JPH04214072A - Carbonaceous composition, carbon material for fuel cell and its manufacture - Google Patents
Carbonaceous composition, carbon material for fuel cell and its manufactureInfo
- Publication number
- JPH04214072A JPH04214072A JP2410299A JP41029990A JPH04214072A JP H04214072 A JPH04214072 A JP H04214072A JP 2410299 A JP2410299 A JP 2410299A JP 41029990 A JP41029990 A JP 41029990A JP H04214072 A JPH04214072 A JP H04214072A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- carbonaceous
- weight
- parts
- carbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 40
- 239000000446 fuel Substances 0.000 title claims abstract description 18
- 239000000203 mixture Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 20
- 239000004917 carbon fiber Substances 0.000 claims abstract description 20
- 239000005011 phenolic resin Substances 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims description 49
- 239000002245 particle Substances 0.000 claims description 34
- 239000000835 fiber Substances 0.000 claims description 26
- 239000011230 binding agent Substances 0.000 claims description 17
- 239000008187 granular material Substances 0.000 claims description 14
- 238000010000 carbonizing Methods 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 3
- 238000010304 firing Methods 0.000 description 16
- 238000005452 bending Methods 0.000 description 9
- 229910002804 graphite Inorganic materials 0.000 description 9
- 239000010439 graphite Substances 0.000 description 9
- 238000000465 moulding Methods 0.000 description 8
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000002689 soil Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 239000011295 pitch Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000011329 calcined coke Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
- Cell Separators (AREA)
- Fuel Cell (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、燃料電池用セパレータ
を作製する上で有用な炭素質組成物、特に燃料電池用と
して有用な炭素材およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonaceous composition useful for producing a separator for a fuel cell, particularly a carbon material useful for a fuel cell, and a method for producing the same.
【0002】0002
【従来の技術】燃料電池は、他の発電装置と異なり、S
Ox 、NOx 及び粉塵などの公害物質の発生が極め
て少なく、騒音発生源も少ないなどの特徴を有している
。このような燃料電池は、通常、ポーラスな陰極で燃料
の酸化反応、ポーラスな陽極で酸化剤の還元反応を行な
わせており、両極間には、セパレータが使用されている
。このセパレータには、密度が大きく、導電性が高いこ
とが要求される。[Prior Art] Fuel cells, unlike other power generation devices,
It is characterized by extremely low generation of pollutants such as Ox, NOx and dust, and low noise sources. In such a fuel cell, a porous cathode normally performs an oxidation reaction of the fuel, a porous anode performs a reduction reaction of an oxidant, and a separator is used between the two electrodes. This separator is required to have high density and high conductivity.
【0003】前記セパレータは、通常、フェノール樹脂
などのバインダーと、黒鉛などを混練し、シート状に圧
縮成形した後、前記バインダーを硬化させ、焼成するこ
とにより製造されている。この製造方法では、硬化及び
焼成過程でのガス抜けが悪く、発泡を伴なうので、得ら
れた炭素板には気孔が生成し、機械的強度も小さい。す
なわち、焼成によりフェノール樹脂が炭化又は黒鉛化し
て空隙が生成し、炭素材の気孔率が20〜30%にも達
する。従って、密度及び曲げ強度などが小さくなる。特
に、得られた炭素板は、導電性、特に厚み方向、すなわ
ち陰極と陽極間の導電性が低いため、電気エネルギーへ
の変換効率が低下する。[0003] The separator is usually manufactured by kneading a binder such as a phenolic resin with graphite or the like, compressing the mixture into a sheet, and then curing the binder and firing. In this manufacturing method, gas release during the curing and firing process is poor and foaming occurs, so the resulting carbon plate has pores and has low mechanical strength. That is, the phenol resin is carbonized or graphitized by firing, generating voids, and the porosity of the carbon material reaches 20 to 30%. Therefore, the density and bending strength are reduced. In particular, the obtained carbon plate has low conductivity, particularly in the thickness direction, that is, between the cathode and the anode, so that the conversion efficiency into electrical energy is reduced.
【0004】0004
【発明が解決しようとする課題】従って、本発明の目的
は、緻密で機械的強度が大きく、導電性に優れた炭素材
を得ることができる炭素質組成物を提供することにある
。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a carbonaceous composition from which a carbon material that is dense, has high mechanical strength, and has excellent electrical conductivity can be obtained.
