JPH04219150A - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JPH04219150A
JPH04219150A JP2411787A JP41178790A JPH04219150A JP H04219150 A JPH04219150 A JP H04219150A JP 2411787 A JP2411787 A JP 2411787A JP 41178790 A JP41178790 A JP 41178790A JP H04219150 A JPH04219150 A JP H04219150A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zeolite
manganese
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2411787A
Other languages
Japanese (ja)
Inventor
Akinori Eshita
明徳 江下
Senji Kasahara
泉司 笠原
Kazuhiko Sekizawa
関沢 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2411787A priority Critical patent/JPH04219150A/en
Publication of JPH04219150A publication Critical patent/JPH04219150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To remove nitrogen oxide, CO, and hydrocarbon at the same time from the exhaust gas excess in oxygen from the internal combustion engines of motorcars and the like by using the exhaust gas purification catalyst of zeolite having an SiO2/Al2O3 molar ratio of specified value or more and containing Mn and alkaline earth metals. CONSTITUTION:The zeolite having an SiO2/Al2O3 molar ratio of at least 15 contains Mn and alkaline earth metals, such as Ca, preferably, in an amount of alkaline earth metal of 10-100mol% and in an amount of Mn of 30-200mol%, and in the total amounts of 80-250mol% of the alumina in the zeolite, thus permitting nitrogen oxide, CO, and hydrocarbon to be removed efficiently at the same time from the exhaust gas exhausted from the internal combustion engines of motorcars and the like by using this catalyst.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば自動車エンジン
等の内燃機関から排出される排気ガス中の窒素酸化物,
一酸化炭素及び炭化水素を除去する排気ガス浄化触媒に
関し、特に、酸素過剰の燃焼排気ガスを浄化する触媒に
関するものである。
[Industrial Application Field] The present invention relates to nitrogen oxides in exhaust gas emitted from internal combustion engines such as automobile engines,
The present invention relates to an exhaust gas purification catalyst that removes carbon monoxide and hydrocarbons, and particularly relates to a catalyst that purifies oxygen-excess combustion exhaust gas.

【0002】0002

【従来の技術】内燃機関から排出される排気ガス中の有
害物質である窒素酸化物,一酸化炭素及び炭化水素は、
例えばPt,Rh,Pd等を担体上に担持させた三元触
媒により除去されている。しかしながら、ディ−ゼルエ
ンジン排気ガスについては、排気ガス中に酸素が多く含
まれているために、窒素酸化物については有効な触媒が
なく、触媒による排気ガス浄化は行なわれていない。
[Prior Art] Nitrogen oxides, carbon monoxide, and hydrocarbons, which are harmful substances in exhaust gas emitted from internal combustion engines, are
For example, it is removed by a three-way catalyst in which Pt, Rh, Pd, etc. are supported on a carrier. However, since diesel engine exhaust gas contains a large amount of oxygen, there are no effective catalysts for nitrogen oxides, and exhaust gas purification by catalysts has not been carried out.

【0003】また近年のガソリンエンジンにおいては、
低燃費化や排出炭酸ガスの低減の目的で希薄燃焼させる
ことが必要となってきている。しかしながら、この希薄
燃焼ガソリンエンジンの排気ガスは、酸素過剰雰囲気で
あるため、上記のような従来の三元触媒は使用できず、
有害成分を除去する方法は実用化されていない。
[0003] Also, in recent gasoline engines,
Lean combustion has become necessary for the purpose of improving fuel efficiency and reducing carbon dioxide emissions. However, the exhaust gas of this lean-burn gasoline engine is an oxygen-rich atmosphere, so the conventional three-way catalyst described above cannot be used.
No method has been put into practical use to remove harmful components.

【0004】このような酸素過剰の排気ガス中の特に窒
素酸化物を除去する方法としては、アンモニア等の還元
剤を添加する方法、窒素酸化物をアルカリに吸収させて
除去する方法等も知られているが、これらの方法は移動
発生源である自動車に用いるには有効な方法ではなく、
適用が限定される。
[0004] As a method for removing nitrogen oxides from such oxygen-excess exhaust gas, there are also known methods such as adding a reducing agent such as ammonia, and removing nitrogen oxides by absorbing them in an alkali. However, these methods are not effective methods for use with automobiles, which are mobile sources.
Application is limited.

【0005】遷移金属をイオン交換したゼオライト触媒
は、従来の三元触媒と同様に使用出来ることが知られて
いる。例えば特開平1−130735号公報には、未燃
焼の一酸化炭素及び炭化水素等の還元剤が微量に含まれ
ている酸素過剰な排気ガス中でも窒素酸化物を選択的に
還元させることが出来る触媒が提案されている。
It is known that a zeolite catalyst obtained by ion-exchanging transition metals can be used in the same manner as a conventional three-way catalyst. For example, Japanese Patent Application Laid-Open No. 1-130735 discloses a catalyst that can selectively reduce nitrogen oxides even in oxygen-excess exhaust gas that contains trace amounts of unburned carbon monoxide and reducing agents such as hydrocarbons. is proposed.

