JPH04206607A - Thin-film transformer/inductor - Google Patents

Thin-film transformer/inductor

Info

Publication number
JPH04206607A
JPH04206607A JP33071890A JP33071890A JPH04206607A JP H04206607 A JPH04206607 A JP H04206607A JP 33071890 A JP33071890 A JP 33071890A JP 33071890 A JP33071890 A JP 33071890A JP H04206607 A JPH04206607 A JP H04206607A
Authority
JP
Japan
Prior art keywords
coil
thin film
aspect ratio
thin
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33071890A
Other languages
Japanese (ja)
Inventor
Hirosuke Mikami
三上 寛祐
Akito Sakamoto
章人 酒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP33071890A priority Critical patent/JPH04206607A/en
Publication of JPH04206607A publication Critical patent/JPH04206607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To obtain a large inductance by using an existing thin-film technique and to improve an electric conversion characteristic by a method wherein the aspect ratio of a cross-sectional shape for a thin-film coil is set within a specific range. CONSTITUTION:An insulating layer 2, a core layer 3, an insulating and flattening layer 4, a thin-film coil 5 and a core layer 6 are formed on a substrate 1. The ratio (the aspect ratio) of the coil thickness of the coil width at the thin-film coil 5 is optimized at 0.1 to 10 by using an existing thin-film technique. Then, a self-inductance L becomes maximum when the aspect ratio is at 1 and is set at less than 95% of the maximum value within said range. Then, a mutual inductance M becomes maximum when the aspect ratio is at about 5. Thereby, a large inductance can be obtained by using the existing thin-film technique, and an electric conversion characteristic can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランス/インダクタに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to thin film transformers/inductors.

〔従来の技術〕[Conventional technology]

スイッチング電源用及び信号処理用トランス/インダク
タを大幅に小型軽量化するために、薄膜技術により、コ
アやコイルを形成した薄膜トランス/インダクタの研究
が行われ始め、その構造等が種々提案されている。
In order to significantly reduce the size and weight of switching power supply and signal processing transformers/inductors, research has begun on thin film transformers/inductors with cores and coils formed using thin film technology, and various structures have been proposed. .

その−例として、第5図に内部コイル型薄膜インダクタ
の主要部分の構造を示す。これはフオトセラム等の基板
1上に順次、絶縁層2 (例えばハードキュアしたフォ
トレジスト)、アモルファス合金よりなるコア層3、絶
縁・平坦化層4、薄膜コイル5(材質はCuまたはAI
l;図では2ターン)、絶縁・平坦化層4、コア層6を
形成したものである。
As an example, FIG. 5 shows the structure of the main parts of an internal coil type thin film inductor. This is formed by sequentially depositing an insulating layer 2 (for example, hard-cured photoresist), a core layer 3 made of an amorphous alloy, an insulating/planarizing layer 4, and a thin film coil 5 (made of Cu or AI) on a substrate 1 such as photoceram.
(2 turns in the figure), an insulating/flattening layer 4, and a core layer 6.

また、第6図の内部コイル型薄膜トランスも同様な構造
をしている。ただ、薄膜コイル5が、1次コイル5Aと
2次コイル5Bの2&uである点が薄膜インダクタと異
なる。
Further, the internal coil type thin film transformer shown in FIG. 6 has a similar structure. However, it differs from a thin film inductor in that the thin film coil 5 is a 2&u structure consisting of a primary coil 5A and a secondary coil 5B.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このようにして得られた薄膜トランス/イン
ダクタの特性は、薄膜コイルやコア層の形状や電磁気特
性に大きく影響される。例えば、薄膜トランス/インダ
クタの重要な特性である自己インダクタンスや相互イン
ダクタンスは、薄膜コイルの断面形状に大きく影響され
る。即ち、薄膜コイルの断面積は、コイルに流さなけれ
ばならない電流値によって決定することができる。しか
し断面積が決まってもコイルの厚さや幅の値によって、
インダクタンスは大きく影響されるので、そのコイル厚
さと幅の関係を最適化する必要がある。
By the way, the characteristics of the thin film transformer/inductor thus obtained are greatly influenced by the shape and electromagnetic characteristics of the thin film coil and core layer. For example, self-inductance and mutual inductance, which are important characteristics of thin-film transformers/inductors, are greatly influenced by the cross-sectional shape of the thin-film coil. That is, the cross-sectional area of the thin film coil can be determined by the current value that must be passed through the coil. However, even if the cross-sectional area is determined, depending on the coil thickness and width,
Since inductance is greatly affected, it is necessary to optimize the relationship between coil thickness and width.