【0005】また、本発明の他の目的は、上記の如き優
れた特性を示す燃料電池用炭素材およびその製造方法を
提供することにある。Another object of the present invention is to provide a carbon material for fuel cells that exhibits the above-mentioned excellent properties and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
、本発明者らは、鋭意検討の結果、粒径の異なる複数の
炭素質粉粒体を特定量用いる場合には、緻密で導電性に
優れた炭素材が得られることを見いだし、本発明を完成
した。すなわち、本発明は、炭化又は黒鉛化可能なバイ
ンダーと、炭素繊維化可能な繊維又は炭素繊維(以下、
特に明示のない限り、単に繊維という)と、炭化又は黒
鉛化可能な粉粒体及び炭化又は黒鉛化した粉粒体から選
択された少なくとも一種の炭素質粉粒体とを含む組成物
であって、前記炭素質粉粒体が、平均粒径25〜75μ
mの粉粒体100重量部に対して、平均粒径75〜12
5μmの粉粒体10〜50重量部、平均粒径125〜1
75μmの粉粒体100〜150重量部の割合からなる
炭素質組成物を提供する。[Means for Solving the Problems] In order to achieve the above object, the present inventors have made extensive studies and found that when using a specific amount of a plurality of carbonaceous powder particles with different particle sizes, the material is dense and conductive. It was discovered that a carbon material with excellent properties could be obtained, and the present invention was completed. That is, the present invention combines a binder that can be carbonized or graphitized, and fibers that can be made into carbon fibers or carbon fibers (hereinafter referred to as carbon fibers).
Unless otherwise specified, it is simply referred to as fiber); and at least one carbonaceous powder selected from carbonized or graphitizable powder and carbonized or graphitized powder. , the carbonaceous powder has an average particle size of 25 to 75μ
Average particle size 75-12 for 100 parts by weight of powder or granular material
10-50 parts by weight of 5 μm powder, average particle size 125-1
A carbonaceous composition comprising 100 to 150 parts by weight of 75 μm powder or granules is provided.
【0007】また、本発明は、炭化又は黒鉛化したバイ
ンダーと、炭素繊維と、炭化又は黒鉛化した炭素質粉粒
体とを含むシート状炭素材であって、前記炭素質粉粒体
が、平均粒径25〜75μmの粉粒体100重量部に対
して、平均粒径75〜125μmの粉粒体10〜50重
量部、平均粒径125〜175μmの粉粒体100〜1
50重量部の割合からなる燃料電池用炭素材を提供する
。The present invention also provides a sheet-like carbon material comprising a carbonized or graphitized binder, carbon fibers, and carbonized or graphitized carbonaceous powder, the carbonaceous powder comprising: For 100 parts by weight of powder or granules with an average particle size of 25 to 75 μm, 10 to 50 parts by weight of powder or granules with an average particle size of 75 to 125 μm, 100 to 1 part by weight of powder or granules with an average particle size of 125 to 175 μm
Provided is a carbon material for fuel cells comprising 50 parts by weight.
【0008】さらに、本発明は、前記炭素質組成物をシ
ート状に成形し、炭化又は黒鉛化する燃料電池用炭素材
の製造方法を提供する。Furthermore, the present invention provides a method for producing a carbon material for fuel cells, which comprises forming the carbonaceous composition into a sheet shape and carbonizing or graphitizing the carbonaceous composition.
【0009】なお、本明細書における用語の定義は次の
通りである。[0009] The definitions of terms used in this specification are as follows.
【0010】炭化とは、炭素化可能な成分を、例えば、
450〜1500℃程度の温度で焼成処理することを言
う。黒鉛化とは、例えば1500〜3000℃程度の温
度で焼成処理することを言い、黒鉛の結晶構造を有して
いないときでも黒鉛化の概念に含める。[0010] Carbonization refers to a component that can be carbonized, for example,
It refers to firing treatment at a temperature of about 450 to 1500°C. Graphitization refers to firing treatment at a temperature of, for example, about 1500 to 3000°C, and is included in the concept of graphitization even when the material does not have the crystal structure of graphite.
【0011】炭素繊維とは炭化又は黒鉛化された繊維を
言う。耐炎化処理とは、ピッチ系繊維以外の繊維を、例
えば、酸素存在下、200〜450℃程度の温度で加熱
して表面に耐熱層を形成し、焼成時の溶融を防止する処
理を言う。不融化処理とは、例えば、ピッチ系繊維を、
酸素存在下、200〜450℃程度の温度で加熱して表
面に耐熱層を形成し、焼成時の溶融を防止する処理を言
う。[0011] Carbon fiber refers to carbonized or graphitized fiber. Flame-retardant treatment refers to a treatment in which fibers other than pitch-based fibers are heated, for example, at a temperature of about 200 to 450° C. in the presence of oxygen to form a heat-resistant layer on the surface to prevent melting during firing. Infusibility treatment means, for example, that pitch fibers are
This is a process of heating at a temperature of about 200 to 450°C in the presence of oxygen to form a heat-resistant layer on the surface to prevent melting during firing.
【0012】以下に、本発明をより詳細に説明する。The present invention will be explained in more detail below.