【0006】しかしながらこの従来提案に係わる触媒は
、長時間の高温下での使用による活性の劣化が著しく、
耐久性、触媒性能等の点で更に改善すべき点があり、未
だ実用化されるに至っていない。
However, the activity of the conventionally proposed catalyst deteriorates significantly when used at high temperatures for a long period of time.
There are still points to be improved in terms of durability, catalytic performance, etc., and it has not yet been put into practical use.

【0007】[0007]

【発明が解決しようとする課題】本発明は、以上のよう
な従来技術の問題点を解消するためになされたものであ
り、自動車等の内燃機関から排出される排気ガスから、
窒素酸化物、一酸化炭素及び炭化水素を同時に除去する
熱劣化を起こしにくい、耐久性に優れた、触媒活性の高
い触媒を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art as described above.
The present invention provides a catalyst that simultaneously removes nitrogen oxides, carbon monoxide, and hydrocarbons, is resistant to thermal deterioration, has excellent durability, and has high catalytic activity.

【0008】また本発明の別の目的は、このような触媒
を用いた排気ガスの浄化方法を提供することにある。
Another object of the present invention is to provide a method for purifying exhaust gas using such a catalyst.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記問題
点について鋭意検討した結果、本発明を完成するに至っ
た。
[Means for Solving the Problems] The present inventors have completed the present invention as a result of intensive study on the above-mentioned problems.

【0010】すなわち本発明は、窒素酸化物、一酸化炭
素及び炭化水素を含む酸素過剰の排ガスから、窒素酸化
物、一酸化炭素及び炭化水素を除去するゼオライト触媒
であって、シリカ/アルミナモル比が少なくとも15以
上のゼオライトであり、かつマンガンおよびアルカリ土
類金属を含有することを特徴とする排ガス浄化触媒、及
び該排気ガス浄化触媒に、窒素酸化物、一酸化炭素及び
炭化水素を含む燃焼排気ガスを接触させることを特徴と
する排気ガス中の窒素酸化物、一酸化炭素及び炭化水素
を除去する方法を提供するものである。
That is, the present invention provides a zeolite catalyst for removing nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons, the zeolite catalyst having a silica/alumina molar ratio. An exhaust gas purification catalyst characterized by being a zeolite of at least 15 or more and containing manganese and an alkaline earth metal, and a combustion exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons in the exhaust gas purification catalyst. The present invention provides a method for removing nitrogen oxides, carbon monoxide, and hydrocarbons from exhaust gas, which comprises contacting the exhaust gas with nitrogen oxides, carbon monoxide, and hydrocarbons.

【0011】以下、本発明を詳細に説明する。The present invention will be explained in detail below.

【0012】上記ゼオライトは一般的にはxM2/nO
・Al2O3・ySiO2・zH2O(ただしnは陽イ
オンMの原子価、xは0.8〜1.2の範囲の数、yは
2以上の数、zは0以上の数である)の組成を有するも
のであるが、本発明において用いられるゼオライトはこ
のうち、シリカ/アルミナモル比が15以上のものであ
ることを必須とする。シリカ/アルミナモル比はその上
限は特に限定されるものではないが、シリカ/アルミナ
モル比が15未満であるとゼオライト自体の耐熱性、耐
久性が低いため、触媒の十分な耐熱性、耐久性が得られ
ない。一般的にはシリカ/アルミナモル比が15〜10
00程度のものが用いられる。
[0012] The above zeolite generally has xM2/nO
・The composition of Al2O3・ySiO2・zH2O (where n is the valence of the cation M, x is a number in the range of 0.8 to 1.2, y is a number of 2 or more, and z is a number of 0 or more) However, the zeolite used in the present invention must have a silica/alumina molar ratio of 15 or more. The upper limit of the silica/alumina molar ratio is not particularly limited, but if the silica/alumina molar ratio is less than 15, the heat resistance and durability of the zeolite itself will be low, and the catalyst will not have sufficient heat resistance and durability. I can't. Generally, the silica/alumina molar ratio is 15 to 10.
A value of about 00 is used.

【0013】本発明の触媒を構成するゼオライトは天然
品、合成品の何れであってもよく、これらゼオライトの
製造方法は特に限定されるものではないが、代表的には
フェリエライト,モルデナイト,Y,ZSM−5,ZS
M−11,ZSM−12,ZSM−20等のゼオライト
が使用できる。また、これらのゼオライトは、そのまま
あるいはアンモニウム塩、鉱酸等で処理してNH4型あ
るいはH型にイオン交換してから本発明の触媒として使
用することもできる。
The zeolite constituting the catalyst of the present invention may be either a natural product or a synthetic product, and the method for producing these zeolites is not particularly limited, but typically ferrierite, mordenite, Y ,ZSM-5,ZS
Zeolites such as M-11, ZSM-12, and ZSM-20 can be used. Further, these zeolites can be used as the catalyst of the present invention either as they are or after being ion-exchanged into NH4 type or H type by treatment with ammonium salts, mineral acids, etc.

