JPH04180486A - Moving image data compressing device - Google Patents
Moving image data compressing deviceInfo
- Publication number
- JPH04180486A JPH04180486A JP2309311A JP30931190A JPH04180486A JP H04180486 A JPH04180486 A JP H04180486A JP 2309311 A JP2309311 A JP 2309311A JP 30931190 A JP30931190 A JP 30931190A JP H04180486 A JPH04180486 A JP H04180486A
- Authority
- JP
- Japan
- Prior art keywords
- threshold value
- signal
- coefficients
- output
- quantizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013139 quantization Methods 0.000 claims description 22
- 230000000903 blocking effect Effects 0.000 claims description 6
- 238000013144 data compression Methods 0.000 claims description 4
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 230000009466 transformation Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
- Image Processing (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、画像信号を直交変換して量子化する動画像デ
ータ圧縮装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a moving image data compression device that orthogonally transforms and quantizes an image signal.
[従来の技術]
画像情報のデータ量は一般に膨大であるために、その蓄
積や伝送を行なう場合には、なんらかの情報圧縮を行な
って処理している。この情報圧縮手段ノーツトシテ、C
CITT、5GXV(伝送システム及び装置)で標準化
が進んでいるp×64kbit/sオーディオビジュア
ル・サービス用ビデオ符号化方式(H,261)がある
。H,261では、入力画像信号は8×8画素の2次元
ブロックに分割され、直交変換(lIi散コテコサイン
変換よび量子化を行なわれた佳、可変長符号化され出力
される。この可変長符号化にはハフマン符号化が用いら
れており、連続した零(ラン)とそれに続く零以外の値
(レベル)により符号語が決定される。[Prior Art] Since the amount of image information is generally enormous, when storing or transmitting it, some kind of information compression is performed. This information compression means notebook city, C
There is a video encoding system (H, 261) for px 64 kbit/s audiovisual services that is being standardized in CITT and 5GXV (transmission systems and equipment). In H,261, the input image signal is divided into two-dimensional blocks of 8 x 8 pixels, subjected to orthogonal transformation (IIi scattered cotecosine transformation and quantization), and then variable-length coded and output.This variable-length code Huffman encoding is used for the conversion, and a code word is determined by a continuous zero (run) and a subsequent non-zero value (level).
従来は、量子化手段のdカを可変長符号化して発生符号
量を求め、その結果に応じて量子化ステップを変化させ
ることにより発生符号量を制御していた。制御方法は、
1989年電子情報通信学会秋期全国大会D−45に述
べられているように、量子化手段の出力を可変長符号化
して発生符号量を求めることを量子化ステップを変えて
数回行い、その結果から設定符号量で量子化するための
量子化ステップを決定していた。Conventionally, the amount of generated codes was determined by variable-length coding the d code of the quantization means, and the amount of generated codes was controlled by changing the quantization step according to the result. The control method is
As stated in D-45 of the 1989 Institute of Electronics, Information and Communication Engineers Autumn National Conference, the output of the quantization means is variable-length coded to obtain the generated code amount several times by changing the quantization step, and the result is The quantization step for quantization with the set code amount was determined from
[発明が解決しようとする課題および目的コしかし、こ
のような従来の技術では設定符号量を64 kbps程
度の低レートとした場合、量子化ステップサイズが相当
大きくなり、直流係数に近い係数が荒く量子化されるた
め、復号画像に量子化) 雑音やブロック歪などが顕
著に現われ、見た目の画像を見苦しくするという問題点
と、設定符号量にするためにフィードバック制御を行な
うため処理時間が増加するという問題点を有する。[Problems and Objectives to be Solved by the Invention] However, in such conventional technology, when the set code amount is set to a low rate of about 64 kbps, the quantization step size becomes considerably large, and coefficients close to DC coefficients become rough. Since the decoded image is quantized, noise and block distortion appear prominently, making the image unsightly, and processing time increases as feedback control is performed to achieve the set code amount. There is a problem.
そこで、本発明はこのような問題点を解決するものであ
り、その目的とするところは、原画像と復号画像との間
の画質の劣化を少なくし、かつ発生符号量を減少させ、
さらに処理時間の増加を防ぐ手法を提供するところにあ
る。Therefore, the present invention is intended to solve these problems, and its purpose is to reduce the deterioration in image quality between the original image and the decoded image, and to reduce the amount of generated code.
Furthermore, a method for preventing an increase in processing time is provided.
[課題を解決するための手段〕
本発明の動画像データ圧縮装置は、画像信号をN×N
(N: 整数)@素の2次元ブロックに分割するブロッ
ク化手段と、ブロック化手段の出力であるNxN画素の
ブロック信号と1フレーム前の画像信号との差分を取る
差分手段と、差分手段の出力であるN×Ni素の差分ブ
ロック信号を直交変換して、N×N個の変換係数を出力
する直交変換手段と、変換係数を量子化しN×N個の量
子化係数を出力する量子化手段と、量子化係数を可変長
符号化する可変長符号化手段を備えた動画像データ圧縮
装置において、
量子化手段の出力のN×N個の全係数のうち、非零の値
の絶対値の平均値を求め定数倍する閾値発生手段と、閾
値発生手段の出力である閾値と、N×N個の係数の絶対
値をそれぞれ比較して係数の絶対値が閾値以上の場合は
そのまま出力し、閾値に満たない場合は零にして出力す
る閾値判別手段とを備えたことを特徴とする。[Means for Solving the Problems] The moving image data compression device of the present invention converts image signals into N×N
(N: integer) @blocking means for dividing into elementary two-dimensional blocks; difference means for taking the difference between the block signal of N×N pixels which is the output of the blocking means and the image signal of one frame before; orthogonal transform means that orthogonally transforms the output N×Ni element difference block signal and outputs N×N transform coefficients; and quantization that quantizes the transform coefficients and outputs N×N quantized coefficients. and variable length encoding means for variable length encoding the quantization coefficients, the absolute value of a non-zero value among all N×N coefficients output from the quantization means. Threshold generation means calculates the average value of and multiplies it by a constant, and compares the threshold value which is the output of the threshold generation means with the absolute value of the N×N coefficients, and if the absolute value of the coefficient is equal to or greater than the threshold value, outputs it as is. , a threshold value determining means for outputting a value of zero when the threshold value is not reached.
[実施例] 以下本発明をその実施例を示す図面に基づき詳述する。[Example] DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing examples thereof.
第1図は本発明をH,261の映像符号化器のフレーム
内モードに適用した場合のブロック図である。FIG. 1 is a block diagram when the present invention is applied to the intra-frame mode of an H.261 video encoder.
第1図において、入力端子101がらの入力画像信号は
、ブロック化手段102により8×8のブロックと、輝
度信号4ブロツクと色差信号2ブロツクの計6ブロツク
より成るマクロブロックに分けられる。予測はフレーム
間で行なわれるため、符号化コントロール104により
スイッチ114、スイッチ115は第1図に示すとおり
下側につながっている。ブロック化手段102がらマク
ロブロック単位で出力された画像信号は、まず動き補償
予測手段112に入力され、既に記憶されている1フレ
ーム前の信号より、予測誤差が過小になるマクロブロッ
クの信号を呼び出しく動ベクトル検出)、そのマクロブ
ロックの信号が出力される。In FIG. 1, an input image signal from an input terminal 101 is divided by a blocking means 102 into macro blocks consisting of 8×8 blocks, 4 blocks of luminance signals, and 2 blocks of color difference signals, a total of 6 blocks. Since prediction is performed between frames, the encoding control 104 connects the switches 114 and 115 to the lower side as shown in FIG. The image signal output in macroblock units from the blocking means 102 is first input to the motion compensation prediction means 112, which calls out the signal of the macroblock whose prediction error is smaller than the already stored signal one frame before. (motion vector detection), and the signal of that macroblock is output.
この信号はループフィルタ113を通った後、差分手段
103において入力画像信号との差分が取られる。この
入力画像信号と1フレーム前の動ベクトルで指示される
マクロブロックとの差分信号は、ブロック毎にl111
N!iコサイン変換手段105で変換される。そして、
量子化手段106で量子化され閾値発生手段107に出
力される。閾値発生手段107からは、閾値と量子化係
数が出力され、閾値判別手段108において量子化係数
に対し符号量制御処理が行なわれた後、可変長符号化手
段109においてハフマン符号化され出力端子116に
8カされる。閾値発生手段107および閾値判別手段1
08での処理については第2図の説明で詳細に述べる。After this signal passes through a loop filter 113, a difference between it and the input image signal is taken by a difference means 103. The difference signal between this input image signal and the macroblock indicated by the motion vector of one frame before is l111 for each block.
N! It is converted by i-cosine conversion means 105. and,
The signal is quantized by the quantization means 106 and output to the threshold generation means 107. A threshold value and a quantization coefficient are outputted from the threshold generation means 107, and after a code amount control process is performed on the quantization coefficient by the threshold value determination means 108, the variable length encoding means 109 encodes the threshold value and the quantization coefficient, and then Huffman encoding is performed by the variable length encoding means 109, and the output terminal 116 It will be 8 times. Threshold generating means 107 and threshold determining means 1
The processing at step 08 will be described in detail in the explanation of FIG.
