JPH04193701A - Production of perovskite type oxide powder - Google Patents

Production of perovskite type oxide powder

Info

Publication number
JPH04193701A
JPH04193701A JP2322168A JP32216890A JPH04193701A JP H04193701 A JPH04193701 A JP H04193701A JP 2322168 A JP2322168 A JP 2322168A JP 32216890 A JP32216890 A JP 32216890A JP H04193701 A JPH04193701 A JP H04193701A
Authority
JP
Japan
Prior art keywords
powder
perovskite
type oxide
oxide
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2322168A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawakami
和彦 河上
Kazuo Fushimi
伏見 和夫
Kaoru Kitakizaki
薫 北寄崎
Yasuhiro Yoshioka
靖浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2322168A priority Critical patent/JPH04193701A/en
Publication of JPH04193701A publication Critical patent/JPH04193701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To easily produce the perovskite type oxide powder which is useful as an electrode material for fuel batteries and is uniform in two kinds of grain sizes in a large amt. by separately treating and calcining the org. acid salt and carbonate of the metal elements constituting the perovskite type oxide. CONSTITUTION:The org. acid salts, such as acetate, of the metal element constituting the perovskite type oxide, for example, La1-xA'MO3 (A' is Sr, Ba, M is Co, Cr, Mn, Ni, Fe) are mixed to prescribed ratios to prepare a soln. and this soln. is evaporated to dryness. The resulted product is pulverized and calcined and the calcined matter is pulverized to obtain the powder of the perovskite type oxide having <=1mum grain diameter. On the other hand, at least one of the metal elements constituting the above-mentioned oxide is formed of the carbonate and the other is formed of the simple substance or oxide. The above-mentioned powder is calcined while the oxygen is supplied, by which the powder having 5 to 10mum grain diameter is obtd.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、ペロブスカイト型酸化物の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for producing perovskite-type oxides.

B0発明の概要 本発明は、ペロブスカイト型酸化物を構成する原料金属
を有機酸塩または炭酸塩化合物の形で供給して夫々処理
を行うことにより粒径の揃ったペロブスカイト型酸化物
の粉体を得るものである。
B0 Summary of the Invention The present invention provides a method for producing perovskite oxide powder with uniform particle size by supplying the raw material metal constituting the perovskite oxide in the form of an organic acid salt or a carbonate compound and treating each of them. It's something you get.

C0従来の技術 一般に燃料電池本体は、固体電解質の両側に陽極と陰極
の電極板を配置して単位電池を構成し、この単セルを複
数個直列に接続するよう積層して構成されている。
C0 Prior Art In general, a fuel cell main body is constructed by arranging anode and cathode electrode plates on both sides of a solid electrolyte to form a unit cell, and stacking a plurality of these unit cells so as to connect them in series.

この電池の単セル構造は水素等の燃料ガスを適宜に貫流
する多孔質基板を支持構造部制として用いるともにこの
多孔質基板の表面に薄膜陰極、薄膜の固体電解質、簿膜
の陽極を順次積層構造に形成したものである。そして、
上記単セルの薄膜陰極側には燃料として水素ガス(水素
)を供給し、薄膜の陽極側には酸化剤として空気(酸素
)を供給して水素と酸素とを反応させて電気を発生させ
るとともに水が生成される。
The single cell structure of this battery uses a porous substrate as a support structure through which fuel gas such as hydrogen flows appropriately, and a thin film cathode, a thin film solid electrolyte, and a thin film anode are sequentially laminated on the surface of this porous substrate. It is formed into a structure. and,
Hydrogen gas (hydrogen) is supplied as a fuel to the thin film cathode side of the single cell, and air (oxygen) is supplied as an oxidizing agent to the thin film anode side to cause the hydrogen and oxygen to react and generate electricity. water is produced.

このような電池の単セルでは薄膜の固体電解質自身の抵
抗骨による電圧降下を小さくするために、固体電解質の
厚さは薄いほうが良い。
In a single cell of such a battery, the thickness of the solid electrolyte should be thinner in order to reduce the voltage drop due to the resistance bones of the thin film solid electrolyte itself.