【0014】本発明で用いるゼオライトは、マンガンお
よびアルカリ土類金属を含有することが必須である。マ
ンガンおよびアルカリ土類金属を含有させる方法として
は特に限定はされず、イオン交換、含浸担持等が使用で
きるが、イオン交換が最も好ましい。
[0014] It is essential that the zeolite used in the present invention contains manganese and alkaline earth metals. The method for incorporating manganese and alkaline earth metals is not particularly limited, and ion exchange, impregnating and supporting, etc. can be used, but ion exchange is most preferred.

【0015】マンガンのイオン交換では、塩類としては
2価の水溶性塩類であれば良く、例えば硝酸塩、塩化物
、酢酸塩又は硫酸塩であり、好ましくは酢酸塩である。 マンガンのイオン交換では、交換回数に特に制限はなく
、交換率が低い場合には2回以上イオン交換を繰り返し
ても良い。イオン交換回数の上限は特に定めないが、2
〜5回で良い。
In the ion exchange of manganese, the salts may be divalent water-soluble salts, such as nitrates, chlorides, acetates or sulfates, preferably acetates. In the ion exchange of manganese, there is no particular restriction on the number of exchanges, and if the exchange rate is low, the ion exchange may be repeated two or more times. There is no particular upper limit to the number of ion exchanges, but 2
~5 times is enough.

【0016】イオン交換方法としては、ゼオライトのス
ラリ−へマンガン塩を投入し攪拌する、または、マンガ
ン塩の水溶液にゼオライトを投入し攪拌する、などの一
般的なイオン交換方法でよい。しいて言うならば液温は
20〜100℃、好ましくは40〜90℃が良い。水溶
液中のマンガン塩の濃度は、0.01〜1mol/l、
好ましくは0.1〜1mol/lが良い。0.01mo
l/l未満では大量の溶液を必要とするため、操作性が
低下する。また、1mol/lより大きい場合では、イ
オン交換率が投入した試薬量に見合うほど向上しない。
The ion exchange method may be a general ion exchange method such as adding manganese salt to a zeolite slurry and stirring it, or adding zeolite to an aqueous solution of manganese salt and stirring it. In other words, the liquid temperature is preferably 20 to 100°C, preferably 40 to 90°C. The concentration of manganese salt in the aqueous solution is 0.01 to 1 mol/l,
Preferably it is 0.1 to 1 mol/l. 0.01mo
If it is less than 1/1, a large amount of solution is required, resulting in poor operability. Moreover, if it is larger than 1 mol/l, the ion exchange rate will not improve to the extent commensurate with the amount of reagent added.

【0017】ゼオライトと水溶液の固液比は特に限定さ
れないが、攪拌が充分に行なわれれば良く、スラリ−の
固形分濃度は5〜50%が好ましい。
The solid-liquid ratio between the zeolite and the aqueous solution is not particularly limited, but it is sufficient that sufficient stirring is performed, and the solid content concentration of the slurry is preferably 5 to 50%.

【0018】アルカリ土類金属のイオン交換で用いる塩
類は水溶性であれば良く、好ましくは溶解度の大きい硝
酸塩及び塩化物である。アルカリ土類金属としてはBe
,Mg,Ca,Sr,Ba,Raが使用できるが、好ま
しくはSrまたはBaである。
The salts used in the ion exchange of alkaline earth metals may be water-soluble, preferably nitrates and chlorides, which have high solubility. As an alkaline earth metal, Be
, Mg, Ca, Sr, Ba, and Ra, preferably Sr or Ba.

【0019】イオン交換方法としては、マンガンと同様
な方法で良く、水溶液中のアルカリ土類金属塩の濃度は
、0.01〜5mol/l、好ましくは0.1〜2mo
l/lが良い。
The ion exchange method may be the same as that for manganese, and the concentration of the alkaline earth metal salt in the aqueous solution is 0.01 to 5 mol/l, preferably 0.1 to 2 mol/l.
l/l is good.

【0020】イオン交換した試料は、固液分離、洗浄、
乾燥した後、触媒として使用される。また必要に応じて
焼成してから用いることもできる。
The ion-exchanged sample is subjected to solid-liquid separation, washing,
After drying, it is used as a catalyst. It can also be used after being fired if necessary.

【0021】また、アルカリ土類金属やマンガンを蒸発
乾固等で担持して使用することもできる。蒸発乾固の方
法としては通常の方法でよく、ゼオライトをアルカリ土
類金属あるいはマンガンを含む水溶液に投入し、乾燥器
等で、溶媒である水を蒸発させる等の方法でよい。水溶
液中のアルカリ土類金属およびマンガン塩の濃度は特に
定めないが、アルカリ土類金属或いはマンガンを均一に
付着させればよく、通常0.01〜1mol/lでよい
[0021]Alkaline earth metals and manganese can also be supported by evaporation to dryness or the like. The evaporation to dryness may be carried out by any conventional method, such as by introducing the zeolite into an aqueous solution containing an alkaline earth metal or manganese, and evaporating water as a solvent in a dryer or the like. The concentration of the alkaline earth metal and manganese salt in the aqueous solution is not particularly determined, but it is sufficient that the alkaline earth metal or manganese is uniformly deposited, and is usually 0.01 to 1 mol/l.

