JPH04206607A - Thin-film transformer/inductor - Google Patents
Thin-film transformer/inductorInfo
- Publication number
- JPH04206607A JPH04206607A JP33071890A JP33071890A JPH04206607A JP H04206607 A JPH04206607 A JP H04206607A JP 33071890 A JP33071890 A JP 33071890A JP 33071890 A JP33071890 A JP 33071890A JP H04206607 A JPH04206607 A JP H04206607A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- thin film
- aspect ratio
- thin
- inductance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 46
- 239000012792 core layer Substances 0.000 abstract description 7
- 239000010410 layer Substances 0.000 abstract description 7
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract 4
- 239000004020 conductor Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 2
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
Landscapes
- Coils Or Transformers For Communication (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランス/インダクタに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to thin film transformers/inductors.
スイッチング電源用及び信号処理用トランス/インダク
タを大幅に小型軽量化するために、薄膜技術により、コ
アやコイルを形成した薄膜トランス/インダクタの研究
が行われ始め、その構造等が種々提案されている。In order to significantly reduce the size and weight of switching power supply and signal processing transformers/inductors, research has begun on thin film transformers/inductors with cores and coils formed using thin film technology, and various structures have been proposed. .
その−例として、第5図に内部コイル型薄膜インダクタ
の主要部分の構造を示す。これはフオトセラム等の基板
1上に順次、絶縁層2 (例えばハードキュアしたフォ
トレジスト)、アモルファス合金よりなるコア層3、絶
縁・平坦化層4、薄膜コイル5(材質はCuまたはAI
l;図では2ターン)、絶縁・平坦化層4、コア層6を
形成したものである。As an example, FIG. 5 shows the structure of the main parts of an internal coil type thin film inductor. This is formed by sequentially depositing an insulating layer 2 (for example, hard-cured photoresist), a core layer 3 made of an amorphous alloy, an insulating/planarizing layer 4, and a thin film coil 5 (made of Cu or AI) on a substrate 1 such as photoceram.
(2 turns in the figure), an insulating/flattening layer 4, and a core layer 6.
また、第6図の内部コイル型薄膜トランスも同様な構造
をしている。ただ、薄膜コイル5が、1次コイル5Aと
2次コイル5Bの2&uである点が薄膜インダクタと異
なる。Further, the internal coil type thin film transformer shown in FIG. 6 has a similar structure. However, it differs from a thin film inductor in that the thin film coil 5 is a 2&u structure consisting of a primary coil 5A and a secondary coil 5B.
ところで、このようにして得られた薄膜トランス/イン
ダクタの特性は、薄膜コイルやコア層の形状や電磁気特
性に大きく影響される。例えば、薄膜トランス/インダ
クタの重要な特性である自己インダクタンスや相互イン
ダクタンスは、薄膜コイルの断面形状に大きく影響され
る。即ち、薄膜コイルの断面積は、コイルに流さなけれ
ばならない電流値によって決定することができる。しか
し断面積が決まってもコイルの厚さや幅の値によって、
インダクタンスは大きく影響されるので、そのコイル厚
さと幅の関係を最適化する必要がある。By the way, the characteristics of the thin film transformer/inductor thus obtained are greatly influenced by the shape and electromagnetic characteristics of the thin film coil and core layer. For example, self-inductance and mutual inductance, which are important characteristics of thin-film transformers/inductors, are greatly influenced by the cross-sectional shape of the thin-film coil. That is, the cross-sectional area of the thin film coil can be determined by the current value that must be passed through the coil. However, even if the cross-sectional area is determined, depending on the coil thickness and width,
Since inductance is greatly affected, it is necessary to optimize the relationship between coil thickness and width.
本発明はこのような背景に基づいてなされたものであり
、薄膜コイルの断面形状の厚さと幅の関係を最適化する
ことで、薄膜トランス/インダクタの電磁変換特性を改
善することを目的とする。The present invention was made based on this background, and an object of the present invention is to improve the electromagnetic conversion characteristics of a thin film transformer/inductor by optimizing the relationship between the thickness and width of the cross-sectional shape of a thin film coil. .
上記目的は、薄膜コイルの断面形状のアスペクト比(コ
イル厚さ/コイル幅)を0゜1〜10の範囲内にするこ
とにより達成される。The above object is achieved by making the aspect ratio (coil thickness/coil width) of the cross-sectional shape of the thin film coil within the range of 0°1 to 10°.
