/100を
越えるとペースト硬化時にボイドが発生しやすくなるの
で好ましくない。
Organic solvent (D) used in the present invention
The weight ratio of (D)/{(A)+(B)+(C)}=
It is desirable that it is 0.01/100 to 50/100. If it is less than 0.01/100, the viscosity of the paste becomes extremely high, which is undesirable from the viewpoint of workability, and if it exceeds 50/100, voids are likely to occur when the paste hardens, which is undesirable.

【0022】さらに本発明においては必要により消泡剤
を添加することもできる。
Furthermore, in the present invention, an antifoaming agent may be added if necessary.

【0023】導電性樹脂ペーストの製造工程は、次の通
りである。導電性フィラー(A)、絶縁性フィラー(B
)、シリコーン変性ポリイミド樹脂(C)、有機溶剤(
D)を秤量し、必要に応じ消泡剤等を添加して攪拌機、
擂漬器、乳鉢、三本ロール、ニーダー等を単独又は適宜
組合せて均一のペースト状にする。本発明の導電性樹脂
ペーストの使用方法としては、通常のディスペンサー等
で金属フレームやセラミックパッケージ内に塗布するこ
とができ、IC等のチップマウント後オーブン中又は熱
盤上で加熱硬化し接着することができる。以下実施例に
より本発明を具体的に説明する。
The manufacturing process of the conductive resin paste is as follows. Conductive filler (A), insulating filler (B)
), silicone-modified polyimide resin (C), organic solvent (
Weigh D), add antifoaming agent, etc. as necessary, and mix it with a stirrer.
Make a uniform paste using a pickler, mortar, triple roll, kneader, etc. alone or in appropriate combination. The conductive resin paste of the present invention can be applied to a metal frame or ceramic package using a regular dispenser, and after mounting a chip such as an IC, it can be heated and cured in an oven or on a hot plate for bonding. I can do it. The present invention will be specifically explained below using Examples.

【0024】[0024]

【実施例】(シリコーン変性ポリイミド樹脂  合成例
1)温度計、攪拌機、原料投入口、乾燥窒素ガス導入管
を備えた四つ口のセパラブルフラスコに3,3′,4,
4′−ベンゾフェノンテトラカルボン酸二無水物32.
22g(0.1モル)N−メチル−2−ピロリドン24
0gに溶解させ、下記式のシリコーンジアミン
[Example] (Silicone-modified polyimide resin Synthesis Example 1) A four-necked separable flask equipped with a thermometer, stirrer, raw material inlet, and dry nitrogen gas inlet tube contained 3, 3', 4,
4'-benzophenone tetracarboxylic dianhydride 32.
22g (0.1 mol) N-methyl-2-pyrrolidone 24
0g of silicone diamine of the following formula.

【002
5】
002
5]

【化5】[C5]