【0022】アルカリ土類金属およびマンガンを含有さ
せる順序について特に制限はないが、イオン交換を用い
て含有させる場合には、アルカリ土類金属、マンガンの
順が好ましい。また、マンガンイオン及びアルカリ土類
金属イオンの共存下で同時にイオン交換しても良い。
There is no particular restriction on the order in which the alkaline earth metal and manganese are added, but when they are added using ion exchange, the order of the alkaline earth metal and manganese is preferred. Further, ion exchange may be performed simultaneously in the coexistence of manganese ions and alkaline earth metal ions.

【0023】アルカリ土類金属およびマンガンの含有量
としては、それぞれゼオライト中のアルミナモル数に対
してモル比でアルカリ土類金属は0.1〜1倍、マンガ
ンは0.3〜2倍、またアルカリ土類金属量とマンガン
量を合計して0.8〜2.5倍であることが好ましい。 アルカリ土類金属量が0.1倍未満であると耐久性・触
媒活性の向上効果が小さい恐れがあり、また1倍より大
であると添加量にみあうだけの効果が得られにくい。マ
ンガン量が0.3倍未満であると触媒としての使用に適
合しない恐れがあり、また2倍より大であると添加量に
みあうだけの耐久性・活性が得られにくい。
The content of alkaline earth metals and manganese is such that the molar ratio of alkaline earth metals to the number of moles of alumina in the zeolite is 0.1 to 1 times, manganese 0.3 to 2 times, and alkaline It is preferable that the total amount of earth metal and manganese is 0.8 to 2.5 times. When the amount of alkaline earth metal is less than 0.1 times, the effect of improving durability and catalytic activity may be small, and when it is more than 1 times, it is difficult to obtain an effect commensurate with the amount added. If the amount of manganese is less than 0.3 times, it may not be suitable for use as a catalyst, and if it is more than 2 times, it is difficult to obtain durability and activity commensurate with the amount added.

【0024】本発明の排気ガス浄化触媒のシリカ/アル
ミナモル比は、使用したゼオライト基材のシリカ/アル
ミナモル比と実質的に変らない。また、排気ガス浄化触
媒の結晶構造もイオン交換前後で本質的に異なるもので
はない。
The silica/alumina molar ratio of the exhaust gas purification catalyst of the present invention is substantially the same as the silica/alumina molar ratio of the zeolite base material used. Furthermore, the crystal structure of the exhaust gas purification catalyst is not essentially different before and after ion exchange.

【0025】本発明の排気ガス浄化触媒は、粘土鉱物等
のバインダ−と混合し成形して使用することもできるし
、また予めゼオライトを成形し、その成形体にマンガン
をイオン交換して含有させることもできる。このゼオラ
イトを成形する際に用いられるバインダ−としては、例
えばカオリン,アタパルガイト,モンモリロナイト,ベ
ントナイト,アロフェン,セピオライト等の粘土鉱物、
シリカ,アルミナ,シリカ−アルミナ等の金属酸化物を
例示することができる。あるいはバインダ−を用いずに
直接合成したバインダレスゼオライト成形体であっても
良い。またさらに、コ−ジェライト製あるいは金属製等
のハニカム状基材にゼオライトをウォッシュコ−トして
用いることもできる。
The exhaust gas purification catalyst of the present invention can be used by being mixed with a binder such as a clay mineral and molded, or by molding zeolite in advance and incorporating manganese into the molded product through ion exchange. You can also do that. Examples of binders used when molding this zeolite include clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite;
Examples include metal oxides such as silica, alumina, and silica-alumina. Alternatively, a binderless zeolite molded body synthesized directly without using a binder may be used. Furthermore, zeolite can be wash-coated onto a honeycomb-shaped substrate made of cordierite or metal.

【0026】酸素過剰排気ガス中の窒素酸化物,一酸化
炭素及び炭化水素の除去は、本発明の排気ガス浄化触媒
と、窒素酸化物,一酸化炭素及び炭化水素を含む酸素過
剰排気ガスを接触させる事により行うことができる。本
発明が対象とする酸素過剰の排気ガスとは、排気ガス中
に含まれる一酸化炭素、炭化水素及び水素を完全に酸化
するのに必要な酸素量よりも過剰な酸素が含まれている
排気ガスをいい、このような排気ガスとしては例えば、
自動車等の内燃機関から排出される排気ガス、特に空燃
比が大きい状態(所謂リ−ン領域)での排気ガス等が具
体的に例示される。
The removal of nitrogen oxides, carbon monoxide, and hydrocarbons from the oxygen-excess exhaust gas is achieved by contacting the oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons with the exhaust gas purification catalyst of the present invention. This can be done by letting The oxygen-excessive exhaust gas targeted by the present invention refers to exhaust gas that contains oxygen in excess of the amount of oxygen required to completely oxidize carbon monoxide, hydrocarbons, and hydrogen contained in the exhaust gas. This refers to gas, and examples of such exhaust gas include:
A specific example is exhaust gas emitted from an internal combustion engine such as an automobile, particularly exhaust gas in a state where the air-fuel ratio is high (so-called lean region).