ノイマンの式より、長さ16、間隔dの2本の直線状導
体の相互インダクタンスMは(1)式で表される。また
長さ1cの1本の直線状導体の自己インダクタンスしは
(3)式で表される。なお、(3)式と(4)式を幾何
学的平均距@ (GMD)と呼ぶ。From Neumann's equation, the mutual inductance M of two linear conductors with a length of 16 and a distance of d is expressed by equation (1). Further, the self-inductance of a single linear conductor having a length of 1c is expressed by equation (3). Note that equations (3) and (4) are called geometric mean distance (GMD).
M=±(μo’lc/2π) (1n (J((Ri
J/lc ) t+1)/RIJ) 4((R4h/
It )”+1)+R目/1c) −・(1
)但し、+;電流が同じ向きの場合、−;電流が逆向き
の場合、μ。;4πX 10−’H/Al n Ri
J−1/ S 1・S J SS I n r l
J d S ; d S J但し、S、、S、;2本
の導体の断面積、dSi 、dSJ i 2本の導体
の微小断面積r0.;微小断面積ds、とdS、の距離
り一±(/J15 ・Ic / 2 π) 〔I
n (J((R;4/fc ) 2+1) /R11)
−J((Rii/IC) 2+ 1 ) + Ri=
/ I c ) −(311nRt==1
/St 2S51nrtidS、dS、’但し、Si
、導体の断面積
dS、、dS、’ i導体内の2つの微小断面積
ri=;i小断面積dS、とdS1′の距離
以上の式より、断面積一定の場合のLとMを計算した結
果は、第3図と第4図に示される通りである。但し、コ
イル長は1m、微小断面積の大きさはコイル断面積の1
/80〜1/320、Mについてはコイルの間隔を10
μmとした。M=±(μo'lc/2π) (1n (J((Ri
J/lc) t+1)/RIJ) 4((R4h/
It)”+1)+Rth/1c) −・(1
) However, +: if the currents are in the same direction, -; if the currents are in opposite directions, μ. ;4πX 10-'H/Al n Ri
J-1/ S 1・S J SS I n r l
J d S ; d S J However, S, , S, ; Cross-sectional area of two conductors, dSi , dSJ i Minute cross-sectional area of two conductors r0. ; The distance between the minute cross-sectional areas ds and dS is ±(/J15 ・Ic / 2 π) [I
n (J((R;4/fc) 2+1)/R11)
−J((Rii/IC) 2+ 1 ) + Ri=
/Ic) −(311nRt==1
/St 2S51nrtidS,dS,'However, Si
, cross-sectional area of the conductor dS,, dS,' i Calculate L and M when the cross-sectional area is constant from the following formula: distance between two small cross-sectional areas ri =; i small cross-sectional areas dS, and dS1' The results are shown in FIGS. 3 and 4. However, the coil length is 1 m, and the size of the micro cross-sectional area is 1 of the coil cross-sectional area.
/80 to 1/320, for M, the coil spacing is 10
It was set as μm.
これより、Lはコイルの断面形状のアスペクト比、即ち
、(コイルの厚さ)/(コイルの幅)が1の時に最大に
なり、Mはアスペクト比が約5で最大になることが分か
る。さらにLは、アスペクト比が0.1〜工0の範囲内
にあれば、最大値の95%以内にあることが、またMは
、アスペクト比が0.1〜200の範囲内にあれば、最
大値の90%以内にあることが分かる。From this, it can be seen that L is maximum when the aspect ratio of the cross-sectional shape of the coil, that is, (coil thickness)/(coil width) is 1, and M is maximum when the aspect ratio is about 5. Further, L is within 95% of the maximum value if the aspect ratio is within the range of 0.1 to 0, and M is within 95% of the maximum value if the aspect ratio is within the range of 0.1 to 200. It can be seen that it is within 90% of the maximum value.
しかしながら現在の薄膜技術では、アスペクト比が20
0の薄膜コイルを量産することは困難であり、アスペク
ト比の上限は10前後が適当と考えられる。However, with current thin film technology, the aspect ratio is 20
It is difficult to mass-produce thin film coils with an aspect ratio of 0.0, and an upper limit of the aspect ratio of around 10 is considered appropriate.
なお、2本のコイルのインダクタンスはL十Mで与えら
れるから、LとMの各々が大きい場合の方が、L+Mが
大きな値を取ることは言うまでもない。Note that since the inductance of the two coils is given by L + M, it goes without saying that L+M takes a larger value when each of L and M is larger.