【0013】炭化又は黒鉛化可能なバインダーとしては
、例えば、フェノール樹脂、フラン樹脂、メラミン樹脂
、不飽和ポリエステル、ビニルエステル樹脂、ジアリル
フタレート樹脂、エポキシ樹脂、ポリイミド、熱硬化性
アクリル樹脂などの熱硬化性樹脂;ポリアクリロニトリ
ルなどの熱可塑性樹脂;石炭又は石油ピッチなどが例示
される。これらのバインダーのうち、加熱による形状保
持性、炭化又は黒鉛化による残炭率が大きく、かつ高い
強度を付与できる熱硬化性樹脂、特にフェノール樹脂が
好ましい。なお、バインダーの残炭率は、通常約50〜
60重量%程度又はそれ以上であるのが好ましい。これ
らのバインダーは、少なくとも一種使用できる。Examples of binders that can be carbonized or graphitized include thermosetting resins such as phenolic resins, furan resins, melamine resins, unsaturated polyesters, vinyl ester resins, diallyl phthalate resins, epoxy resins, polyimides, and thermosetting acrylic resins. thermoplastic resins such as polyacrylonitrile; coal or petroleum pitch, etc. Among these binders, thermosetting resins, particularly phenol resins, are preferred, as they can retain their shape when heated, have a large residual carbon content when carbonized or graphitized, and can impart high strength. In addition, the residual carbon percentage of the binder is usually about 50~
It is preferably about 60% by weight or more. At least one of these binders can be used.
【0014】繊維は、焼成により得られる炭素材を補強
できるものであればよい。炭素繊維化可能な繊維として
は、炭素繊維の素材となりうる種々の繊維、例えば、ポ
リアクリロニトリル繊維、フェノール樹脂繊維、レーヨ
ン、セルロース系繊維、ピッチ系繊維などが挙げられる
。炭化又は黒鉛化可能な繊維は、耐炎化処理又は不融化
処理されていてもよい。好ましい繊維は、炭素材に高い
補強性及び導電性を付与できる炭素繊維である。[0014] The fibers may be of any type as long as they can reinforce the carbon material obtained by firing. Examples of fibers that can be made into carbon fibers include various fibers that can be used as raw materials for carbon fibers, such as polyacrylonitrile fibers, phenol resin fibers, rayon, cellulose fibers, and pitch fibers. The carbonized or graphitized fibers may be flame-proofed or infusible-treated. Preferred fibers are carbon fibers that can impart high reinforcing properties and conductivity to the carbon material.
【0015】前記繊維は、ミルドファイバー、例えば、
繊維長0.01〜3mm程度の短繊維であるのが好まし
い。[0015] The fibers are milled fibers, for example,
It is preferable that the fibers are short fibers having a fiber length of about 0.01 to 3 mm.
【0016】炭素質粉粒体は、それ自体又は焼成により
、炭素材に高い導電性を付与するものであればよい。
この炭素質粉粒体は、炭素材の圧縮強度も高める。炭化
又は黒鉛化可能な粉粒体としては、例えば、ピッチの破
砕品を不融化処理したバルクメソフェーズカーボン、石
炭などを500℃程度の低温で乾留し、粉砕した低温か
焼コークスなどが挙げられる。また、炭化又は黒鉛化し
た粉粒体としては、例えば、メソカーボンマイクロビー
スなどの炭素質小球体、コークスブリーズ、鱗状黒鉛、
土壌黒鉛や人造黒鉛などが挙げられる。これらの炭素質
粉粒体は少なくとも一種使用される。好ましい炭素質粉
粒体は、高い導電性を付与できる黒鉛粉である。[0016] The carbonaceous powder may be one that imparts high electrical conductivity to the carbon material by itself or by firing. This carbonaceous powder also increases the compressive strength of the carbon material. Examples of the powder that can be carbonized or graphitized include bulk mesophase carbon obtained by infusibleizing crushed pitch, and low-temperature calcined coke obtained by carbonizing coal at a low temperature of about 500° C. and pulverizing it. In addition, examples of carbonized or graphitized powders include carbonaceous small spheres such as mesocarbon microbeads, coke breeze, scaly graphite,
Examples include soil graphite and artificial graphite. At least one of these carbonaceous powders is used. A preferred carbonaceous powder is graphite powder, which can provide high electrical conductivity.
【0017】前記バインダーと、繊維と、炭素質粉粒体
との割合は、バインダー100重量部に対して、繊維1
0〜75重量部、炭素質粉粒体50〜150重量部程度
である。好ましい組成割合は、バインダー100重量部
に対して、繊維40〜60重量部、炭素質粉粒体75〜
125重量部程度である。[0017] The ratio of the binder, fibers, and carbonaceous powder is 100 parts by weight of the binder to 1 part by weight of the fibers.
The amount is about 0 to 75 parts by weight, and the carbonaceous powder is about 50 to 150 parts by weight. A preferable composition ratio is 40 to 60 parts by weight of fiber and 75 to 75 parts by weight of carbonaceous powder to 100 parts by weight of binder.
The amount is approximately 125 parts by weight.