【0027】なお上記排気ガス触媒は、一酸化炭素、炭
化水素及び水素を含み酸素過剰でない排気ガスの場合に
適用されても、何等その性能が変化することはない。
[0027] The above exhaust gas catalyst does not change its performance in any way even if it is applied to exhaust gas containing carbon monoxide, hydrocarbons and hydrogen and not in excess of oxygen.

【0028】[0028]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれら実施例に限定されるものではな
い。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

【0029】実施例1  <触媒1の調製>シリカ/ア
ルミナモル比が40のアンモニウム型ZSM−5;20
gを、濃度1.09mol/lの塩化バリウムの水溶液
180gに投入し、80℃で16時間攪拌した。スラリ
−を固液分離後、ゼオライトケ−キを再度調製した上記
濃度のバリウム水溶液に投入して同様な操作を2回行っ
た。固液分離後、充分水洗し、続けて0.23mol/
lの酢酸マンガン(II)4水和物の水溶液180gに
投入し、80℃で16時間攪拌した。スラリ−を固液分
離後、ゼオライトケ−キを再度調製した上記組成のマン
ガン水溶液に投入して同様な操作を行った。固液分離後
、充分水洗し、110℃で10時間乾燥し、触媒1とし
た。
Example 1 <Preparation of catalyst 1> Ammonium type ZSM-5 with a silica/alumina molar ratio of 40; 20
g was added to 180 g of an aqueous solution of barium chloride having a concentration of 1.09 mol/l, and the mixture was stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was poured into a barium aqueous solution of the above concentration prepared again, and the same operation was repeated twice. After solid-liquid separation, wash thoroughly with water, and then add 0.23 mol/
1 of an aqueous solution of manganese(II) acetate tetrahydrate, and stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared manganese aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, it was thoroughly washed with water and dried at 110° C. for 10 hours to obtain Catalyst 1.

【0030】この触媒のバリウムおよびマンガン含有量
を化学分析で調べたところ、ゼオライトのアルミナモル
数に対して、バリウムは0.66倍、マンガンは2価と
して0.87倍含まれていた。
When the barium and manganese contents of this catalyst were investigated by chemical analysis, it was found that barium was contained 0.66 times and manganese was contained 0.87 times as divalent, relative to the number of moles of alumina in the zeolite.

【0031】実施例2  <触媒2の調製>実施例1と
同様な操作でイオン交換を行ったが、アルカリ土類金属
をストロンチウムとした。この触媒を触媒2とし、この
触媒のストロンチウムおよびマンガン含有量を化学分析
で調べたところ、ゼオライトのアルミナモル数に対して
、ストロンチウムは0.53倍、マンガンは2価として
0.85倍含まれていた。
Example 2 <Preparation of Catalyst 2> Ion exchange was performed in the same manner as in Example 1, except that strontium was used as the alkaline earth metal. This catalyst was designated as Catalyst 2, and when the strontium and manganese contents of this catalyst were investigated by chemical analysis, it was found that strontium was contained 0.53 times, and manganese was contained 0.85 times as divalent, relative to the number of moles of alumina in the zeolite. Ta.

【0032】実施例3  <触媒3の調製>実施例1と
同様な操作でイオン交換を行ったが、アルカリ土類金属
をマグネシウムとした。この触媒を触媒3とし、この触
媒のマグネシウムおよびマンガン含有量を化学分析で調
べたところ、ゼオライトのアルミナモル数に対して、マ
グネシウムは0.31倍、マンガンは2価として0.8
3倍含まれていた。
Example 3 <Preparation of Catalyst 3> Ion exchange was carried out in the same manner as in Example 1, except that magnesium was used as the alkaline earth metal. This catalyst was designated as Catalyst 3, and when the magnesium and manganese contents of this catalyst were investigated by chemical analysis, magnesium was 0.31 times the number of moles of alumina in the zeolite, and manganese was 0.8 as divalent.
It contained three times as much.

【0033】実施例4  <触媒4の調製>実施例1と
同様な操作でイオン交換を行ったが、アルカリ土類金属
をカルシウムとした。この触媒を触媒4とし、この触媒
のカルシウムおよびマンガン含有量を化学分析で調べた
ところ、ゼオライトのアルミナモル数に対して、カルシ
ウムは0.29倍、マンガンは2価として0.82倍含
まれていた。
Example 4 <Preparation of Catalyst 4> Ion exchange was carried out in the same manner as in Example 1, except that calcium was used as the alkaline earth metal. This catalyst was designated as Catalyst 4, and when the calcium and manganese contents of this catalyst were investigated by chemical analysis, it was found that calcium was contained 0.29 times and manganese was contained 0.82 times as divalent, relative to the number of moles of alumina in the zeolite. Ta.