これは薄膜の固体電解質に流れる電流をi (A)、固
体電解質の抵抗をR(Ωam)とし、固体電解質の厚さ
をt(μm)とすると、固体電解質中の電圧降下Vdは
、 Vd= i−R−tX 10−’と表すことができ、」
1記式から薄膜の固体電解質の厚さは、より薄いほうが
電圧降下が少なくてすむことがわかる。
If the current flowing through the thin film solid electrolyte is i (A), the resistance of the solid electrolyte is R (Ωam), and the thickness of the solid electrolyte is t (μm), then the voltage drop Vd in the solid electrolyte is: Vd= It can be expressed as i-R-tX 10-',
From Equation 1, it can be seen that the thinner the thin film solid electrolyte is, the less the voltage drop will be.

一方、この薄膜の固体電解質は多孔質基板上に形成され
ることから、その薄膜のカバレッジ性を考慮すると無条
件に簿く構成することはできす、結局10μm〜507
1m程度の厚さに形成するのが良いことが解っている。
On the other hand, since the solid electrolyte of this thin film is formed on a porous substrate, considering the coverage of the thin film, it is not possible to configure it unconditionally.
It has been found that it is best to form the film to a thickness of about 1 m.

一般に入手できる多孔質基板は、その孔径に、例えば0
.5〜40μmとばらつきがあり、この多孔質基板の表
面に電極、薄膜の固体電解質を積層形成した場合、大き
な孔径の」二部で、薄膜の固体電解質にピンホールがで
き易いという問題点があった。
Generally available porous substrates have a pore diameter of, for example, 0.
.. When electrodes and thin film solid electrolyte are laminated on the surface of this porous substrate, there is a problem that pinholes are likely to form in the thin film solid electrolyte in the two parts with large pore diameters. Ta.

燃料電池は薄膜の固体電解質を挟んでの酸素分圧が異な
ると、一種の酸素濃淡電池が構成され、薄膜の固体電解
質の両端に起電力を発生するものであり、このときの起
電力E。は次式で表される。
A fuel cell forms a type of oxygen concentration cell when the oxygen partial pressure across the thin film solid electrolyte is different, and an electromotive force is generated at both ends of the thin film solid electrolyte.The electromotive force E at this time. is expressed by the following formula.

Eo=(RT/4 F)XIn(P+/P2)上記式か
ら起電力E。は酸素分圧の比に比例して増加する。なお
。式において、Rは気体定数、Tは絶対温度、Fはファ
ラデ一定数、P、、P2は各々固体電解質を挟んでの酸
素分圧である。
Eo=(RT/4F)XIn(P+/P2) From the above formula, the electromotive force E. increases in proportion to the ratio of oxygen partial pressures. In addition. In the formula, R is a gas constant, T is an absolute temperature, F is a Faraday constant, and P, P2 are oxygen partial pressures across the solid electrolyte.

上記のように薄膜の固体電解質にピンホールができると
、酸素分圧の比は小さくなるため、このような単セルを
用いた燃料電池では起電力の低下や最悪の場合には起電
力が発生しなくなってしまう不都合があった。
As mentioned above, if a pinhole is formed in the thin film solid electrolyte, the oxygen partial pressure ratio will decrease, so in a fuel cell using such a single cell, the electromotive force will decrease, or in the worst case, an electromotive force will occur. There was an inconvenience that it stopped working.

そこで、二種の粒径のペロブスカイト型酸化物粉体を製
造して多孔質ステンレス基板上を被覆し、表面粗さが、
固体電解質の膜厚の1710程度で、かつガスを十分通
すだけの多孔性を有する酸素極を形成した。
Therefore, perovskite-type oxide powders with two different particle sizes were manufactured and coated on a porous stainless steel substrate, and the surface roughness was
An oxygen electrode was formed that had a film thickness of about 1710 mm that of the solid electrolyte and had enough porosity to allow gas to pass through.

上記二種の粒径は多孔質ステンレス基板の孔径の大きい
穴を埋めて表面をならす粒径5〜1011mのものと、
電極表面を覆いその表面の起伏を固体電解質の膜厚の1
710程度に抑え、かつ表面積を大きくして触媒能を高
める粒径1μm以下のものとの二種類であり、この二種
の粒径のペロブスカイト型酸化物粉体を用いて酸素極を
形成したことにより、多孔質ステンレス基板2上に厚さ
110l1程度の薄くかつガスタイトな固体電解質薄膜
を形成することができた。
The two types of particle sizes mentioned above are those with a particle size of 5 to 1011 m that fills the large pores of the porous stainless steel substrate and smoothes the surface;
Cover the electrode surface and make the undulations of the surface 1 of the solid electrolyte film thickness.
There are two types of perovskite-type oxide powders: one with a particle size of 1 μm or less, which suppresses the particle size to about 710, and increases the surface area and increases the catalytic ability. As a result, a thin and gas-tight solid electrolyte thin film having a thickness of about 110 l1 could be formed on the porous stainless steel substrate 2.

D8発明が解決しようとする課題 しかし、上記のように粒径の揃ったペロブスカイト型酸
化物粉体を得るためには分級を繰り返し行うことが必要
である。
D8 Problems to be Solved by the Invention However, in order to obtain perovskite-type oxide powder with uniform particle size as described above, it is necessary to perform classification repeatedly.

特に粒径1μm以下のペロブスカイト型酸化物粉体を得
る為にはボットミルの等のようなバッチ方式で数日間に
わたって粉砕を行わねばならず、このため粉砕の際にボ
ールやポットから不純物が入り易いうえ、大量の電極材
を得るには非常に時間と手間がかかる。
In particular, in order to obtain perovskite-type oxide powder with a particle size of 1 μm or less, it is necessary to grind the powder over several days using a batch method such as a bot mill, which makes it easy for impurities to enter from balls or pots during grinding. Moreover, it takes a lot of time and effort to obtain a large amount of electrode material.

また、粒径5〜10μmの粉体を製造する場合には焼成
中に酸素が不足するため焼成時間が長くなってしまい、
更に、焼成時間を短くするために焼成温度を高くすると
異常な粒成長が起きてしまうという問題点があった。
In addition, when producing powder with a particle size of 5 to 10 μm, the firing time becomes longer due to the lack of oxygen during firing.
Furthermore, there is a problem in that when the firing temperature is increased to shorten the firing time, abnormal grain growth occurs.

本発明はこのような背景の下になされたものであり、上
記のように粒径の揃った二種のペロブスカイト型酸化物
粉体を簡単かつ大量に製造することを目的とする。
The present invention was made against this background, and it is an object of the present invention to easily and mass-produce two types of perovskite-type oxide powders having uniform particle sizes as described above.

E9課題を解決するための手段 上記課題を解決するため、本発明はペロブスカイト型酸
化物を構成する金属元素の有機酸塩を混合した溶液を作
製し、この溶液を乾燥させて得られる生成物を粉砕、混
合して焼成を行い、この焼成物を粉砕して粉体を得るよ
うにしたことを特徴とする。
E9 Means for Solving Problems In order to solve the above problems, the present invention prepares a solution containing a mixture of organic acid salts of metal elements constituting a perovskite type oxide, and dries the solution to produce a product. It is characterized in that it is ground, mixed and fired, and the fired product is ground to obtain a powder.

更に、ペロブスカイト型酸化物を構成する金属元素の内
少なくとも一つを炭酸塩とし、他のペロブスカイト型酸
化物を構成する金属元素を単体もしくは酸化物として、
上記原料の粒径を目的とするペロブスカイト型酸化物の
粒径よりも小径としてこれらの粉体を混合し、この粉体
内に直接酸素を供給しながら焼成して粉体を得るように
したことを特徴とする。
Furthermore, at least one of the metal elements constituting the perovskite-type oxide is carbonate, and other metal elements constituting the perovskite-type oxide are used alone or as oxides,
The particle size of the above-mentioned raw materials is smaller than the particle size of the target perovskite oxide, and these powders are mixed and fired while supplying oxygen directly into the powder to obtain the powder. Features.

F1作用 本発明において、ペロブスカイト型酸化物の原料金属を
例えば酢酸塩等の有機酸塩として供給することにより焼
成物が多孔質となり、また原料金属を炭酸塩とすること
により焼成中に炭酸が分解されて酸素が発生する。
F1 action In the present invention, by supplying the raw material metal of perovskite type oxide as an organic acid salt such as acetate, the fired product becomes porous, and by using carbonate as the raw material metal, carbonic acid decomposes during firing. oxygen is generated.