【0018】そして、前記炭素質粉粒体は、平均粒径2
5〜75μmの粉粒体100重量部に対して、平均粒径
75〜125μmの粉粒体10〜50重量部、平均粒径
125〜175μmの粉粒体100〜150重量部の割
合からなる。好ましい炭素質粉粒体は、平均粒径35〜
65μmの粉粒体100重量部に対して、平均粒径85
〜115μmの粉粒体15〜40重量部、平均粒径13
5〜165μmの粉粒体110〜140重量部の割合か
らなる。このように、粒径の異なる複数の炭素質粉粒体
を組合せて用い、焼成すると、炭素質粉粒体が炭素繊維
間に緻密に充填するためか、炭素材の密度、機械的強度
及び導電性が大きくなる。特に炭素材の厚み方向の電気
抵抗が著しく小さくなる。[0018] The carbonaceous powder has an average particle size of 2
The proportions are 10 to 50 parts by weight of powder and granules with an average particle diameter of 75 to 125 μm and 100 to 150 parts by weight of powder and granules with an average particle diameter of 125 to 175 μm per 100 parts by weight of powder and granules with an average particle size of 5 to 75 μm. Preferable carbonaceous powder has an average particle size of 35 to
Average particle size: 85% for 100 parts by weight of 65μm powder
15 to 40 parts by weight of powder and granules of ~115 μm, average particle size 13
It consists of 110 to 140 parts by weight of granules having a particle size of 5 to 165 μm. In this way, when multiple carbonaceous powders with different particle sizes are used in combination and fired, the density, mechanical strength, and conductivity of the carbon material decrease, probably because the carbonaceous powders are densely packed between the carbon fibers. sexuality becomes greater. In particular, the electrical resistance in the thickness direction of the carbon material is significantly reduced.
【0019】前記炭素質組成物は、炭素材の導電性、機
械的強度などの特性を損わない範囲で、例えば、前記粒
径以外の炭素質粉粒体、有機溶剤、熱可塑性樹脂や、酸
化防止剤、充填剤、可塑剤などの添加剤を含んでいても
よい。The carbonaceous composition may contain, for example, carbonaceous powder having a particle size other than the above, an organic solvent, a thermoplastic resin, etc., within a range that does not impair the characteristics such as electrical conductivity and mechanical strength of the carbon material. It may also contain additives such as antioxidants, fillers, and plasticizers.
【0020】本発明の燃料電池用炭素材は、炭化又は黒
鉛化したバインダーと、炭素繊維と、炭化又は黒鉛化し
た炭素質粉粒体とを含むシート状である。また、前記炭
素質粉粒体は、前記と同様に、粒径が異なり、かつ特定
量の炭素質粉粒体からなる。The carbon material for fuel cells of the present invention is in the form of a sheet containing a carbonized or graphitized binder, carbon fibers, and carbonized or graphitized carbonaceous powder. Further, the carbonaceous powder has different particle sizes and is composed of a specific amount of carbonaceous powder, as described above.
【0021】炭素材の厚みは、例えば、0.1〜5mm
、好ましくは0.2〜4mm程度である。炭素材は導電
性が高く、その厚み方向の比抵抗は、通常、1×10−
2Ω・cm以下、例えば5×10−3〜9×10−3Ω
・cm程度である。また、炭素材は緻密であり、その密
度は、通常、1.6g/cm3 以上、好ましくは1.
7〜2.1g/cm3 程度である。さらに、炭素材は
機械的特性にも優れ、その曲げ強度は6〜15Kgf
/mm2 程度、曲げ弾性率4000〜7000Kgf
/mm2 程度である。[0021] The thickness of the carbon material is, for example, 0.1 to 5 mm.
, preferably about 0.2 to 4 mm. Carbon material has high conductivity, and its specific resistance in the thickness direction is usually 1 x 10-
2Ω・cm or less, e.g. 5×10-3 to 9×10-3Ω
・It is about cm. Further, the carbon material is dense, and its density is usually 1.6 g/cm3 or more, preferably 1.6 g/cm3 or more, and preferably 1.6 g/cm3 or more.
It is about 7 to 2.1 g/cm3. Furthermore, carbon material has excellent mechanical properties, and its bending strength is 6 to 15 kgf.
/mm2 degree, bending elastic modulus 4000-7000Kgf
/mm2.
【0022】本発明の燃料電池用炭素材は、前記炭素質
組成物をシート状に成形する成形工程と、シートを炭化
又は黒鉛化する焼成工程を経ることにより得ることがで
きる。なお、成形工程に先立って、炭素質組成物は、通
常、混練工程に供される。The carbon material for fuel cells of the present invention can be obtained through a forming step of forming the carbonaceous composition into a sheet, and a firing step of carbonizing or graphitizing the sheet. In addition, prior to the molding process, the carbonaceous composition is usually subjected to a kneading process.
【0023】前記混練工程では、慣用の混練機、例えば
、ニーダー、ロールなどを用いることができる。混練時
には、例えば、アルコール類、炭化水素類、ケトン類、
エステル類、エーテル類などの有機溶媒を使用してもよ
い。[0023] In the kneading step, a conventional kneader such as a kneader or roll can be used. During kneading, for example, alcohols, hydrocarbons, ketones,
Organic solvents such as esters and ethers may also be used.