【0026】16.84g(0.02モル)を1時間か
けて滴下ロートにて滴下し、徐々に反応させ、さらに1
時間攪拌を続ける。この間ずっと乾燥窒素ガスを流して
おき、更に氷浴で冷却し系を20℃に保っておく。次い
でこの系に2,6−ジアミノ−4−トリフルオロメチル
ピリジン10.63g(0.06モル)、2,4−ジア
ミノトルエン2.44g(0.02モル)を添加し、さ
らに系を20℃に保ちながら5時間攪拌を続けて反応を
完結する。続いてこの系にトルエン72gを添加し、乾
燥窒素ガス導入管を外して、代りにディーンスターチ還
流冷却管を取付け、氷浴を外してオイルバスで加熱して
系の温度を上昇させる。イミド化に伴って生じる水をト
ルエンとの共沸により系外へ除去しながら加熱を続け、
140−150℃でイミド化を進めて水が生成しなくな
った5時間後に反応を終了させた。このポリイミドシロ
キサンワニスを30リットルの純水に撹拌しながら1時
間かけて滴下し、樹脂を沈澱させ、濾過して固形分のみ
を回収した後、乾燥機中にて120℃で3時間乾燥させ
た。このようにして得たポリイミド樹脂のFT−IRス
ペクトルを測定し、1650cm−1に現れるイミド化
前のアミド結合に基づく吸収と、1780cm−1に現
れるイミド環に基づく吸収からイミド化率を求めたとこ
ろ100%イミド化されていることが判った。
16.84 g (0.02 mol) was added dropwise over 1 hour using a dropping funnel, and the mixture was gradually reacted.
Continue stirring for an hour. During this period, dry nitrogen gas was kept flowing, and the system was further cooled in an ice bath to maintain the system at 20°C. Next, 10.63 g (0.06 mol) of 2,6-diamino-4-trifluoromethylpyridine and 2.44 g (0.02 mol) of 2,4-diaminotoluene were added to this system, and the system was further heated at 20°C. Stirring was continued for 5 hours while maintaining the temperature to complete the reaction. Subsequently, 72 g of toluene is added to this system, the dry nitrogen gas inlet tube is removed, a Dean starch reflux condenser tube is installed in its place, the ice bath is removed, and the system is heated in an oil bath to raise the temperature of the system. Heating is continued while water generated during imidization is removed from the system by azeotropy with toluene.
Imidization was carried out at 140-150°C, and the reaction was terminated after 5 hours when no water was produced. This polyimide siloxane varnish was added dropwise to 30 liters of pure water over 1 hour with stirring to precipitate the resin, and after filtering to collect only the solid content, it was dried in a dryer at 120°C for 3 hours. . The FT-IR spectrum of the polyimide resin thus obtained was measured, and the imidization rate was determined from the absorption based on the amide bond before imidization appearing at 1650 cm-1 and the absorption based on the imide ring appearing at 1780 cm-1. It was found that 100% of the material was imidized.

【0027】(シリコーン変性ポリイミド樹脂  合成
例2)合成例1と同様の方法に従い、3,3′,4,4
′−ベンゾフェノンテトラカルボン酸二無水物の代りに
3,3′,4,4′−オキシジフタル酸二無水物31.
02g(0.1モル)を用い、2,6−ジアミノ−4−
トリフルオロメチルピリジン/2,4ジアミノトルエン
混合物の代りに2,4−ジアミノトルエン9.76g(
0.08モル)を用いる。得られたシリコーン変性ポリ
イミド樹脂のイミド化率は旬100%であった。
(Silicone-modified polyimide resin Synthesis Example 2) Following the same method as Synthesis Example 1, 3,3',4,4
3,3',4,4'-oxydiphthalic dianhydride instead of '-benzophenonetetracarboxylic dianhydride31.
2,6-diamino-4-
9.76 g of 2,4-diaminotoluene instead of the trifluoromethylpyridine/2,4-diaminotoluene mixture (
0.08 mol) is used. The imidization rate of the obtained silicone-modified polyimide resin was 100%.

【0028】(シリコーン変性ポリイミド樹脂  合成
例3)合成例1と同様の方法、組成でシリコーン変性ポ
リアミド酸を合成した後、イミド化反応を1時間で終了
した。得られたシリコーン変性ポリイミド樹脂のイミド
化率は65%であった。
(Silicone-modified polyimide resin Synthesis Example 3) After a silicone-modified polyamic acid was synthesized using the same method and composition as in Synthesis Example 1, the imidization reaction was completed in one hour. The imidization rate of the obtained silicone-modified polyimide resin was 65%.

【0029】(シリコーン変性ポリイミド樹脂  合成
例4)合成例2の組成からシリコーンジアミンを除き、
2,4−ジアミノトルエンの量を12.22g(0.1
モル)としてポリアミド酸を合成した後、イミド化反応
を30分間で終了した。得られたポリイミド樹脂のイミ
ド化率は30%であった。
(Silicone-modified polyimide resin Synthesis Example 4) By removing silicone diamine from the composition of Synthesis Example 2,
The amount of 2,4-diaminotoluene was 12.22 g (0.1
After synthesizing polyamic acid (mol), the imidization reaction was completed in 30 minutes. The imidization rate of the obtained polyimide resin was 30%.