以上は2本の直線状の導体に関する考察であった。将来
実用化されるであろう薄膜トランス/インダクタの薄膜
コイルは、スパイラル型やつづら折れ型等の複雑なパタ
ーンを採るであろう、しかしそのインダクタンスは、上
述の2本の直線状導体の自己インダクタンスと相互イン
ダクタンスの組み合わせで近億できる。その場合、前述
したように、自己及び相互インダクタンスが大きいコイ
ル断面形状を用いた場合の方が、与えられた複雑なパタ
ーンのインダクタンスを大きくできることは言うまでも
ない。The above discussion was about two straight conductors. The thin film coils of thin film transformers/inductors that will be put into practical use in the future will have complex patterns such as spiral or zigzag shapes, but their inductance will be the same as the self-inductance of the two straight conductors mentioned above. A combination of mutual inductance and mutual inductance can be used in the near future. In that case, as described above, it goes without saying that the inductance of a given complex pattern can be increased by using a coil cross-sectional shape with large self and mutual inductances.
以上より、薄膜コイルの断面形状のアスペクト比が0.
1〜10の範囲内にあれば、既存の薄膜技術により大き
なインダクタンスを得ることができる。From the above, the aspect ratio of the cross-sectional shape of the thin film coil is 0.
If it is within the range of 1 to 10, a large inductance can be obtained using existing thin film technology.
以下、本発明の実施例を図面に基づき説明する。 Embodiments of the present invention will be described below based on the drawings.
なお、従来例と同一もしくは同一とみなせる個所には同
一符号を付して重複する説明は省略する。Note that the same reference numerals are given to parts that are the same as or can be considered to be the same as in the conventional example, and redundant explanations will be omitted.
本発明による薄膜インダクタの主要部分の構造を第1図
に示す。構造的には第5図に示すものと同じである。し
かし、薄膜コイル5の断面形状は厚さが10μm、幅が
10μmで、アスペクト比は1となっている。FIG. 1 shows the structure of the main parts of a thin film inductor according to the present invention. The structure is the same as that shown in FIG. However, the cross-sectional shape of the thin film coil 5 has a thickness of 10 μm, a width of 10 μm, and an aspect ratio of 1.
本発明による薄膜トランスの主要部分の構造を第2図に
示す。この構造も前述と同様に、第6図に示すものと同
じである。しかし、薄膜コイル5の断面形状は厚さが1
0μm、幅が20μmで、アスペクト比は2となってい
る。FIG. 2 shows the structure of the main parts of the thin film transformer according to the present invention. This structure is also the same as that shown in FIG. 6, as described above. However, the cross-sectional shape of the thin film coil 5 has a thickness of 1
The width is 20 μm, and the aspect ratio is 2.
以上述べたように、薄膜トランス/インダクタにおいて
、薄膜コイルの断面形状のアスペクト比、即ち、(コイ
ルの厚さ)/(コイルの幅)を0.1〜10の範囲に規
定したことにより、既存の薄膜技術を用いて大きなイン
ダクタンスを持つ薄膜コイルを得ることができる。As mentioned above, in thin film transformers/inductors, by specifying the aspect ratio of the cross-sectional shape of the thin film coil, that is, (coil thickness)/(coil width) in the range of 0.1 to 10, the existing Thin film coils with large inductance can be obtained using thin film technology.
第1図は本発明による内部コイル型薄膜インダクタの主
要部分の構造図である。
第2図は本発明による内部コイル型薄膜トランスの主要
部分の構造図である。
第3図は薄膜コイルのアスペクト比と自己インダクタン
スの関係を示す特性図である。
第4図は薄膜コイルのアスペクト比と相互インダクタン
スの関係を示す特性図である。
第5図は従来技術による内部コイル型薄膜インダクタの
主要部分の構造図である。
第6図は従来技術による内部コイル型薄膜トランスの主
要部分の構造図である。
■・・・基板、2・・・絶縁層、3・・・コア層、4・
・・絶縁・平坦化層、5・・・薄膜コイル、5A・・・
1次コイル、5B・・・2次コイル、6・・・コア層。
第1図
第2図
自己インダクタンス L(PH)
第5図
第6図FIG. 1 is a structural diagram of the main parts of an internal coil type thin film inductor according to the present invention. FIG. 2 is a structural diagram of the main parts of the internal coil type thin film transformer according to the present invention. FIG. 3 is a characteristic diagram showing the relationship between the aspect ratio and self-inductance of a thin film coil. FIG. 4 is a characteristic diagram showing the relationship between the aspect ratio and mutual inductance of a thin film coil. FIG. 5 is a structural diagram of the main parts of an internal coil type thin film inductor according to the prior art. FIG. 6 is a structural diagram of the main parts of an internal coil type thin film transformer according to the prior art. ■... Substrate, 2... Insulating layer, 3... Core layer, 4...
...Insulating/flattening layer, 5...Thin film coil, 5A...
Primary coil, 5B...secondary coil, 6...core layer. Figure 1 Figure 2 Self-inductance L (PH) Figure 5 Figure 6
Claims (1)
0の範囲内にあることを特徴とする薄膜トランス/イン
ダクタ。The aspect ratio of the cross-sectional shape of the thin film coil is 0.1 to 1.
A thin film transformer/inductor characterized in that it is within a range of 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33071890A JPH04206607A (en) | 1990-11-30 | 1990-11-30 | Thin-film transformer/inductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33071890A JPH04206607A (en) | 1990-11-30 | 1990-11-30 | Thin-film transformer/inductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04206607A true JPH04206607A (en) | 1992-07-28 |
Family
ID=18235794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33071890A Pending JPH04206607A (en) | 1990-11-30 | 1990-11-30 | Thin-film transformer/inductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04206607A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0618595A1 (en) * | 1993-04-01 | 1994-10-05 | General Electric Company | Magnetic and electromagnetic circuit components having embedded magnetic material in a high density interconnect structure |
EP0917237A1 (en) * | 1997-10-21 | 1999-05-19 | Murata Manufacturing Co., Ltd. | Thin-film multilayered electrode, high-frequency transmission line, high-frequency resonator, and high-frequency filter |
JP2021174817A (en) * | 2020-04-21 | 2021-11-01 | 株式会社村田製作所 | Laminated coil component |
-
1990
- 1990-11-30 JP JP33071890A patent/JPH04206607A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0618595A1 (en) * | 1993-04-01 | 1994-10-05 | General Electric Company | Magnetic and electromagnetic circuit components having embedded magnetic material in a high density interconnect structure |
EP0917237A1 (en) * | 1997-10-21 | 1999-05-19 | Murata Manufacturing Co., Ltd. | Thin-film multilayered electrode, high-frequency transmission line, high-frequency resonator, and high-frequency filter |
US6052043A (en) * | 1997-10-21 | 2000-04-18 | Murata Manufacturing Co., Ltd. | Thin-film multilayered electrode, high-frequency transmission line, high-frequency resonator, and high-frequency filter |
JP2021174817A (en) * | 2020-04-21 | 2021-11-01 | 株式会社村田製作所 | Laminated coil component |
US11996226B2 (en) | 2020-04-21 | 2024-05-28 | Murata Manufacturing Co., Ltd. | Multilayer coil component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5801521A (en) | Planar magnetic element | |
Xu et al. | A microfabricated transformer for high-frequency power or signal conversion | |
US11532420B2 (en) | Thin film inductor and power conversion circuit | |
JP2941484B2 (en) | Plane transformer | |
JP3441082B2 (en) | Planar magnetic element | |
JPH08227814A (en) | High-q value integrated inductor and integrated circuit using it | |
KR100785678B1 (en) | Thin film device | |
US20150171157A1 (en) | Systems and Methods for Integrated Multi-Layer Magnetic Films | |
TW200929279A (en) | Inductor structure | |
TWI514427B (en) | Inductance and switch circuit including the inductance | |
US20140167898A1 (en) | Systems and methods for coupled power inductors | |
TW201523661A (en) | Induction coil structure for wireless charging device | |
US11948719B2 (en) | Nanomagnetic inductor cores, inductors and devices incorporating such cores, and associated manufacturing methods | |
TW201523658A (en) | Three-phase reactor | |
CN109036798A (en) | Through-hole and related system and method for magnetic core | |
JPH04206607A (en) | Thin-film transformer/inductor | |
JPH0413212A (en) | Thin-film magnetic head | |
JP2001267155A (en) | Planar magnetic element | |
JP3540733B2 (en) | Planar magnetic element and semiconductor device using the same | |
CN109686549A (en) | A kind of integrated transformer made with multiple winding coils by micro-nano technology | |
JP3382215B2 (en) | Planar magnetic element, method of manufacturing the same, and semiconductor device having flat magnetic element | |
JPH06124843A (en) | High frequency use thin film transformer | |
TWI670733B (en) | Adjustable leakage inductance transformer | |
CN202523501U (en) | Frame type magnetic confinement coil arrangement array | |
CN116598102A (en) | Inductor and electronic device using laminated tape |