【0024】成形工程では、シート状に成形可能な種々
の成形金型、2本ロールなどを用いることができる。な
お、成形金型でシート状に成形する場合、前記有機溶剤
は、成形工程に先立って、除去するのが好ましい。炭素
材を燃料電池用の薄板として使用する場合には、焼成に
よる収縮を考慮して、例えば、0.5〜5mm程度に成
形することができる。金型成形に際しては、通常、加圧
加熱により成形される。この加圧加熱工程で、熱硬化性
樹脂からなるバインダーは硬化する。熱硬化性樹脂の硬
化は、穏やかに昇温し、樹脂の硬化温度、例えば100
〜250℃、好ましくは140〜220℃程度に保持す
ることにより行なうことができる。成形圧は、炭素材の
密度に応じて選択でき、例えば、50〜1000Kgf
/cm2 程度である。[0024] In the molding process, various molds, two rolls, etc. that can be molded into a sheet shape can be used. In addition, when molding into a sheet shape with a molding die, it is preferable to remove the organic solvent prior to the molding step. When a carbon material is used as a thin plate for a fuel cell, it can be formed to a thickness of, for example, about 0.5 to 5 mm, taking into consideration shrinkage due to firing. When molding with a mold, the molding is usually performed by pressurizing and heating. In this pressurization and heating step, the binder made of thermosetting resin is cured. The thermosetting resin is cured by gently increasing the temperature to the resin's curing temperature, e.g.
This can be carried out by maintaining the temperature at about 140 to 220°C, preferably about 140 to 220°C. The molding pressure can be selected depending on the density of the carbon material, for example, 50 to 1000 Kgf.
/cm2.
【0025】そして、焼成工程で炭化又は黒鉛化するこ
とにより、前記シートが炭素質となり、密度及び機械的
強度が大きく、導電性に優れたシート状炭素材が得られ
る。焼成工程では、導電性を高めるため、前記シートを
800℃以上の温度、好ましくは黒鉛化する温度、例え
ば2000℃以上に加熱するのが好ましい。この焼成に
おいても、穏やかに、特に600℃程度までは10℃/
時間以下の昇温速度で加熱するのが好ましい。焼成は、
真空下または不活性ガス雰囲気中で行なわれる。不活性
ガスとしては、窒素、ヘリウム、アルゴン等が使用でき
る。[0025] By carbonizing or graphitizing in the firing step, the sheet becomes carbonaceous, and a sheet-like carbon material with high density, high mechanical strength, and excellent conductivity can be obtained. In the firing step, the sheet is preferably heated to a temperature of 800° C. or higher, preferably a temperature at which graphitization occurs, for example 2000° C. or higher, in order to improve conductivity. Even in this firing process, the firing should be carried out gently, especially at 10°C/10°C up to about 600°C.
It is preferable to heat at a rate of temperature increase of less than 1 hour. The firing is
It is carried out under vacuum or in an inert gas atmosphere. Nitrogen, helium, argon, etc. can be used as the inert gas.
【0026】[0026]
【発明の効果】本発明の炭素質組成物は、緻密で機械的
強度が大きく、導電性に優れた炭素材を得ることができ
る。[Effects of the Invention] The carbonaceous composition of the present invention makes it possible to obtain a carbon material that is dense, has high mechanical strength, and has excellent electrical conductivity.
【0027】また、本発明の燃料電池用炭素材は、上記
の如き優れた特性を示し、電気エネルギーへの変換効率
を高めることができる。[0027] Furthermore, the carbon material for fuel cells of the present invention exhibits the above-mentioned excellent properties and can improve the conversion efficiency into electrical energy.
【0028】さらに、本発明の製造方法によれば、上記
の如き優れた特性を有する燃料電池用炭素材を得ること
ができる。Furthermore, according to the manufacturing method of the present invention, a carbon material for fuel cells having the above-mentioned excellent properties can be obtained.
【0029】[0029]
【実施例】以下に、実施例に基づいて本発明をより詳細
に説明する。EXAMPLES The present invention will be explained in more detail below based on examples.
【0030】
実施例
フェノール樹脂[群栄化学工業(株)製、商品名PL−
3820A]40重量部、炭素繊維ミルドファイバー[
ドナック(株)製、商品名ドナカーボS−241]20
重量部、平均粒径50μmの土壌黒鉛粉[日本黒鉛工業
(株)製、商品名GA−2]16重量部、平均粒径10
0μmの土壌黒鉛粉[日本黒鉛工業(株)製、商品名G
A−3]4重量部、平均粒径150μmの土壌黒鉛粉[
日本黒鉛工業(株)製、商品名GA−150]20重量
部、およびアセトン100重量部を、ニーダーで30分
間混練した後、60℃に加熱し、アセトンを除去した。
混合物を粉砕機で粉砕し、40メッシュより細かい粒状
物を回収した。Example Phenol resin [manufactured by Gunei Chemical Industry Co., Ltd., trade name PL-
3820A] 40 parts by weight, carbon fiber milled fiber [
Manufactured by Donac Co., Ltd., trade name Dona Carbo S-241] 20
Soil graphite powder with an average particle size of 50 μm (manufactured by Nippon Graphite Industries Co., Ltd., trade name GA-2) 16 parts by weight, average particle size 10
0 μm soil graphite powder [manufactured by Nippon Graphite Industries Co., Ltd., product name G
A-3] 4 parts by weight, soil graphite powder with an average particle size of 150 μm [
20 parts by weight of Nippon Graphite Industries Co., Ltd. (trade name: GA-150) and 100 parts by weight of acetone were kneaded in a kneader for 30 minutes, then heated to 60°C to remove acetone. The mixture was ground in a grinder to collect particles finer than 40 mesh.