【0030】(実施例1)合成例1で得られたシリコー
ン変性ポリイミド樹脂100重量部、平均粒径5μmの
銀粉末400重量部、平均粒径0.02μの酸化アルミ
ニウム10重量部、N−メチル−2−ピロリドン100
重量部、ジオキサン20重量部を攪拌し、均一分散液と
し、三本ロールで混練し、均一なマウント用樹脂ペース
トを得た。得られたペーストをセラミックパッケージに
塗布し、10×7mm角のシリコンチップをマウントし
、1時間/150℃+1時間/280℃で硬化させた直
後及びさらに420℃で30分間処理した際の接着強度
をテンシロン万能試験機で測定したところ、何れも測定
限界の20kgf以上であった。また軟X線画像測定装
置にてペースト硬化物内部のボイド面積を調べたところ
、全面積の5%未満であった。また体積抵抗率を測定し
たところ、1×10−4Ω−cmであった。
(Example 1) 100 parts by weight of the silicone-modified polyimide resin obtained in Synthesis Example 1, 400 parts by weight of silver powder with an average particle size of 5 μm, 10 parts by weight of aluminum oxide with an average particle size of 0.02 μm, N-methyl -2-pyrrolidone 100
parts by weight and 20 parts by weight of dioxane were stirred to form a uniform dispersion, and the mixture was kneaded with three rolls to obtain a uniform resin paste for mounting. Adhesive strength immediately after applying the obtained paste to a ceramic package, mounting a 10 x 7 mm square silicon chip, and curing at 1 hour/150°C + 1 hour/280°C and further processing at 420°C for 30 minutes. When measured with a Tensilon universal testing machine, all of them were over the measurement limit of 20 kgf. Further, when the void area inside the cured paste was examined using a soft X-ray image measuring device, it was found to be less than 5% of the total area. Further, when the volume resistivity was measured, it was found to be 1×10 −4 Ω-cm.

【0031】(実施例2)ペースト組成のうち、酸化ア
ルミニウムの代りに平均粒径0.02μmの無水シリカ
5重量部を用いた以外は全て実施例1と同様の方法でマ
ウント用樹脂ペーストを得た。実施例1と同様の方法で
接着強度を測定した結果、420℃/30分間の熱処理
前後何れの強度も20kgf以上であった。また硬化物
中のボイド面積も5%未満であった。体積抵抗率は、1
×10−4Ω−cmであった。
(Example 2) A mounting resin paste was obtained in the same manner as in Example 1 except that 5 parts by weight of anhydrous silica with an average particle size of 0.02 μm was used instead of aluminum oxide in the paste composition. Ta. As a result of measuring the adhesive strength in the same manner as in Example 1, the strength both before and after the heat treatment at 420° C. for 30 minutes was 20 kgf or more. Further, the void area in the cured product was less than 5%. The volume resistivity is 1
×10 −4 Ω-cm.

【0032】(実施例3〜6及び比較例1〜5)ペース
ト組成を表1のようにして実施例1と同様の方法でマウ
ント用樹脂ペーストを得て表1の結果を得た。
(Examples 3 to 6 and Comparative Examples 1 to 5) Mounting resin pastes were obtained in the same manner as in Example 1 with the paste compositions shown in Table 1, and the results shown in Table 1 were obtained.

【0033】[0033]

【表1】[Table 1]

【0034】実施例1、2並びに表1の実施例3〜6の
ように、導電性フィラー、絶縁性フィラー、シリコーン
変性ポリイミド樹脂及び有機溶剤の特定の割合からなる
マウント用樹脂ペーストを用いてチップを接着すると、
接着強度は硬化後420℃×30分熱処理で何れも20
kgf/(10×7mm角)以上の値が得られ、ハーメ
チックシールの高温封止後の接着力にも優れていること
が判る。またボイド面積も全て5%未満で優れており、
体積抵抗率は1×10−4Ω−cmで充分な導電性を有
していた。
As in Examples 1 and 2 and Examples 3 to 6 in Table 1, chips were prepared using a mounting resin paste consisting of a specific proportion of a conductive filler, an insulating filler, a silicone-modified polyimide resin, and an organic solvent. When you glue the
The adhesive strength was 20% after curing by heat treatment at 420℃ for 30 minutes.
A value of kgf/(10×7 mm square) or more was obtained, and it can be seen that the adhesive force after high-temperature sealing of the hermetic seal is also excellent. In addition, the void area is all less than 5%, which is excellent.
The volume resistivity was 1×10 −4 Ω-cm, and it had sufficient electrical conductivity.

【0035】比較例1のように充分にイミド化されてい
ないシリコーン変性ポリイミドを用いると、ペーストの
粘度が高くなり、作業性の点で有機溶剤量を増やさざる
を得なくなった結果、ボイドの原因となり、硬化物には
40%の面積でボイドを発生しており、密着強度も特に
熱処理後は低下が著しかった。比較例2のようにシリコ
ーン成分を含まない通常のポリイミド樹脂をバインダー
として用いると密着強度が極端に低下し、また作業性の
点で有機溶剤量も増え、ボイドの発生につながり好まし
くなかった。比較例3のように導電性フィラー成分が少
ないと充分な導電性が得られず、好ましくなかった。比
較例4のように逆に導電性フィラーが多すぎるとバイン
ダーであるシリコーン変性ポリイミド樹脂が相対的に少
なくなるために密着強度が低下し、好ましくなかった。 比較例5のように絶縁性フィラーを全く用いないと、密
着強度は充分なものの硬化時の流動性をコントロールで
きずに溶剤の抜け道としてボイドが残存し、好ましくな
かった。
When using silicone-modified polyimide that has not been sufficiently imidized as in Comparative Example 1, the viscosity of the paste becomes high, and the amount of organic solvent has to be increased in terms of workability, which causes voids. Thus, voids were generated in 40% of the area of the cured product, and the adhesion strength also significantly decreased, especially after heat treatment. When a normal polyimide resin containing no silicone component was used as a binder as in Comparative Example 2, the adhesion strength was extremely reduced, and the amount of organic solvent increased from the viewpoint of workability, which was undesirable as it led to the generation of voids. If the conductive filler component was small as in Comparative Example 3, sufficient conductivity could not be obtained, which was not preferable. On the other hand, if there was too much conductive filler as in Comparative Example 4, the amount of silicone-modified polyimide resin as a binder would be relatively small, resulting in a decrease in adhesion strength, which was not preferable. If no insulating filler was used at all as in Comparative Example 5, although the adhesion strength was sufficient, the fluidity during curing could not be controlled and voids remained as a way for the solvent to escape, which was undesirable.

【0036】[0036]