本発明はこのような背景に基づいてなされたものであり
、薄膜コイルの断面形状の厚さと幅の関係を最適化する
ことで、薄膜トランス/インダクタの電磁変換特性を改
善することを目的とする。
The present invention was made based on this background, and an object of the present invention is to improve the electromagnetic conversion characteristics of a thin film transformer/inductor by optimizing the relationship between the thickness and width of the cross-sectional shape of a thin film coil. .

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、薄膜コイルの断面形状のアスペクト比(コ
イル厚さ/コイル幅)を0゜1〜10の範囲内にするこ
とにより達成される。
The above object is achieved by making the aspect ratio (coil thickness/coil width) of the cross-sectional shape of the thin film coil within the range of 0°1 to 10°.

〔作用〕[Effect]

ノイマンの式より、長さ16、間隔dの2本の直線状導
体の相互インダクタンスMは(1)式で表される。また
長さ1cの1本の直線状導体の自己インダクタンスしは
(3)式で表される。なお、(3)式と(4)式を幾何
学的平均距@ (GMD)と呼ぶ。
From Neumann's equation, the mutual inductance M of two linear conductors with a length of 16 and a distance of d is expressed by equation (1). Further, the self-inductance of a single linear conductor having a length of 1c is expressed by equation (3). Note that equations (3) and (4) are called geometric mean distance (GMD).

M=±(μo’lc/2π)  (1n (J((Ri
J/lc ) t+1)/RIJ)  4((R4h/
It )”+1)+R目/1c)      −・(1
)但し、+;電流が同じ向きの場合、−;電流が逆向き
の場合、μ。;4πX 10−’H/Al n Ri 
J−1/ S 1・S J  SS I n r l 
J d S ;  d S J但し、S、、S、;2本
の導体の断面積、dSi 、dSJ  i 2本の導体
の微小断面積r0.;微小断面積ds、とdS、の距離
り一±(/J15  ・Ic / 2 π)  〔I 
n (J((R;4/fc ) 2+1) /R11)
 −J((Rii/IC) 2+ 1 ) + Ri=
/ I c )       −(311nRt==1
/St 2S51nrtidS、dS、’但し、Si 
 、導体の断面積 dS、、dS、’ i導体内の2つの微小断面積 ri=;i小断面積dS、とdS1′の距離 以上の式より、断面積一定の場合のLとMを計算した結
果は、第3図と第4図に示される通りである。但し、コ
イル長は1m、微小断面積の大きさはコイル断面積の1
/80〜1/320、Mについてはコイルの間隔を10
μmとした。
M=±(μo'lc/2π) (1n (J((Ri
J/lc) t+1)/RIJ) 4((R4h/
It)”+1)+Rth/1c) −・(1
) However, +: if the currents are in the same direction, -; if the currents are in opposite directions, μ. ;4πX 10-'H/Al n Ri
J-1/ S 1・S J SS I n r l
J d S ; d S J However, S, , S, ; Cross-sectional area of two conductors, dSi , dSJ i Minute cross-sectional area of two conductors r0. ; The distance between the minute cross-sectional areas ds and dS is ±(/J15 ・Ic / 2 π) [I
n (J((R;4/fc) 2+1)/R11)
−J((Rii/IC) 2+ 1 ) + Ri=
/Ic) −(311nRt==1
/St 2S51nrtidS,dS,'However, Si
, cross-sectional area of the conductor dS,, dS,' i Calculate L and M when the cross-sectional area is constant from the following formula: distance between two small cross-sectional areas ri =; i small cross-sectional areas dS, and dS1' The results are shown in FIGS. 3 and 4. However, the coil length is 1 m, and the size of the micro cross-sectional area is 1 of the coil cross-sectional area.
/80 to 1/320, for M, the coil spacing is 10
It was set as μm.

これより、Lはコイルの断面形状のアスペクト比、即ち
、(コイルの厚さ)/(コイルの幅)が1の時に最大に
なり、Mはアスペクト比が約5で最大になることが分か
る。さらにLは、アスペクト比が0.1〜工0の範囲内
にあれば、最大値の95%以内にあることが、またMは
、アスペクト比が0.1〜200の範囲内にあれば、最
大値の90%以内にあることが分かる。
From this, it can be seen that L is maximum when the aspect ratio of the cross-sectional shape of the coil, that is, (coil thickness)/(coil width) is 1, and M is maximum when the aspect ratio is about 5. Further, L is within 95% of the maximum value if the aspect ratio is within the range of 0.1 to 0, and M is within 95% of the maximum value if the aspect ratio is within the range of 0.1 to 200. It can be seen that it is within 90% of the maximum value.