【0034】実施例5  <触媒5の調製>シリカ/ア
ルミナモル比が40のアンモニウム型ZSM−5;20
gを、濃度0.23mol/lの酢酸マンガン(II)
4水和物の水溶液180gに投入し、80℃で16時間
攪拌した。スラリ−を固液分離後、ゼオライトケ−キを
再度調製した上記組成の水溶液に投入して同様な操作を
行った。固液分離後、充分水洗し、続けて濃度1.09
mol/lの塩化バリウムの水溶液180gに投入し、
80℃で16時間攪拌した。固液分離後、充分水洗し、
110℃で10時間乾燥し、この触媒を触媒5とした。
Example 5 <Preparation of catalyst 5> Ammonium type ZSM-5 with a silica/alumina molar ratio of 40; 20
g of manganese(II) acetate at a concentration of 0.23 mol/l.
The mixture was poured into 180 g of an aqueous solution of tetrahydrate and stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, wash thoroughly with water and continue to reduce the concentration to 1.09.
Pour into 180 g of a mol/l aqueous solution of barium chloride,
The mixture was stirred at 80°C for 16 hours. After solid-liquid separation, wash thoroughly with water,
The catalyst was dried at 110° C. for 10 hours and designated as Catalyst 5.

【0035】この触媒のバリウム及びマンガン含有量を
化学分析で調べたところ、ゼオライトのアルミナモル数
に対してバリウムは0.58倍、マンガンは2価として
0.82倍含まれていた。
When the barium and manganese contents of this catalyst were investigated by chemical analysis, it was found that barium was contained 0.58 times and manganese was contained 0.82 times as divalent, relative to the number of moles of alumina in the zeolite.

【0036】実施例6  <触媒6の調製>シリカ/ア
ルミナモル比が40のアンモニウム型ZSM−5;20
gを、濃度0.23mol/lの酢酸マンガン(II)
4水和物の水溶液180gに投入し、80℃で16時間
攪拌した。スラリ−を固液分離後、ゼオライトケ−キを
再度調製した上記組成の水溶液に投入して同様な操作を
行った。固液分離後、充分水洗し、110℃で10時間
乾燥し、このゼオライトのマンガン含有量を化学分析で
調べたところ、ゼオライトのアルミナモル数に対してマ
ンガン2価として1.03倍含まれていた。更に該ゼオ
ライト20gを、金属バリウムとして1wt%に相当す
るバリウム量を含む0.05mol/lの硝酸バリウム
水溶液29mlに投入し、85℃で10時間、つづけて
110℃で10時間乾燥させることによって、蒸発乾固
を行った。この触媒を触媒6とした。
Example 6 <Preparation of catalyst 6> Ammonium type ZSM-5 with a silica/alumina molar ratio of 40; 20
g of manganese(II) acetate at a concentration of 0.23 mol/l.
The mixture was poured into 180 g of an aqueous solution of tetrahydrate and stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, it was thoroughly washed with water and dried at 110°C for 10 hours, and the manganese content of this zeolite was investigated by chemical analysis, and it was found that it contained 1.03 times the manganese divalent content compared to the number of moles of alumina in the zeolite. . Further, 20 g of the zeolite was added to 29 ml of a 0.05 mol/l barium nitrate aqueous solution containing an amount of barium equivalent to 1 wt% as metallic barium, and dried at 85 ° C. for 10 hours and then at 110 ° C. for 10 hours. Evaporation to dryness was performed. This catalyst was designated as Catalyst 6.

【0037】比較例1  <比較触媒1の調製>シリカ
/アルミナモル比が40のアンモニウム型ZSM−5;
20gを、濃度0.23mol/lの酢酸マンガン(I
I)4水和物の水溶液180gに投入し、80℃で16
時間攪拌した。スラリ−を固液分離後、ゼオライトケ−
キを再度調製した上記組成の水溶液に投入して同様な操
作を行った。固液分離後、充分水洗し、110℃で10
時間乾燥し、この触媒を比較触媒1とした。
Comparative Example 1 <Preparation of Comparative Catalyst 1> Ammonium type ZSM-5 with a silica/alumina molar ratio of 40;
20g of manganese acetate (I) with a concentration of 0.23mol/l.
I) Pour into 180 g of an aqueous solution of tetrahydrate and heat at 80°C for 16
Stir for hours. After solid-liquid separation of slurry, zeolite cake
The same operation was carried out by putting the sample into the aqueous solution having the above composition prepared again. After solid-liquid separation, thoroughly washed with water and heated at 110°C for 10
This catalyst was designated as Comparative Catalyst 1.

【0038】この触媒のマンガン含有量を化学分析で調
べたところ、ゼオライトのアルミナモル数に対してマン
ガン2価として1.02倍含まれていた。
When the manganese content of this catalyst was investigated by chemical analysis, it was found that the manganese content was 1.02 times the number of moles of alumina in the zeolite as divalent manganese.

【0039】比較例2  <比較触媒2の調製>シリカ
/アルミナモル比が40のアンモニウム型ZSM−5;
20gを、その中に含まれているアルミナモル数に対し
て2倍となるように秤量された濃度0.1mol/lの
酢酸銅(II)水和物の水溶液に投入し、直ちに2.5
%アンモニア水を加えて水溶液のpHを10.5とし、
室温で16時間攪拌した。固液分離後、充分水洗し、1
10℃で10時間乾燥し、この触媒を比較触媒2とした
Comparative Example 2 <Preparation of Comparative Catalyst 2> Ammonium type ZSM-5 with a silica/alumina molar ratio of 40;
20g was added to an aqueous solution of copper(II) acetate hydrate with a concentration of 0.1 mol/l, which was weighed so that it was twice the number of moles of alumina contained therein, and immediately 2.5
% ammonia water was added to adjust the pH of the aqueous solution to 10.5,
Stirred at room temperature for 16 hours. After solid-liquid separation, wash thoroughly with water,
The catalyst was dried at 10° C. for 10 hours and designated as Comparative Catalyst 2.

【0040】この触媒の銅含有量を化学分析で調べたと
ころ、ゼオライトのアルミナモル数に対して銅2価とし
て1.04倍含まれていた。
When the copper content of this catalyst was investigated by chemical analysis, it was found that it contained 1.04 times the number of moles of alumina in the zeolite as divalent copper.

【0041】比較例3  <比較触媒3の調製>シリカ
/アルミナモル比が40のアンモニウム型ZSM−5;
20gを、濃度1.09mol/lの塩化バリウムの水
溶液180gに投入し、80℃で16時間攪拌した。ス
ラリ−を固液分離後、ゼオライトケ−キを再度調製した
上記濃度のバリウム水溶液に投入して同様な操作を2回
行った。固液分離後、充分水洗し、110℃で10時間
乾燥し、比較触媒3とした。この触媒のバリウム含有量
を化学分析で調べたところ、ゼオライトのアルミナモル
数に対して、バリウムは0.86倍含まれていた。
Comparative Example 3 <Preparation of Comparative Catalyst 3> Ammonium type ZSM-5 with a silica/alumina molar ratio of 40;
20 g was added to 180 g of an aqueous solution of barium chloride with a concentration of 1.09 mol/l, and the mixture was stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was poured into a barium aqueous solution of the above concentration prepared again, and the same operation was repeated twice. After solid-liquid separation, it was thoroughly washed with water and dried at 110° C. for 10 hours to obtain Comparative Catalyst 3. When the barium content of this catalyst was investigated by chemical analysis, it was found that the barium content was 0.86 times the number of moles of alumina in the zeolite.

【0042】実施例7  <触媒の活性評価>実施例1
〜6で調製した触媒1〜6をプレス成形後破砕して12
〜20メッシュに整粒し、その0.65グラムを常圧固
定床反応管に充填した。以下に示す組成のガス(以下、
反応ガスという)を600ml/min.で流通し、5
00℃まで昇温し、0.5時間保持し前処理とした。そ
の後、200℃まで降温し、5℃/min.の昇温速度
で800℃まで昇温し、NO浄化率を測定した(反応1
)。そのまま続けて800℃で5時間保持し、流通ガス
を窒素にかえて、放冷した。室温まで冷却し、流通ガス
を反応ガスとし、200℃まで昇温し、0.5時間保持
し前処理とした。その後、5℃/min.の昇温速度で
800℃まで昇温し、NO浄化率を測定した(反応2)
。反応ガス中の有害成分である窒素酸化物を  NOと
し、反応1及び反応2での最高浄化率の変化によって触
媒の耐久性を評価した結果を表1にまとめて示す。反応
1及び反応2での最高浄化率の低下が小さいもの、即ち
、反応2での最高浄化率が高い触媒ほど、耐熱性や耐久
性が高いといえる。NO浄化率とは、次式で示される。
Example 7 <Evaluation of catalyst activity> Example 1
The catalysts 1 to 6 prepared in steps 1 to 6 were press-molded and then crushed to obtain 12
The particles were sized to ~20 mesh, and 0.65 grams thereof was filled into an atmospheric fixed bed reaction tube. Gases with the composition shown below (hereinafter referred to as
(referred to as reaction gas) at 600 ml/min. distributed in 5
The temperature was raised to 00° C. and held for 0.5 hours as a pretreatment. After that, the temperature was lowered to 200°C, and the temperature was lowered to 5°C/min. The temperature was raised to 800°C at a heating rate of
). The temperature was continued to be maintained at 800° C. for 5 hours, the circulating gas was changed to nitrogen, and the mixture was allowed to cool. The mixture was cooled to room temperature, and the temperature was raised to 200° C. using the flowing gas as a reaction gas, and maintained for 0.5 hours as a pretreatment. After that, 5°C/min. The temperature was raised to 800°C at a heating rate of
. Table 1 summarizes the results of evaluating the durability of the catalyst based on the change in the maximum purification rate in Reaction 1 and Reaction 2, using NO as nitrogen oxide, which is a harmful component in the reaction gas. It can be said that a catalyst with a smaller decrease in the maximum purification rate in Reaction 1 and Reaction 2, that is, a catalyst with a higher maximum purification rate in Reaction 2, has higher heat resistance and durability. The NO purification rate is expressed by the following formula.

【0043】[0043]

【数1】 比較例4<比較触媒の活性評価>比較例1〜3で得られ
た比較触媒1〜3を、実施例7と同じ方法を用いて活性
を評価した結果を表1に示す。
Comparative Example 4 <Evaluation of activity of comparative catalyst> Table 1 shows the results of evaluating the activity of comparative catalysts 1 to 3 obtained in Comparative Examples 1 to 3 using the same method as in Example 7.

【0044】[0044]

【表1】[Table 1]

【0045】[0045]

【発明の効果】表1より、本発明の触媒は、初期および
反応ガス中800℃5時間保持後の活性ともに、比較触
媒より酸素過剰排気ガス中での排気ガス浄化能が高く、
非常に優れた耐熱性、耐久性を示すという効果がある。 従って、本発明の触媒を排気ガスと接触させることによ
り、酸素過剰状態であっても、窒素酸化物、一酸化炭素
及び炭化水素の浄化を行うことができるという効果が得
られる。
Effects of the Invention From Table 1, the catalyst of the present invention has a higher exhaust gas purifying ability in oxygen-excess exhaust gas than the comparative catalyst in both the initial activity and the activity after being held at 800°C for 5 hours in the reaction gas.
It has the effect of exhibiting extremely excellent heat resistance and durability. Therefore, by bringing the catalyst of the present invention into contact with exhaust gas, it is possible to purify nitrogen oxides, carbon monoxide, and hydrocarbons even in an oxygen-excess state.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒素酸化物,一酸化炭素及び炭化水素を含
む酸素過剰の排ガスから、窒素酸化物,一酸化炭素及び
炭化水素を除去するゼオライト触媒であって、シリカ/
アルミナモル比が少なくとも15以上のゼオライトであ
り、かつマンガンおよびアルカリ土類金属を含有するこ
とを特徴とする排気ガス浄化触媒。
Claim 1: A zeolite catalyst for removing nitrogen oxides, carbon monoxide and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide and hydrocarbons, the zeolite catalyst comprising silica/
An exhaust gas purification catalyst characterized by being a zeolite having an alumina molar ratio of at least 15 or more, and containing manganese and an alkaline earth metal.
JP2411787A 1990-12-20 1990-12-20 Exhaust gas purification catalyst Pending JPH04219150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411787A JPH04219150A (en) 1990-12-20 1990-12-20 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411787A JPH04219150A (en) 1990-12-20 1990-12-20 Exhaust gas purification catalyst

Publications (1)

Publication Number Publication Date
JPH04219150A true JPH04219150A (en) 1992-08-10

Family

ID=18520727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411787A Pending JPH04219150A (en) 1990-12-20 1990-12-20 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JPH04219150A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386693A (en) * 1976-12-21 1978-07-31 Kurita Water Ind Ltd Nitrogen oxides reduction catalyst
JPH01130735A (en) * 1987-11-18 1989-05-23 Toyota Motor Corp Catalyst for purifying exhaust gas
JPH04150947A (en) * 1990-10-12 1992-05-25 Sekiyu Sangyo Kasseika Center Catalyst for catalytical reduction of nitrogen oxide
JPH04197447A (en) * 1990-11-29 1992-07-17 Agency Of Ind Science & Technol Remover of nitrogen oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386693A (en) * 1976-12-21 1978-07-31 Kurita Water Ind Ltd Nitrogen oxides reduction catalyst
JPH01130735A (en) * 1987-11-18 1989-05-23 Toyota Motor Corp Catalyst for purifying exhaust gas
JPH04150947A (en) * 1990-10-12 1992-05-25 Sekiyu Sangyo Kasseika Center Catalyst for catalytical reduction of nitrogen oxide
JPH04197447A (en) * 1990-11-29 1992-07-17 Agency Of Ind Science & Technol Remover of nitrogen oxide

Similar Documents

Publication Publication Date Title
CA2032799C (en) Catalyst for and method of purifying oxygen-excess exhaust gas
US5208198A (en) Catalyst for purifying exhaust gas
JP2973524B2 (en) Exhaust gas purification catalyst
US5514355A (en) Method for purifying an oxygen-rich exhaust gas
JP3044622B2 (en) Exhaust gas purification method
JPH04219147A (en) Exhaust gas purification catalyst
JP3114982B2 (en) Exhaust gas purification catalyst and method of using the same
JP2939484B2 (en) Exhaust gas purification method
JP2901295B2 (en) Exhaust gas purification catalyst and method of using the same
JPH04219150A (en) Exhaust gas purification catalyst
JPH04219143A (en) Exhaust gas purification catalyst
JPH04210244A (en) Catalyst for cleaning exhaust gas
JPH04219146A (en) Exhaust gas purification catalyst
JPH04222635A (en) Catalyst for purifying exhaust gas
JP3362401B2 (en) Exhaust gas purification catalyst
JP2969843B2 (en) How to use exhaust gas purification catalyst
JP3324130B2 (en) Exhaust gas purification catalyst
JPH04219149A (en) Exhaust gas purification catalyst
JPH04219145A (en) Exhaust gas purification catalyst
JPH04219144A (en) Exhaust gas purification catalyst
JPH04219142A (en) Exhaust gas purification catalyst
JPH04219148A (en) Exhaust gas purification catalyst
JPH03202157A (en) Catalyst for purifying exhaust gas
JPH06126187A (en) Removing method for nitrogen oxide
JPH05168863A (en) Removing method of nitrogen oxide