【発明の効果】本発明の導電性樹脂ペーストは、銅、4
2アロイ等の金属フレーム、セラミック基板、ガラスエ
ボキシ等の有機基板へのIC等半導体素子の接着に用い
ることができ、特に10mm角以上の大型チップの接着
に適しており、ボイドの発生が極めて少なく、弾性率の
低いシリコーン変性ポリイミド樹脂をバインダーとして
用いているため、応力緩和特性に優れている。またシリ
コーン成分の基板への密着性が良好で、セラミックパッ
ケージのガラスシール工程のような300℃を越える熱
履歴を受けた場合でも強固な密着強度を維持し、信頼性
にも優れたマウント用樹脂ペーストである。
[Effects of the invention] The conductive resin paste of the present invention contains copper, 4
It can be used to bond semiconductor elements such as ICs to metal frames such as 2-alloy, ceramic substrates, and organic substrates such as glass epoxy.It is especially suitable for bonding large chips of 10 mm square or more, and produces extremely few voids. Because it uses a silicone-modified polyimide resin with a low elastic modulus as a binder, it has excellent stress relaxation properties. In addition, the silicone component has good adhesion to the substrate, and it maintains strong adhesion even when subjected to heat history of over 300 degrees Celsius, such as in the glass sealing process of ceramic packages, and is a highly reliable mounting resin. It is a paste.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】    導電性フィラー(A)、絶縁性フ
ィラー(B)、シリコーン変性ポリイミド樹脂(C)及
び有機溶剤(D)よりなる導電性樹脂ペーストであって
、(A)、(B)、(C)の重量割合が(A)/{(B
)+(C)}=50/50〜90/10、(B)/{(
A)+(C)}=0.1/99.9〜49/51であり
、かつ(D)の重量割合が(D)/{(A)+(B)+
(C)}=0.01/100〜50/100であること
を特徴とする導電性樹詣ペースト。
1. A conductive resin paste comprising a conductive filler (A), an insulating filler (B), a silicone-modified polyimide resin (C), and an organic solvent (D), the paste comprising (A), (B), The weight ratio of (C) is (A)/{(B
)+(C)}=50/50~90/10,(B)/{(
A) + (C)} = 0.1/99.9 to 49/51, and the weight ratio of (D) is (D)/{(A) + (B) +
(C)}=0.01/100 to 50/100.
【請求項2】    シリコーン変性ポリイミド樹脂(
C)が芳香族酸二無水物と、芳香族ジアミン化合物及び
式〔I〕及び/或いは〔II〕 【化1】 で示されるシリコーン化合物からなり、シリコーン成分
が全樹脂分中少なくとも5重量%以上であって、且つイ
ミド化され得るシリコーン変性ポリアミド酸のうち、少
なくとも80%以上がイミド化されていることを特徴と
する請求項1記載の導電性樹脂ペースト。
Claim 2: Silicone-modified polyimide resin (
C) consists of an aromatic acid dianhydride, an aromatic diamine compound, and a silicone compound represented by formula [I] and/or [II] [Chemical formula 1], and the silicone component is at least 5% by weight or more in the total resin content. The conductive resin paste according to claim 1, wherein at least 80% or more of the silicone-modified polyamic acid that can be imidized is imidized.
JP2418274A 1990-12-25 1990-12-25 Electrically conductive resin paste Pending JPH04222889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2418274A JPH04222889A (en) 1990-12-25 1990-12-25 Electrically conductive resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2418274A JPH04222889A (en) 1990-12-25 1990-12-25 Electrically conductive resin paste

Publications (1)

Publication Number Publication Date
JPH04222889A true JPH04222889A (en) 1992-08-12

Family

ID=18526162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2418274A Pending JPH04222889A (en) 1990-12-25 1990-12-25 Electrically conductive resin paste

Country Status (1)

Country Link
JP (1) JPH04222889A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673364A (en) * 1992-08-26 1994-03-15 Sumitomo Bakelite Co Ltd Adhesive for airtight sealing
CN100346455C (en) * 2004-05-17 2007-10-31 西安交通大学 Sealing method for protecting metal connecting line of micro mechanical device in corrosion process
WO2010067485A1 (en) * 2008-12-12 2010-06-17 ソニーケミカル&インフォメーションデバイス株式会社 Shield film and shielded circuit board
JP2010135752A (en) * 2008-12-05 2010-06-17 Exax Inc Method of manufacturing printed circuit board by direct printing, and printed circuit board manufactured thereby
JP2010238562A (en) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd Lithium secondary battery, manufacturing method for the same, and binder precursor solution for lithium secondary battery used for its manufacturing method
JP2010248348A (en) * 2009-04-14 2010-11-04 Shin-Etsu Chemical Co Ltd Thermally conductive adhesive
CN102431170A (en) * 2011-09-15 2012-05-02 江苏苏净集团有限公司 Casting bonding method of hollow fiber membrane module
JP2014040536A (en) * 2012-08-23 2014-03-06 Shin Etsu Chem Co Ltd Curable resin composition and conductive adhesive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559642A (en) * 1978-07-07 1980-01-23 Asahi Chem Ind Co Ltd Production of heat-resistant resin paste
JPS61141779A (en) * 1984-10-15 1986-06-28 ナショナル スタ−チ アンド ケミカル コ−ポレイション Heat stable adhesive
JPS62148566A (en) * 1985-12-24 1987-07-02 Sumitomo Bakelite Co Ltd Electrically conductive resin paste
JPH01263154A (en) * 1988-04-15 1989-10-19 Nitto Denko Corp Electrically conductive paste composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559642A (en) * 1978-07-07 1980-01-23 Asahi Chem Ind Co Ltd Production of heat-resistant resin paste
JPS61141779A (en) * 1984-10-15 1986-06-28 ナショナル スタ−チ アンド ケミカル コ−ポレイション Heat stable adhesive
JPS62148566A (en) * 1985-12-24 1987-07-02 Sumitomo Bakelite Co Ltd Electrically conductive resin paste
JPH01263154A (en) * 1988-04-15 1989-10-19 Nitto Denko Corp Electrically conductive paste composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673364A (en) * 1992-08-26 1994-03-15 Sumitomo Bakelite Co Ltd Adhesive for airtight sealing
CN100346455C (en) * 2004-05-17 2007-10-31 西安交通大学 Sealing method for protecting metal connecting line of micro mechanical device in corrosion process
JP2010135752A (en) * 2008-12-05 2010-06-17 Exax Inc Method of manufacturing printed circuit board by direct printing, and printed circuit board manufactured thereby
WO2010067485A1 (en) * 2008-12-12 2010-06-17 ソニーケミカル&インフォメーションデバイス株式会社 Shield film and shielded circuit board
JP2010238562A (en) * 2009-03-31 2010-10-21 Shin-Etsu Chemical Co Ltd Lithium secondary battery, manufacturing method for the same, and binder precursor solution for lithium secondary battery used for its manufacturing method
JP2010248348A (en) * 2009-04-14 2010-11-04 Shin-Etsu Chemical Co Ltd Thermally conductive adhesive
CN102431170A (en) * 2011-09-15 2012-05-02 江苏苏净集团有限公司 Casting bonding method of hollow fiber membrane module
JP2014040536A (en) * 2012-08-23 2014-03-06 Shin Etsu Chem Co Ltd Curable resin composition and conductive adhesive

Similar Documents

Publication Publication Date Title
JP6299607B2 (en) Adhesive composition, adhesive sheet, and cured product and semiconductor device using the same
WO2001066645A1 (en) Resin composition, heat-resistant resin paste and semiconductor device using them and method for manufacture thereof
US5284899A (en) Resin paste for tight sealing
WO1998054267A1 (en) Heat-resistant adhesives and semiconductor devices produced therewith
JPS5844712B2 (en) adhesive composition
JP4156869B2 (en) Surface acoustic wave device film
JPH04222889A (en) Electrically conductive resin paste
JPH02289646A (en) Heat-resistant resin paste and ic using same paste
JP3482946B2 (en) Adhesive film and semiconductor device
JPH0551541A (en) Inorganic filler coated with polyimide resin, resin composition containing the filler, and semiconductor device sealed with the composition
JPH04248871A (en) Paste of polyimide-based resin and ic using the same paste
JPH05117596A (en) Film adhesive having high thermal conductivity and bondable by hot melt bonding
JPH05125337A (en) Hot melt bonding electrically conductive filmy adhesive
JP3513829B2 (en) Adhesive film
JP4013092B2 (en) Adhesive film
JPH04345682A (en) Adhesive for hermetic sealing
JPH05125336A (en) Hot melt bonding electrically conductive filmy adhesive
JPH05339555A (en) Adhesive composition
JP3601802B2 (en) High adhesion heat resistant resin composition
JPH05117622A (en) Hot melt bondable filmy adhesive having high thermal conductivity
JPS6071662A (en) Conductive silver paste composition
JPH1036507A (en) Polyimide resin and resin varnish for adhesion
JPH05125334A (en) Hot melt bonding electrically conductive filmy adhesive
JPH0881628A (en) Heat-resistant electrically conductive paste
JPH07292104A (en) Siloxane-modified polyimide and method for producing the same