しかしながら現在の薄膜技術では、アスペクト比が20
0の薄膜コイルを量産することは困難であり、アスペク
ト比の上限は10前後が適当と考えられる。
However, with current thin film technology, the aspect ratio is 20
It is difficult to mass-produce thin film coils with an aspect ratio of 0.0, and an upper limit of the aspect ratio of around 10 is considered appropriate.

なお、2本のコイルのインダクタンスはL十Mで与えら
れるから、LとMの各々が大きい場合の方が、L+Mが
大きな値を取ることは言うまでもない。
Note that since the inductance of the two coils is given by L + M, it goes without saying that L+M takes a larger value when each of L and M is larger.

以上は2本の直線状の導体に関する考察であった。将来
実用化されるであろう薄膜トランス/インダクタの薄膜
コイルは、スパイラル型やつづら折れ型等の複雑なパタ
ーンを採るであろう、しかしそのインダクタンスは、上
述の2本の直線状導体の自己インダクタンスと相互イン
ダクタンスの組み合わせで近億できる。その場合、前述
したように、自己及び相互インダクタンスが大きいコイ
ル断面形状を用いた場合の方が、与えられた複雑なパタ
ーンのインダクタンスを大きくできることは言うまでも
ない。
The above discussion was about two straight conductors. The thin film coils of thin film transformers/inductors that will be put into practical use in the future will have complex patterns such as spiral or zigzag shapes, but their inductance will be the same as the self-inductance of the two straight conductors mentioned above. A combination of mutual inductance and mutual inductance can be used in the near future. In that case, as described above, it goes without saying that the inductance of a given complex pattern can be increased by using a coil cross-sectional shape with large self and mutual inductances.

以上より、薄膜コイルの断面形状のアスペクト比が0.
1〜10の範囲内にあれば、既存の薄膜技術により大き
なインダクタンスを得ることができる。
From the above, the aspect ratio of the cross-sectional shape of the thin film coil is 0.
If it is within the range of 1 to 10, a large inductance can be obtained using existing thin film technology.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.

なお、従来例と同一もしくは同一とみなせる個所には同
一符号を付して重複する説明は省略する。
Note that the same reference numerals are given to parts that are the same as or can be considered to be the same as in the conventional example, and redundant explanations will be omitted.

本発明による薄膜インダクタの主要部分の構造を第1図
に示す。構造的には第5図に示すものと同じである。し
かし、薄膜コイル5の断面形状は厚さが10μm、幅が
10μmで、アスペクト比は1となっている。
FIG. 1 shows the structure of the main parts of a thin film inductor according to the present invention. The structure is the same as that shown in FIG. However, the cross-sectional shape of the thin film coil 5 has a thickness of 10 μm, a width of 10 μm, and an aspect ratio of 1.

本発明による薄膜トランスの主要部分の構造を第2図に
示す。この構造も前述と同様に、第6図に示すものと同
じである。しかし、薄膜コイル5の断面形状は厚さが1
0μm、幅が20μmで、アスペクト比は2となってい
る。
FIG. 2 shows the structure of the main parts of the thin film transformer according to the present invention. This structure is also the same as that shown in FIG. 6, as described above. However, the cross-sectional shape of the thin film coil 5 has a thickness of 1
The width is 20 μm, and the aspect ratio is 2.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、薄膜トランス/インダクタにおいて
、薄膜コイルの断面形状のアスペクト比、即ち、(コイ
ルの厚さ)/(コイルの幅)を0.1〜10の範囲に規
定したことにより、既存の薄膜技術を用いて大きなイン
ダクタンスを持つ薄膜コイルを得ることができる。
As mentioned above, in thin film transformers/inductors, by specifying the aspect ratio of the cross-sectional shape of the thin film coil, that is, (coil thickness)/(coil width) in the range of 0.1 to 10, the existing Thin film coils with large inductance can be obtained using thin film technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による内部コイル型薄膜インダクタの主
要部分の構造図である。 第2図は本発明による内部コイル型薄膜トランスの主要
部分の構造図である。 第3図は薄膜コイルのアスペクト比と自己インダクタン
スの関係を示す特性図である。 第4図は薄膜コイルのアスペクト比と相互インダクタン
スの関係を示す特性図である。 第5図は従来技術による内部コイル型薄膜インダクタの
主要部分の構造図である。 第6図は従来技術による内部コイル型薄膜トランスの主
要部分の構造図である。 ■・・・基板、2・・・絶縁層、3・・・コア層、4・
・・絶縁・平坦化層、5・・・薄膜コイル、5A・・・
1次コイル、5B・・・2次コイル、6・・・コア層。 第1図 第2図 自己インダクタンス L(PH) 第5図 第6図
FIG. 1 is a structural diagram of the main parts of an internal coil type thin film inductor according to the present invention. FIG. 2 is a structural diagram of the main parts of the internal coil type thin film transformer according to the present invention. FIG. 3 is a characteristic diagram showing the relationship between the aspect ratio and self-inductance of a thin film coil. FIG. 4 is a characteristic diagram showing the relationship between the aspect ratio and mutual inductance of a thin film coil. FIG. 5 is a structural diagram of the main parts of an internal coil type thin film inductor according to the prior art. FIG. 6 is a structural diagram of the main parts of an internal coil type thin film transformer according to the prior art. ■... Substrate, 2... Insulating layer, 3... Core layer, 4...
...Insulating/flattening layer, 5...Thin film coil, 5A...
Primary coil, 5B...secondary coil, 6...core layer. Figure 1 Figure 2 Self-inductance L (PH) Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  薄膜コイルの断面形状のアスペクト比が、0.1〜1
0の範囲内にあることを特徴とする薄膜トランス/イン
ダクタ。
The aspect ratio of the cross-sectional shape of the thin film coil is 0.1 to 1.
A thin film transformer/inductor characterized in that it is within a range of 0.
JP33071890A 1990-11-30 1990-11-30 Thin-film transformer/inductor Pending JPH04206607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33071890A JPH04206607A (en) 1990-11-30 1990-11-30 Thin-film transformer/inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33071890A JPH04206607A (en) 1990-11-30 1990-11-30 Thin-film transformer/inductor

Publications (1)

Publication Number Publication Date
JPH04206607A true JPH04206607A (en) 1992-07-28

Family

ID=18235794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33071890A Pending JPH04206607A (en) 1990-11-30 1990-11-30 Thin-film transformer/inductor

Country Status (1)

Country Link
JP (1) JPH04206607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618595A1 (en) * 1993-04-01 1994-10-05 General Electric Company Magnetic and electromagnetic circuit components having embedded magnetic material in a high density interconnect structure
EP0917237A1 (en) * 1997-10-21 1999-05-19 Murata Manufacturing Co., Ltd. Thin-film multilayered electrode, high-frequency transmission line, high-frequency resonator, and high-frequency filter
JP2021174817A (en) * 2020-04-21 2021-11-01 株式会社村田製作所 Laminated coil component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618595A1 (en) * 1993-04-01 1994-10-05 General Electric Company Magnetic and electromagnetic circuit components having embedded magnetic material in a high density interconnect structure
EP0917237A1 (en) * 1997-10-21 1999-05-19 Murata Manufacturing Co., Ltd. Thin-film multilayered electrode, high-frequency transmission line, high-frequency resonator, and high-frequency filter
US6052043A (en) * 1997-10-21 2000-04-18 Murata Manufacturing Co., Ltd. Thin-film multilayered electrode, high-frequency transmission line, high-frequency resonator, and high-frequency filter
JP2021174817A (en) * 2020-04-21 2021-11-01 株式会社村田製作所 Laminated coil component
US11996226B2 (en) 2020-04-21 2024-05-28 Murata Manufacturing Co., Ltd. Multilayer coil component

Similar Documents

Publication Publication Date Title
US5801521A (en) Planar magnetic element
Xu et al. A microfabricated transformer for high-frequency power or signal conversion
US11532420B2 (en) Thin film inductor and power conversion circuit
JP2941484B2 (en) Plane transformer
JP3441082B2 (en) Planar magnetic element
JPH08227814A (en) High-q value integrated inductor and integrated circuit using it
KR100785678B1 (en) Thin film device
US20150171157A1 (en) Systems and Methods for Integrated Multi-Layer Magnetic Films
TW200929279A (en) Inductor structure
TWI514427B (en) Inductance and switch circuit including the inductance
US20140167898A1 (en) Systems and methods for coupled power inductors
TW201523661A (en) Induction coil structure for wireless charging device
US11948719B2 (en) Nanomagnetic inductor cores, inductors and devices incorporating such cores, and associated manufacturing methods
TW201523658A (en) Three-phase reactor
CN109036798A (en) Through-hole and related system and method for magnetic core
JPH04206607A (en) Thin-film transformer/inductor
JPH0413212A (en) Thin-film magnetic head
JP2001267155A (en) Planar magnetic element
JP3540733B2 (en) Planar magnetic element and semiconductor device using the same
CN109686549A (en) A kind of integrated transformer made with multiple winding coils by micro-nano technology
JP3382215B2 (en) Planar magnetic element, method of manufacturing the same, and semiconductor device having flat magnetic element
JPH06124843A (en) High frequency use thin film transformer
TWI670733B (en) Adjustable leakage inductance transformer
CN202523501U (en) Frame type magnetic confinement coil arrangement array
CN116598102A (en) Inductor and electronic device using laminated tape