【0031】そして、粒状物を金型に入れ、140℃、
圧力300Kgf/cm2 の条件で30分間成形し、
脱型したシート(厚み2mm、300mm×300mm
)を、窒素ガス雰囲気中、200時間かけて2000℃
に昇温し、黒鉛化炭素材を作製した。[0031] Then, the granules were put into a mold and heated at 140°C.
Molded for 30 minutes at a pressure of 300 kgf/cm2,
Demolded sheet (thickness 2mm, 300mm x 300mm
) at 2000°C for 200 hours in a nitrogen gas atmosphere.
The temperature was raised to , and a graphitized carbon material was produced.
【0032】得られたシート状炭素材は、密度1.86
g/cm3 、厚み方向の比抵抗8×10−3Ω・cm
、曲げ強度10.2Kgf /mm2 、曲げ弾性率5
200Kgf /mm2 であった。The obtained sheet-like carbon material has a density of 1.86
g/cm3, specific resistance in the thickness direction 8×10-3Ω・cm
, bending strength 10.2Kgf/mm2, bending modulus 5
It was 200Kgf/mm2.
【0033】
比較例1
実施例で用いた全土壌黒鉛粉に代えて、平均粒径100
μmの土壌黒鉛粉[日本黒鉛工業(株)製、商品名GA
−3]40重量部を用いる以外、実施例と同様にしてシ
ート状炭素材を作製した。得られたシート状炭素材は、
密度1.46g/cm3 、厚み方向の比抵抗2×10
−2Ω・cm、曲げ強度4.6Kgf /mm2 、曲
げ弾性率3200Kgf /mm2 であった。Comparative Example 1 Instead of the whole soil graphite powder used in the example, an average particle size of 100
μm soil graphite powder [manufactured by Nippon Graphite Industries Co., Ltd., product name GA
-3] A sheet-like carbon material was produced in the same manner as in the example except that 40 parts by weight was used. The obtained sheet-like carbon material is
Density 1.46g/cm3, specific resistance in the thickness direction 2×10
-2 Ω·cm, bending strength of 4.6 Kgf/mm2, and bending modulus of elasticity of 3200 Kgf/mm2.
【0034】
比較例2
実施例の黒鉛粉を、平均粒径150μmの土壌黒鉛粉[
日本黒鉛工業(株)製、商品名GA−150]40重量
部とする以外、実施例と同様にしてシート状炭素材を作
製した。得られたシート状炭素材は、密度1.65g/
cm3 、厚み方向の比抵抗8×10−2Ω・cm、曲
げ強度6.2Kgf /mm2 、曲げ弾性率4000
Kgf /mm2 であった。Comparative Example 2 The graphite powder of the example was converted into soil graphite powder with an average particle size of 150 μm [
A sheet-like carbon material was produced in the same manner as in the example except that the amount was 40 parts by weight (manufactured by Nippon Graphite Industries Co., Ltd., trade name: GA-150). The obtained sheet-like carbon material has a density of 1.65 g/
cm3, specific resistance in the thickness direction 8×10-2Ω・cm, bending strength 6.2Kgf/mm2, bending modulus 4000
Kgf/mm2.
Claims (6)
炭素繊維化可能な繊維又は炭素繊維と、炭化又は黒鉛化
可能な粉粒体及び炭化又は黒鉛化した粉粒体から選択さ
れた少なくとも一種の炭素質粉粒体とを含む組成物であ
って、前記炭素質粉粒体が、平均粒径25〜75μmの
粉粒体100重量部に対して、平均粒径75〜125μ
mの粉粒体10〜50重量部、平均粒径125〜175
μmの粉粒体100〜150重量部の割合からなる炭素
質組成物。[Claim 1] A carbonizable or graphitizable binder;
A composition comprising fibers or carbon fibers that can be made into carbon fibers and at least one carbonaceous powder selected from carbonized or graphitized powder and carbonized or graphitized powder, The carbonaceous powder particles have an average particle size of 75 to 125 μm per 100 parts by weight of the powder particles with an average particle size of 25 to 75 μm.
m powder 10 to 50 parts by weight, average particle size 125 to 175
A carbonaceous composition comprising 100 to 150 parts by weight of micrometer powder.
素繊維化可能な繊維又は炭素繊維10〜75重量部、炭
素質粉粒体50〜150重量部を含む請求項1記載の炭
素質組成物。2. The carbonaceous composition according to claim 1, which contains 10 to 75 parts by weight of fibers or carbon fibers that can be made into carbon fibers and 50 to 150 parts by weight of carbonaceous powder per 100 parts by weight of the binder.
維化可能な繊維又は炭素繊維が炭素繊維ミルドファイバ
ー、炭素質粉粒体が黒鉛粉である請求項1記載の炭素質
組成物。3. The carbonaceous composition according to claim 1, wherein the binder is a phenol resin, the fibers that can be made into carbon fibers or carbon fibers are milled carbon fibers, and the carbonaceous powder is graphite powder.