従って焼成時の酸素量が増加して焼成が良好に進行し、
この生成物を粉砕することにより粒径が小さく、しかも
均一である粉体が得られる。
Therefore, the amount of oxygen during firing increases, and firing progresses smoothly.
By pulverizing this product, a powder with small and uniform particle size can be obtained.

G、実施例 通常、燃料電池に用いられる酸素電極材とじてはA B
 03ペロブスカイト型酸化物が知られており、主にL
a1−xA’xMO3系において、MをCo、CrXM
n−、’ N 1% F e等の単独もしくは混合とし
、A′をSr、Ba等としてAサイトを置換したものが
用いられる。
G. Examples Oxygen electrode materials usually used in fuel cells are A B
03 perovskite type oxides are known, mainly L
In the a1-xA'xMO3 system, M is Co, CrXM
n-, 'N 1% Fe, etc. alone or as a mixture, and those in which A' is replaced with Sr, Ba, etc. at the A site are used.

本実施例では、ペロブスカイト型酸化物としてLao6
srO,4c00.911NiO,[12o3を用いる
が、他のペロブスカイト型酸化物についても同様な手法
で作成することができる。
In this example, Lao6 is used as the perovskite oxide.
Although srO, 4c00.911NiO, and [12o3 are used, other perovskite-type oxides can also be produced using a similar method.

更に、本実施例においては粒径が1μm以下のペロブス
カイト型酸化物の粉体を得るための出発原料として各金
属の酢酸塩を用いるが、ナフラン酸塩やオフチル酸塩等
の他の有機酸塩を、夫々の原料が可溶であるブタノール
、エタノール、水等の溶媒に溶解して用いても同様な手
法で粉体を容易に得ることかできる。
Furthermore, in this example, acetate of each metal is used as a starting material to obtain perovskite oxide powder with a particle size of 1 μm or less, but other organic acid salts such as napfranate and ophthalate may also be used. Powders can be easily obtained in the same manner by dissolving each raw material in a solvent such as butanol, ethanol, or water in which it is soluble.

まず、粒径が1.ttm以下のLao、aS ro、4
co0.911Njoo203の粉体を得るために、(
CH3CO0)2Co・4H20、(CH3COO)2
sr”o、5H20、L a(CH3C00) 3・1
,5H20,(CH3COO)2Ni・4H20を、L
a:Sr:Co:N1=0.6+0.4+0.098:
0.02となるよう秤量してビンもしくはカップに入れ
、混合粉体150gに対し500ccの比率でイオン交
換水を加えてシェイカーミキザーにより乳化させて溶液
を作製する。
First, the particle size is 1. Lao below ttm, aS ro, 4
To obtain a powder of co0.911Njoo203, (
CH3COO)2Co・4H20, (CH3COO)2
sr”o, 5H20, L a (CH3C00) 3・1
,5H20,(CH3COO)2Ni・4H20,L
a:Sr:Co:N1=0.6+0.4+0.098:
0.02, put it in a bottle or cup, add ion-exchanged water at a ratio of 500 cc to 150 g of mixed powder, and emulsify with a shaker mixer to prepare a solution.

この溶液を乾燥し易いよううに浅底で面積の大きいバッ
トに入れ、乾燥器内で250℃前後で突沸しないようフ
ァンを回転させながら乾燥・分解を行い、中間生成物を
得る。
This solution is placed in a vat with a shallow bottom and a large area to facilitate drying, and is dried and decomposed in a dryer at around 250° C. while rotating a fan to prevent bumping, thereby obtaining an intermediate product.

これをらいかい器で粉砕、混合し、成形を行わずに大気
中もしくは酸素気流中でマツフル炉等を用いて700〜
1000℃にて10時間程度焼成を行う。
This is crushed and mixed in a miller, and then heated in the atmosphere or in an oxygen stream using a Matsufuru furnace, etc.
Firing is performed at 1000°C for about 10 hours.

こうして得られる生成物は反応ガス放出により多孔質と
なっており、これをらいかい器にて軽く粉砕するだけで
第2図及び第3図のSEM像に示すような粒径1μm以
下の粉体か得られる。
The product thus obtained becomes porous due to the release of the reaction gas, and by simply pulverizing it with a sieve, it becomes a powder with a particle size of 1 μm or less as shown in the SEM images in Figures 2 and 3. or can be obtained.

第6図(a) 、(b)にこの粉体のX線回折結果を示
す。これにより700〜1000℃という低温での焼成
ニより単一組成のペロブスカイト型酸化物が得られるこ
とが確認される。
Figures 6(a) and 6(b) show the results of X-ray diffraction of this powder. This confirms that a perovskite oxide having a single composition can be obtained by firing at a low temperature of 700 to 1000°C.

また、第7図(a)、(b)、(C)に示される蛍光X
線回折により、La、 Sr、 Co、Niの各金属が
ともに組成比に従って含有されていることがわかる。
In addition, the fluorescence X shown in FIGS. 7(a), (b), and (C)
Linear diffraction reveals that each of the metals La, Sr, Co, and Ni is contained according to the composition ratio.

次に、粒径5〜10mmの粉体を得る方法を以下に示す
Next, a method for obtaining powder having a particle size of 5 to 10 mm will be shown below.

本実施例においては、粒径3〜7μmのNiパウダー及
び5rCOhパウダーと、粒径11−2ttのLa20
.。
In this example, Ni powder and 5rCOh powder with a particle size of 3 to 7 μm and La20 powder with a particle size of 11-2tt were used.
.. .

パウダー及びCoパウダーを原料とする。Powder and Co powder are used as raw materials.

」1記の原料を、目的生成物であるLao、6Sro、
4Co(、911NiO0203を生成するよう、La
:Sr:C。
” 1. The raw materials listed in item 1 are converted into the target products Lao, 6Sro,
4Co(,911NiO0203)
:Sr:C.

:N1=0.6+0.4+0.098:0.02となる
比率に秤量し、この混合粉体]、k gに対してイオン
交換水を]、k g加えた後、ボールミルを用いて10
時間以上混合を行う。
:N1=0.6+0.4+0.098:0.02, and after adding ion-exchanged water to 1 kg of this mixed powder], 1 kg of ion-exchanged water was added using a ball mill for 10
Mix for at least an hour.

このスラリーを乾燥し易いよう浅底で面積の大きいバッ
トに入れ、乾燥器内でファンを使用して120℃程度の
温度で突沸しないよう乾燥させてケーキを得る。
This slurry is placed in a vat with a shallow bottom and a large area to facilitate drying, and is dried in a dryer using a fan at a temperature of about 120° C. without bumping to obtain a cake.

これをポートに入れてマツフル炉で1200〜1300
°Cにおいて10時間程度焼成する。
Put this in the port and use the Matsufuru furnace for 1200~1300
Bake at °C for about 10 hours.

この際、アルミナ管等を混合粉体内に挿入し、酸素ガス
を直接粉体に供給する。
At this time, an alumina tube or the like is inserted into the mixed powder to supply oxygen gas directly to the powder.

これにより反応が促進され、比較的低温かつ短時間で反
応を完全に終了させ、かつ異常な粒成長を抑制すること
ができる。
This accelerates the reaction, completes the reaction at a relatively low temperature and in a short period of time, and suppresses abnormal grain growth.

第4図及び第5図は上記のように作製した粉体をらいか
いした後のSEM解析像で、この回折像により、下記第
1表に示す粒度分布が得られ、粉体の粒径が4〜10μ
mの範囲に収まっていることが解る。
Figures 4 and 5 are SEM analysis images of the powder produced as described above. From these diffraction images, the particle size distribution shown in Table 1 below was obtained, and the particle size of the powder was determined. 4~10μ
It can be seen that it falls within the range of m.

以下余白 また、第8図(a) 、(b)はこれのX線解析結果で
あり、単一組成のペロブスカイト・型酸化物が得られて
いることが示される。
The following margins and FIGS. 8(a) and 8(b) show the results of X-ray analysis, showing that a perovskite type oxide of a single composition was obtained.

上記の出発原料において、本実施例でのC01La20
3のように、ペロブスカイトの主成分となる原料は焼成
中に粒子が成長して粒径が大きくなるため、予め粒径5
μm以下程度の小粒径の粉体を゛  用いることが好ま
しい。
In the above starting materials, C01La20 in this example
3, the raw material that is the main component of perovskite grows during firing and the particle size increases, so the particle size is 5.
It is preferable to use powder with a small particle size of about μm or less.

また、焼成温度を低下さぜるためにSrCO3のような
炭酸塩を用いても良い。
Furthermore, a carbonate such as SrCO3 may be used to lower the firing temperature.

これに対して、焼成途中で分解する炭酸塩及び含有量の
少ない原料は上記の主成分となる原料に比して粒径の大
きい粉体を用いても良く、本実施例においても炭酸塩の
SrCO3及び含有量の少ないNiは、共に粒径が3〜
7μm程度と、上記主原料に比して大きくなっている。
On the other hand, for carbonate that decomposes during firing and raw materials with a small content, powder with a larger particle size than the above-mentioned main component raw materials may be used, and in this example, carbonate SrCO3 and Ni with a small content both have particle sizes of 3 to 3.
It is approximately 7 μm, which is larger than that of the main raw material.

また、上記の形成方法によりペロブスカイト型酸化物粉
体が簡単かつ大量に得られるようになり、上記の多孔質
基板上に酸素極、固体電解質、燃料極をこの順で積層し
た水抜けの良い燃料電池を容易に構成出来るようになっ
ている。
In addition, perovskite-type oxide powder can be obtained easily and in large quantities using the above-mentioned formation method, and a fuel with good water drainage in which an oxygen electrode, a solid electrolyte, and a fuel electrode are laminated in this order on the above-mentioned porous substrate is also available. The battery can be easily configured.

■9発明の効果 本発明によれば、粒径が1μm以下のベロブスカイト型
酸化物の粉体を製造する際に、ペロブスカイト型酸化物
の原料となる金属元素の有機酸塩を用いているため、焼
成中に反応ガス放出が起き、このため生成物が多孔質な
ものとなる。
■9 Effects of the invention According to the invention, when producing a powder of a perovskite-type oxide with a particle size of 1 μm or less, an organic acid salt of a metal element, which is a raw material for the perovskite-type oxide, is used. , reactive gas evolution occurs during calcination, which makes the product porous.

従って、この生成物の粉砕を行うと通常の生成物を粉砕
したときに比して粉体の粒径が小さくなり、この製造方
法により粒径1μm以下の粉体が簡単かつ大量に得られ
、従来の製造方法に比して製造時間が大幅に短縮され、
また不純物の混合が生じる危険性も非常に小さくなって
いる。
Therefore, when this product is pulverized, the particle size of the powder becomes smaller than when a normal product is pulverized, and this production method allows powder with a particle size of 1 μm or less to be obtained easily and in large quantities. Manufacturing time is significantly reduced compared to traditional manufacturing methods,
Also, the risk of contamination with impurities is extremely reduced.

また、粒径5〜10μmのペロブスカイト型酸化物の粉
体を製造する際に原料の粒径を目的とする粒径よりも小
さくしており、またペロブスカイト型酸化物の構成金属
元素の内少なくとも一つを焼成中に分解して酸素を発生
する炭酸塩として更にアルミナ管等を粉体内に挿入して
焼成中に酸素を粉体中に直接供給している。
In addition, when manufacturing perovskite oxide powder with a particle size of 5 to 10 μm, the particle size of the raw material is made smaller than the target particle size, and at least one of the constituent metal elements of the perovskite oxide is In addition, an alumina tube or the like is inserted into the powder to supply oxygen directly into the powder during firing.

」1記の方法により、焼成中に酸素が十分に供給されて
反応が促進されて焼成時間の短縮及び焼成温度を低く抑
えることができる。
By the method described in item 1, oxygen is sufficiently supplied during firing to promote the reaction, thereby making it possible to shorten the firing time and keep the firing temperature low.

従って、原料の粒成長が抑制されて目的とする粒径のペ
ロブスカイト型酸化物が得られる。
Therefore, the grain growth of the raw material is suppressed, and a perovskite oxide having the desired grain size can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本実施例にかかる粉体の粒子構造を示
す写真、第6図(a)、(b)、第7図(a)、(b)
、(c)、第8図(a)、(b)は本実施例にかかる粉
体のX線回折グラフ、第9図は燃料電池の構成図である
。 1・・・ステンレスパイプ、2・・・多孔質ステンレス
基板、3・・・電極、4・・・固体電解質、5・・・電
極、第1図 第2図 第3図 第4図 PA 目 −牽 萌郵 eb 嶌 00圃 縫 1    □ ガスB ステンレスパイプ ・・多孔質ステンレス基板 ・電極 ・・固体電解質 ・電極 −14=
Figures 1 to 5 are photographs showing the particle structure of the powder according to this example, Figures 6 (a), (b), and Figure 7 (a), (b).
, (c), FIGS. 8(a) and (b) are X-ray diffraction graphs of the powder according to this example, and FIG. 9 is a configuration diagram of the fuel cell. 1... Stainless steel pipe, 2... Porous stainless steel substrate, 3... Electrode, 4... Solid electrolyte, 5... Electrode, Figure 1 Figure 2 Figure 3 Figure 4 PA Eye- Kenmoe mail eb Shima 00 farm stitch 1 □ Gas B Stainless steel pipe...Porous stainless steel substrate/Electrode...Solid electrolyte/Electrode-14=

Claims (2)

【特許請求の範囲】[Claims] (1)ペロブスカイト型酸化物を構成する金属元素の有
機酸塩を混合した溶液を作製し、この溶液を乾燥させて
得られる生成物を粉砕、混合して焼成を行い、この焼成
物を粉砕して粉体を得るようにしたことを特徴とするペ
ロブスカイト型酸化物粉体の製造方法。
(1) Prepare a solution in which organic acid salts of metal elements constituting the perovskite oxide are mixed, dry this solution, crush the resulting product, mix and sinter, and pulverize this sintered product. A method for producing perovskite-type oxide powder, characterized in that the powder is obtained by
(2)ペロブスカイト型酸化物を構成する金属元素の内
少なくとも一つを炭酸塩とし、他のペロブスカイト型酸
化物を構成する金属元素を単体もしくは酸化物として、
上記原料の粒径を目的とするペロブスカイト型酸化物の
粒径よりも小径としてこれらの粉体を混合し、この粉体
内に直接酸素を供給しながら焼成して粉体を得るように
したことを特徴とするペロブスカイト型酸化物の製造方
法。
(2) At least one of the metal elements constituting the perovskite-type oxide is carbonate, and the other metal elements constituting the perovskite-type oxide are used alone or as oxides,
The particle size of the above-mentioned raw materials is smaller than the particle size of the target perovskite oxide, and these powders are mixed and fired while supplying oxygen directly into the powder to obtain the powder. Characteristic method for producing perovskite-type oxides.
JP2322168A 1990-11-26 1990-11-26 Production of perovskite type oxide powder Pending JPH04193701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322168A JPH04193701A (en) 1990-11-26 1990-11-26 Production of perovskite type oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322168A JPH04193701A (en) 1990-11-26 1990-11-26 Production of perovskite type oxide powder

Publications (1)

Publication Number Publication Date
JPH04193701A true JPH04193701A (en) 1992-07-13

Family

ID=18140698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322168A Pending JPH04193701A (en) 1990-11-26 1990-11-26 Production of perovskite type oxide powder

Country Status (1)

Country Link
JP (1) JPH04193701A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237905A (en) * 1994-02-23 1995-09-12 Samsung Electron Co Ltd Preparation of combined metallic oxide, preparation of electrode for fuel cell and electrode for fuel cell
JP2005216760A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel cell and its manufacturing method
JP2013004455A (en) * 2011-06-21 2013-01-07 Toto Ltd Electrode material of solid oxide fuel cell and manufacturing method thereof
JP2015111534A (en) * 2013-12-06 2015-06-18 株式会社ノリタケカンパニーリミテド Electrode material for solid oxide fuel cell and use thereof
JP2015111533A (en) * 2013-12-06 2015-06-18 株式会社ノリタケカンパニーリミテド Electrode material for solid oxide fuel cell and use thereof
WO2022029992A1 (en) * 2020-08-07 2022-02-10 Dowaエレクトロニクス株式会社 Composite oxide powder
WO2023090413A1 (en) * 2021-11-18 2023-05-25 Dowaエレクトロニクス株式会社 Composite oxide powder and production method thereof
WO2024203265A1 (en) * 2023-03-30 2024-10-03 Dowaエレクトロニクス株式会社 Perovskite-type composite oxide powder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237905A (en) * 1994-02-23 1995-09-12 Samsung Electron Co Ltd Preparation of combined metallic oxide, preparation of electrode for fuel cell and electrode for fuel cell
JP2005216760A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel cell and its manufacturing method
JP2013004455A (en) * 2011-06-21 2013-01-07 Toto Ltd Electrode material of solid oxide fuel cell and manufacturing method thereof
JP2015111534A (en) * 2013-12-06 2015-06-18 株式会社ノリタケカンパニーリミテド Electrode material for solid oxide fuel cell and use thereof
JP2015111533A (en) * 2013-12-06 2015-06-18 株式会社ノリタケカンパニーリミテド Electrode material for solid oxide fuel cell and use thereof
WO2022029992A1 (en) * 2020-08-07 2022-02-10 Dowaエレクトロニクス株式会社 Composite oxide powder
JPWO2022029992A1 (en) * 2020-08-07 2022-02-10
US11866346B2 (en) 2020-08-07 2024-01-09 Dowa Electronics Materials Co., Ltd. Composite oxide powder
WO2023090413A1 (en) * 2021-11-18 2023-05-25 Dowaエレクトロニクス株式会社 Composite oxide powder and production method thereof
WO2024203265A1 (en) * 2023-03-30 2024-10-03 Dowaエレクトロニクス株式会社 Perovskite-type composite oxide powder

Similar Documents

Publication Publication Date Title
Žužić et al. Perovskite oxides as active materials in novel alternatives to well-known technologies: A review
Zhou et al. Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications
Cheng et al. Sintering behavior and electrical conductivity of Ce0. 9Gd0. 1O1. 95 powder prepared by the gel-casting process
JP5306726B2 (en) Fuel cell electrode-electrolyte composite powder and preparation method thereof
US5143751A (en) Method of making highly sinterable lanthanum chromite powder
US9412486B2 (en) Composite oxide powder for solid oxide fuel cell and its production method
CN108649235A (en) A kind of A laminated perovskite type electrode material and preparation method thereof
Yang et al. Developing an ultrafine Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for efficient solid oxide fuel cells
Sažinas et al. Silver modified cathodes for solid oxide fuel cells
Baharuddin et al. Influence of mixing time on the purity and physical properties of SrFe0. 5Ti0. 5O3-δ powders produced by solution combustion
Gao et al. Improve the catalytic property of La0. 6Sr0. 4Co0. 2Fe0. 8O3/Ce0. 9Gd0. 1O2 (LSCF/CGO) cathodes with CuO nanoparticles infiltration
Ren et al. Toward stabilizing Co3O4 nanoparticles as an oxygen reduction reaction catalyst for intermediate-temperature SOFCs
JPH04193701A (en) Production of perovskite type oxide powder
Subramania et al. Synthesis of nano-crystalline (Ba0. 5Sr0. 5) Co0. 8Fe0. 2O3− δ cathode material by a novel sol–gel thermolysis process for IT-SOFCs
Traina et al. Synthesis of La0. 9Sr0. 1Ga0. 8Mg0. 2O2. 85 by successive freeze-drying and self-ignition of a hydroxypropylmethyl cellulose solution
JP7055473B2 (en) Electrodes for solid oxide fuel cells and solid oxide fuel cells using them
Chae et al. Sr-and Mg-doped LaGaO3 powder synthesis by carbonate coprecipitation
JP6625855B2 (en) Cell for steam electrolysis and method for producing the same
CN103831097B (en) Nanocatalyst lanthanum strontium manganese oxygen material and its preparation method and application
KR20200110073A (en) Fuel electrode for solid oxide fuel cell of nickel doped perovskite structure and method of manufacturing the same and solid oxide fuel cell including the same
EP4005999A1 (en) Ceramic powder material, method for producing ceramic powder material, molded body, sintered body, and battery
JP3117781B2 (en) Method for producing electrode material for solid oxide fuel cell
JP7477729B2 (en) Composite oxide powder and its manufacturing method
EP4137459A1 (en) Composite oxide powder
Jung et al. Firing characteristics of La0. 8Sr0. 2Ga0. 8Mg0. 2O3− δ electrolyte powders prepared by spray pyrolysis