閾値判別手段108の出力は逆量子化手段110で逆量
子化され、逆離散コサイン変換手段111で逆コサイン
変換された後、動ベクトルで指示されるブロックの信号
をループフィルタ113を通した信号と加算されて動き
補償予測手段112に記録される。The output of the threshold determination means 108 is dequantized by the dequantization means 110 and inverse cosine transformed by the inverse discrete cosine transformation means 111, and then the signal of the block indicated by the motion vector is converted into a signal passed through the loop filter 113. The sum is added and recorded in the motion compensation prediction means 112.
ここで、閾値発生手段107および閾値判別手段108
での処理について第2図のフローチャートに従い説明す
る。Here, the threshold value generating means 107 and the threshold value determining means 108
The processing will be explained according to the flowchart in FIG.
まず、閾値発生手段107では、量子化手段106の圧
力である8X8の量子化係数のうち、非零の値の絶対値
の平均値を求める。さらに、求めた平均値をn倍(n:
定数)することにより閾値が決定される。次に、閾値判
別手段108においては、閾値発生手段107の出力で
ある閾値と、64個全ての量子化係数の絶対値とを比較
して、値が閾値以上の場合はそのまま圧力し、閾値に満
たない場合は零にして出力する。First, the threshold generation means 107 calculates the average value of the absolute values of non-zero values among the 8×8 quantization coefficients that are the pressure of the quantization means 106. Furthermore, the obtained average value is multiplied by n (n:
The threshold value is determined by (constant). Next, the threshold value determining means 108 compares the threshold value which is the output of the threshold value generating means 107 with the absolute values of all 64 quantized coefficients, and if the value is equal to or higher than the threshold value, the pressure is applied as it is to reach the threshold value. If it is not satisfied, it is output as zero.
[発明の効果コ
以上のように、本発明では量子化ステップサイズをあま
り大きくしなくても発生符号量を低減できる。すなわち
、連続した零(ラン)とそれに続く零以外の値(レベル
)の二次元符号化をする際、零の数を多くすることが効
果的であり、本発明ではレベルの低い係数を優先的に零
にすることで、量子化ステップを大きくせずに発生符号
量を減らせることになる。さらに、比較的細かく量子化
された係数の中で、ある程度レベルの高い係数が残って
いるため、復号画像は多少輪郭のぼやけたものとなるが
、全体的には滑らかなものとなり、量子化雑音やブロッ
ク歪の少ない見やすい画像を再現できる。また、発生符
号量を低減できるため、駒落しフレーム数も少なくなり
、自然な復号間が得られる。[Effects of the Invention] As described above, in the present invention, the amount of generated codes can be reduced without increasing the quantization step size too much. In other words, when performing two-dimensional encoding of consecutive zeros (runs) and subsequent non-zero values (levels), it is effective to increase the number of zeros, and in the present invention, coefficients with low levels are prioritized. By setting it to zero, the amount of generated code can be reduced without increasing the quantization step. Furthermore, among the relatively finely quantized coefficients, some high-level coefficients remain, so although the decoded image has somewhat blurred outlines, it is smooth overall and is free from quantization noise. It is possible to reproduce images that are easy to view and have little block distortion. Furthermore, since the amount of generated code can be reduced, the number of dropped frames is also reduced, and a natural decoding interval can be obtained.
第1図は本発明の映像/動画像符号化装置の一実施例を
示すブロック図。
第2図は本発明の実施例のフローチャート。
101・・・入力端子
102・・・ブロック分割手段
103・・・差分手段
104・・・符号化コントロール
105・・・離散コサイン変換手段
106・・・量子化手段
107・・・閾値発生手段
108・・・閾値判別手段
109・・・可変長符号化手段
110・・・逆量子化手段
111・・・逆離散コサイン変換手段
112・・・動き補償予測手段
113・・・ループフィルタ
114・・・スイッチ
115・・・スイッチ
116・・・出力端子
以上
出願人 セイコーエプソン株式会社FIG. 1 is a block diagram showing an embodiment of the video/moving image encoding device of the present invention. FIG. 2 is a flowchart of an embodiment of the present invention. 101... Input terminal 102... Block division means 103... Differential means 104... Encoding control 105... Discrete cosine transformation means 106... Quantization means 107... Threshold generation means 108. ...Threshold determination means 109...Variable length encoding means 110...Dequantization means 111...Inverse discrete cosine transformation means 112...Motion compensation prediction means 113...Loop filter 114...Switch 115...Switch 116...Output terminal or more Applicant: Seiko Epson Corporation
Claims (1)
分割するブロック化手段と、前記ブロック化、手段の出
力であるN×N画素のブロック信号と1フレーム前の画
像信号との差分を取る差分手段と、前記差分手段の出力
であるN×N画素の差分ブロック信号を直交変換して、
N×N個の変換係数を出力する直交変換手段と、前記変
換係数を量子化しN×N個の量子化係数を出力する量子
化手段と、前記量子化係数を可変長符号化する可変長符
号化手段を備えた動画像データ圧縮装置において、 (a)前記量子化手段の出力のN×N個の全係数のうち
、非零の値の絶対値の平均値を求め定数倍する閾値発生
手段と、 (b)前記閾値発生手段の出力である閾値と、前記N×
N個の係数の絶対値をそれぞれ比較して係数の絶対値が
閾値以上の場合はそのまま出力し、閾値に満たない場合
は零にして出力する閾値判別手段、 とを備えたことを特徴とする動画像データ圧縮装置。[Scope of Claims] Blocking means for dividing an image signal into two-dimensional blocks of N×N (N: an integer) pixels, and a block signal of N×N pixels which is an output of the blocking means and one frame before. and a difference block signal of N×N pixels, which is the output of the difference means, is orthogonally transformed,
orthogonal transform means for outputting N×N transform coefficients, quantization means for quantizing the transform coefficients and outputting N×N quantized coefficients, and variable length code for variable length encoding the quantized coefficients. In a moving image data compression device comprising a quantizing means, (a) a threshold generating means for calculating the average value of the absolute values of non-zero values among all N×N coefficients output from the quantizing means and multiplying it by a constant; and (b) the threshold value that is the output of the threshold value generation means, and the N×
A threshold value determining means that compares the absolute values of the N coefficients and outputs the coefficient as is if it is equal to or greater than the threshold value, and outputs it as zero if it is less than the threshold value. Video data compression device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2309311A JPH04180486A (en) | 1990-11-15 | 1990-11-15 | Moving image data compressing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2309311A JPH04180486A (en) | 1990-11-15 | 1990-11-15 | Moving image data compressing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04180486A true JPH04180486A (en) | 1992-06-26 |
Family
ID=17991489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2309311A Pending JPH04180486A (en) | 1990-11-15 | 1990-11-15 | Moving image data compressing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04180486A (en) |
-
1990
- 1990-11-15 JP JP2309311A patent/JPH04180486A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7379496B2 (en) | Multi-resolution video coding and decoding | |
US7469069B2 (en) | Method and apparatus for encoding/decoding image using image residue prediction | |
US10027962B2 (en) | System, method and computer-readable medium for encoding a signal into macroblocks | |
KR0141082B1 (en) | Apparatus for coding image signal with adaptive edge part | |
US5844607A (en) | Method and apparatus for scene change detection in digital video compression | |
US5432555A (en) | Image signal encoding apparatus using adaptive 1D/2D DCT compression technique | |
KR20040015477A (en) | Motion Estimation Method and Apparatus Which Refer to Discret Cosine Transform Coefficients | |
US5227877A (en) | High-efficient coding apparatus for video signal | |
US5508745A (en) | Apparatus for controlling a quantization level to be modified by a motion vector | |
KR19980017213A (en) | Image Decoding System with Compensation Function for Degraded Image | |
KR20030014677A (en) | Video coding method and corresponding encoding device | |
US7236529B2 (en) | Methods and systems for video transcoding in DCT domain with low complexity | |
JP4762486B2 (en) | Multi-resolution video encoding and decoding | |
JP2914607B2 (en) | Image signal decoding device | |
KR20020066498A (en) | Apparatus and method for coding moving picture | |
JPH04180486A (en) | Moving image data compressing device | |
JP2916027B2 (en) | Image coding device | |
JPH03255792A (en) | Picture quality controller | |
JPH04342387A (en) | Picture data compressor | |
KR100234239B1 (en) | Method and apparatus of quantizing for decreasing blocking effect | |
KR0130167B1 (en) | Mpeg apparatus | |
JPH04185169A (en) | Image data compressing device | |
KR100206924B1 (en) | Encoder and decoder in image processing system | |
JPH04196695A (en) | Picture data compression device | |
JP2938652B2 (en) | Time-varying interframe subband coding method |