素繊維と、炭化又は黒鉛化した炭素質粉粒体とを含むシ
ート状炭素材であって、前記炭素質粉粒体が、平均粒径
25〜75μmの粉粒体100重量部に対して、平均粒
径75〜125μmの粉粒体10〜50重量部、平均粒
径125〜175μmの粉粒体100〜150重量部の
割合からなる燃料電池用炭素材。4. A sheet-like carbon material comprising a carbonized or graphitized binder, carbon fibers, and carbonized or graphitized carbonaceous powder, wherein the carbonaceous powder has an average particle size of 25 A fuel cell consisting of 10 to 50 parts by weight of powder and granules with an average particle size of 75 to 125 μm and 100 to 150 parts by weight of powder and granules with an average particle size of 125 to 175 μm to 100 parts by weight of powder and granules with average particle size of ~75 μm. carbon material.
密度が1.6g/cm3 以上である請求項4記載の燃
料電池用炭素材。[Claim 5] Specific resistance is 1×10-2 Ω·cm or less,
The carbon material for fuel cells according to claim 4, which has a density of 1.6 g/cm3 or more.
状に成形し、炭化又は黒鉛化する燃料電池用炭素材の製
造方法。6. A method for producing a carbon material for fuel cells, which comprises forming the carbonaceous composition according to claim 1 into a sheet shape and carbonizing or graphitizing the sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02410299A JP3142587B2 (en) | 1990-12-12 | 1990-12-12 | Carbonaceous composition, carbon material for fuel cell and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02410299A JP3142587B2 (en) | 1990-12-12 | 1990-12-12 | Carbonaceous composition, carbon material for fuel cell and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04214072A true JPH04214072A (en) | 1992-08-05 |
JP3142587B2 JP3142587B2 (en) | 2001-03-07 |
Family
ID=18519483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02410299A Expired - Fee Related JP3142587B2 (en) | 1990-12-12 | 1990-12-12 | Carbonaceous composition, carbon material for fuel cell and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3142587B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08113668A (en) * | 1994-10-14 | 1996-05-07 | Osaka Gas Co Ltd | Production of mesocarbon powder molding and production of carbon sinter |
WO1996033520A1 (en) * | 1995-04-20 | 1996-10-24 | International Fuel Cells Corporation | Graphitized composite article of carbon-fibre-reinforced carbon and method for manufacturing the same |
WO1997002612A1 (en) * | 1995-07-05 | 1997-01-23 | Nisshinbo Industries, Inc. | Separator for fuel cells of solid polyelectrolyte type and processes of the production thereof |
WO2000016424A1 (en) * | 1998-09-16 | 2000-03-23 | Schunk Kohlenstofftechnik Gmbh | Plastic plate and method for producing the same |
JP2001068128A (en) * | 1999-06-24 | 2001-03-16 | Unitika Ltd | Separator for fuel cell and manufacture thereof |
JP2003055057A (en) * | 2001-08-23 | 2003-02-26 | Nippon Carbon Co Ltd | Method of manufacturing carbon fiber reinforced carbon material |
JP2003234110A (en) * | 2002-02-07 | 2003-08-22 | Mitsubishi Pencil Co Ltd | Separator for fuel cell and its manufacturing method |
US6884538B2 (en) | 2001-03-27 | 2005-04-26 | Nichias Corporation | Fuel cell separator and method for manufacturing the same |
US7049021B2 (en) | 2000-06-29 | 2006-05-23 | Osaka Gas Company Limited | Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator |
WO2006134858A1 (en) * | 2005-06-16 | 2006-12-21 | Matsushita Electric Industrial Co., Ltd. | Heat dissipating graphite sheet and electronic device using same |
US7452624B2 (en) | 2001-02-15 | 2008-11-18 | Panasonic Corporation | Polymer electrolyte type fuel cell |
JP2011093758A (en) * | 2009-10-30 | 2011-05-12 | Ibiden Co Ltd | Carbonaceous material |
JP2013511408A (en) * | 2009-11-23 | 2013-04-04 | ユーティーシー パワー コーポレイション | Method for producing porous article |
JP2017004595A (en) * | 2015-06-04 | 2017-01-05 | パナソニックIpマネジメント株式会社 | Separator for fuel battery and fuel battery |
JP2021125323A (en) * | 2020-02-03 | 2021-08-30 | 日本ピラー工業株式会社 | Fuel cell separator material and fuel cell separator |
CN115196628A (en) * | 2022-07-09 | 2022-10-18 | 唐山金湾特碳石墨有限公司 | Method for manufacturing fiber-reinforced negative electrode carrier through one-step molding |
-
1990
- 1990-12-12 JP JP02410299A patent/JP3142587B2/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08113668A (en) * | 1994-10-14 | 1996-05-07 | Osaka Gas Co Ltd | Production of mesocarbon powder molding and production of carbon sinter |
WO1996033520A1 (en) * | 1995-04-20 | 1996-10-24 | International Fuel Cells Corporation | Graphitized composite article of carbon-fibre-reinforced carbon and method for manufacturing the same |
US5726105A (en) * | 1995-04-20 | 1998-03-10 | International Fuel Cells | Composite article |
US6039823A (en) * | 1995-04-20 | 2000-03-21 | International Fuel Cells | Composite article |
WO1997002612A1 (en) * | 1995-07-05 | 1997-01-23 | Nisshinbo Industries, Inc. | Separator for fuel cells of solid polyelectrolyte type and processes of the production thereof |
WO2000016424A1 (en) * | 1998-09-16 | 2000-03-23 | Schunk Kohlenstofftechnik Gmbh | Plastic plate and method for producing the same |
JP2001068128A (en) * | 1999-06-24 | 2001-03-16 | Unitika Ltd | Separator for fuel cell and manufacture thereof |
US7049021B2 (en) | 2000-06-29 | 2006-05-23 | Osaka Gas Company Limited | Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator |
US7452624B2 (en) | 2001-02-15 | 2008-11-18 | Panasonic Corporation | Polymer electrolyte type fuel cell |
US6884538B2 (en) | 2001-03-27 | 2005-04-26 | Nichias Corporation | Fuel cell separator and method for manufacturing the same |
JP2003055057A (en) * | 2001-08-23 | 2003-02-26 | Nippon Carbon Co Ltd | Method of manufacturing carbon fiber reinforced carbon material |
JP4587632B2 (en) * | 2002-02-07 | 2010-11-24 | 三菱鉛筆株式会社 | Fuel cell separator and method for producing the same |
JP2003234110A (en) * | 2002-02-07 | 2003-08-22 | Mitsubishi Pencil Co Ltd | Separator for fuel cell and its manufacturing method |
JP5098642B2 (en) * | 2005-06-16 | 2012-12-12 | パナソニック株式会社 | Method for producing heat-dissipating graphite sheet |
WO2006134858A1 (en) * | 2005-06-16 | 2006-12-21 | Matsushita Electric Industrial Co., Ltd. | Heat dissipating graphite sheet and electronic device using same |
JP2011093758A (en) * | 2009-10-30 | 2011-05-12 | Ibiden Co Ltd | Carbonaceous material |
JP2013511408A (en) * | 2009-11-23 | 2013-04-04 | ユーティーシー パワー コーポレイション | Method for producing porous article |
US9403301B2 (en) | 2009-11-23 | 2016-08-02 | Audi Ag | Method for processing a porous article |
JP2017004595A (en) * | 2015-06-04 | 2017-01-05 | パナソニックIpマネジメント株式会社 | Separator for fuel battery and fuel battery |
JP2021125323A (en) * | 2020-02-03 | 2021-08-30 | 日本ピラー工業株式会社 | Fuel cell separator material and fuel cell separator |
CN115196628A (en) * | 2022-07-09 | 2022-10-18 | 唐山金湾特碳石墨有限公司 | Method for manufacturing fiber-reinforced negative electrode carrier through one-step molding |
Also Published As
Publication number | Publication date |
---|---|
JP3142587B2 (en) | 2001-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8691129B2 (en) | Method of producing exfoliated graphite composite compositions for fuel cell flow field plates | |
JP3142587B2 (en) | Carbonaceous composition, carbon material for fuel cell and method for producing the same | |
KR100722812B1 (en) | Electroconductive curable resin composition, cured product thereof and process for producing the same | |
US20080277628A1 (en) | Exfoliated graphite composite compositions for fuel cell flow field plates | |
JP2001126744A (en) | Separator for fuel cell and fabricating method therefor | |
JP2001122677A (en) | Method for manufacturing separator for fuel battery | |
JP3573444B2 (en) | Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same | |
JP3616255B2 (en) | Separator member for polymer electrolyte fuel cell and method for producing the same | |
JPS61161666A (en) | Electrochemical battery separator plate, manufacture thereofand fuel battery | |
JP2002083608A (en) | Separator for fuel cell and its manufacturing method | |
JP3722965B2 (en) | Carbon material for electric double layer capacitors | |
JPH05325984A (en) | Premolded carbon material and manufacture thereof and manufacture of electrode substrate for fuel cell | |
JPH09278558A (en) | Carbonaceous porous body and its production | |
JPH04220438A (en) | Prepreg for carbon plate, and production of the prepreg and the plate | |
JPH06135770A (en) | Carbonaceous preformed body, its production and production of electrode substrate | |
KR101144817B1 (en) | Manufacturing method of separator for fuel cell using surface treatment and separator for fuel cell manufactured by the same | |
JPH04284363A (en) | Manufacture of carbon plate | |
JPH0517260A (en) | Production of carbonaceous porous body | |
KR101169388B1 (en) | High strength carbon composites using graphene, manufacturing method thereof and separator for fuel cell using the same | |
JPS62138361A (en) | Manufacture of high density formed body from carbon material | |
JPH0757741A (en) | Manufacture of carbonaceous preformed body and electrode substrate | |
JPH11263681A (en) | Production of carbonaceous porous body for fuel cell | |
JPH05205750A (en) | Carbonaceous preformed body and manufacture of electrode base for fuel cell | |
JPS63222072A (en) | Impermeable carbon material | |
JPS62171908A (en) | Production of carbon plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |