JPH04171696A - Distributed el element - Google Patents

Distributed el element

Info

Publication number
JPH04171696A
JPH04171696A JP2297660A JP29766090A JPH04171696A JP H04171696 A JPH04171696 A JP H04171696A JP 2297660 A JP2297660 A JP 2297660A JP 29766090 A JP29766090 A JP 29766090A JP H04171696 A JPH04171696 A JP H04171696A
Authority
JP
Japan
Prior art keywords
moisture
phosphor
phosphors
dispersed
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2297660A
Other languages
Japanese (ja)
Inventor
Keiichiro Uenae
圭一郎 植苗
Osamu Ishida
修 石田
Tsunemi Oiwa
大岩 恒美
Shigeo Aoyama
茂夫 青山
Hiroshi Yoshioka
博 吉岡
Ichirou Ono
猪智郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Maxell Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Hitachi Maxell Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2297660A priority Critical patent/JPH04171696A/en
Publication of JPH04171696A publication Critical patent/JPH04171696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To perform coating treatment easily and safely, suppress the deterioration of phosphors, and increase a moisture-proof effect by applying the coating treatment of organosilazane having the alkyl group with the carbon number 2-30 at the ordinary temperature on the grain surface of phosphors. CONSTITUTION:A light emitting paint mixed and dispersed with phosphors, high-dielectric constant binder resin and an organic solvent is coated on a transparent electrode 2 on a glass plate 1 and dried, and phosphors 4 coated with organosilazane 3 having the alkyl group with the carbon number 2-30 on the grain surface are mixed and dispersed to form a light emitting layer 5. An insulating paint mixed and dispersed with high-dielectric constant binder resin and an organic solvent is coated on the light emitting layer 5 and dried to form a reflecting insulating layer 6. The infiltration of moisture into the phosphors can be effectively prevented, and a distributed EL element having little aging deterioration of luminance, excellent stability and a long life is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は分散型EL素子に関し、さらに詳しくは、輝
度の経時劣化が小さくて、安定性に優れた長寿命の分散
型EL素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed EL element, and more particularly to a long-life distributed EL element that exhibits little luminance deterioration over time, is excellent in stability, and has a long life.

〔従来の技術〕[Conventional technology]

一般に、分散型EL素子における発光層は、高誘電率結
合剤樹脂を有機溶剤に溶解し、これに蛍光体を均一に混
合分散して発光塗料を調製した後、この発光塗料を透明
電極等の上に塗布、乾燥して形成される。
Generally, the light-emitting layer in a dispersion type EL element is prepared by preparing a light-emitting paint by dissolving a high dielectric constant binder resin in an organic solvent and uniformly mixing and dispersing a phosphor therein, and then applying this light-emitting paint to a transparent electrode, etc. It is formed by applying it on top and drying it.

このような分散型EL素子において、蛍光体に高電界を
印加すると、たとえば、発光母体であるZnSや、発光
中心を形成するCu、CE等の移動が注し、欠陥が生成
されたり、非輻射中心の形成が起こって、輝度が低下す
る。特に、水が存在すると ZnS+2Hz○→S 02 + Z n、 + 2 
H2示されるような反応が進行し、ZnSが分解するた
め、欠陥の生成や、非輻射中心の形成が起こりやすくな
り、輝度の低下が著しくなる。
In such a distributed EL element, when a high electric field is applied to the phosphor, for example, ZnS, which is the luminescent matrix, and Cu, CE, etc., which form the luminescent center, move, causing defects and non-radiative Center formation occurs and the brightness decreases. In particular, when water is present, ZnS+2Hz○→S 02 + Z n, + 2
As the reaction shown by H2 progresses and ZnS decomposes, the generation of defects and the formation of non-radiative centers tend to occur, resulting in a significant decrease in brightness.

このため、蛍光体外部からの水分の侵入を防御する目的
で、蛍光体の粒子表面に防湿膜を形成することが行われ
ており、たとえば、シランカンプリング剤や、酸化ケイ
素等の防湿膜を蛍光体にコーティングすることが行われ
ている。(特開昭62−19’5894号公報) 〔発明が解決しようとする課題〕 ところが、この種の防湿膜が形成された蛍光体は、シラ
ンカップリング剤や、酸化ケイ素等の防湿膜を蛍光体の
粒子表面にコーティングする際、250〜500°Cの
高温で加熱されるため、蛍光体自体が変色したりして劣
化し、輝度がその分低下するという難点があり、特に、
酸化ケイ素の場合、気相反応によって行われ、四塩化ケ
イ素を用いているため、安全性に欠ける。
Therefore, in order to prevent moisture from entering from outside the phosphor, a moisture-proof film is formed on the surface of the phosphor particles. For example, a moisture-proof film made of silane camping agent or silicon oxide is used. Coating phosphors has been done. (Unexamined Japanese Patent Publication No. 62-19'5894) [Problems to be Solved by the Invention] However, the phosphor on which this type of moisture-proof film is formed does not use a silane coupling agent or a moisture-proof film such as silicon oxide to fluoresce. When coating the particle surface of a body, it is heated at a high temperature of 250 to 500°C, which causes the phosphor itself to change color and deteriorate, resulting in a corresponding reduction in brightness.
In the case of silicon oxide, it is performed by a gas phase reaction and uses silicon tetrachloride, so it lacks safety.

〔課題を解決するための手段〕[Means to solve the problem]

この発明はかかる現状に鑑み種々検討を行った結果なさ
れたもので、蛍光体の粒子表面に、常温で炭素数2〜3
0のアルキル基を有するオルガノシラザンをコーティン
グ処理することによって、コーティング処理を容易かつ
安全にするとともに、蛍光体の劣化を抑制しながら防湿
効果を充分にし、輝度の経時劣化が小さくて、安定性に
優れた長寿命の分散型EL素子が得られるようにしたも
のである。
This invention was made as a result of various studies in view of the current situation.
Coating with organosilazane having 0 alkyl groups makes the coating process easy and safe, suppresses deterioration of the phosphor, provides sufficient moisture-proofing effect, reduces luminance deterioration over time, and improves stability. This makes it possible to obtain a dispersion type EL element with excellent long life.

この発明において、発光層中に混合分散される蛍光体の
粒子表面にコーティングされる炭素数2〜30のアルキ
ル基を有するオルガノシラザンは、常温で蛍光体に良好
に化学吸着し、防湿性が高くて、溌水性を有する。第1
図は、このようなオルガノシラザンの一種であるオルガ
ノジシラザンにおける蛍光体との吸着機構を反応式で図
示したもので、この第1図に示すように、オルガノジシ
ラザンは、蛍光体ZnS表面に、常温で化学吸着し、防
湿性が高くて、溌水性を有する強固な防湿膜を形成する
In this invention, the organosilazane having an alkyl group having 2 to 30 carbon atoms, which is coated on the particle surface of the phosphor mixed and dispersed in the light-emitting layer, chemically adsorbs well to the phosphor at room temperature and has high moisture resistance. It has water repellency. 1st
The figure shows the adsorption mechanism of organodisilazane, which is a type of organosilazane, with a phosphor using a reaction formula. It chemically adsorbs at room temperature and forms a strong moisture-proof film with high moisture-repellency and water repellency.

しかして、蛍光体中への水分の侵入が効果的に防止され
、このようなオルガノシラザンで粒子表面がコーティン
グされた蛍光体を、高誘電率結合剤樹脂中に混合分散さ
せて発光層を形成すると、輝度の経時劣化が小さくて、
安定性に優れた長寿命の分散型EL素子が得られる。
This effectively prevents moisture from entering the phosphor, and the phosphor whose particle surface is coated with organosilazane can be mixed and dispersed in a high dielectric constant binder resin to form a light-emitting layer. Then, the deterioration of brightness over time is small,
A long-life dispersion type EL element with excellent stability can be obtained.

このようなオルガノシラザンは、防湿効果を充分に発揮
させるため、炭素数2〜30のアルキル基を有するもの
であることが好ましく、アルキル基を持たないものは、
水分の侵入を効果的に防止することができない。このよ
うな炭素数2〜30のアルキル基を有するオルガノシラ
ザンとしては、たとえば、(CH3)25 i  (N
H)2/□、CI8H37S i (NH)3/□、C
3HzS 1  (NH)3/□、C+。Hz+S I
 CH3(NH) 2/□などが挙げられる。
In order to fully exhibit the moisture-proofing effect, such organosilazane preferably has an alkyl group having 2 to 30 carbon atoms;
It is not possible to effectively prevent moisture intrusion. Examples of organosilazane having an alkyl group having 2 to 30 carbon atoms include (CH3)25i (N
H)2/□, CI8H37S i (NH)3/□, C
3HzS 1 (NH)3/□, C+. Hz+SI
Examples include CH3(NH)2/□.

また、炭素数2〜30のアルキル基を有するオルガノシ
ラザンで粒子表面がコーティングされる蛍光体としては
、ZnS、CdS&とから居る母材に、Cu、Cl、M
n、AI、Agなどの1種または2種以上の元素を、発
光中心として付活した蛍光体など、一般に分散型EL素
子に使用される蛍光体が、いずれも好適なものとして使
用される。
In addition, as a phosphor whose particle surface is coated with organosilazane having an alkyl group having 2 to 30 carbon atoms, Cu, Cl, M
Any of the phosphors generally used in dispersion type EL elements, such as phosphors activated with one or more elements such as n, AI, Ag, etc. as a luminescent center, is suitably used.

さらに、発光層に使用される高誘電率結合剤樹脂として
は、一般に分散型EL素子の発光層に使用される高誘電
率結合剤樹脂が、いずれも好適に使用され、たとえば、
シアノエチル化セルロース、シアノエチル化プルラン、
シアノエチル化ポリビニルアルコール、シアノエチル化
ヒドロキシセルロース、シアノエチル化サッカロース、
シアノエチル化フェノキシ樹脂などが好ましく使用され
る。
Further, as the high dielectric constant binder resin used in the light emitting layer, any high dielectric constant binder resin that is generally used in the light emitting layer of a dispersion type EL element can be suitably used.
Cyanoethylated cellulose, cyanoethylated pullulan,
Cyanoethylated polyvinyl alcohol, cyanoethylated hydroxycellulose, cyanoethylated sucrose,
A cyanoethylated phenoxy resin or the like is preferably used.

また、有機溶剤としては、ジメチルホルムアミド、ノル
マルメチル2−ピロリドン、ジメチルスルホキシド、イ
ソホロン、アセトン、メチルエチルケトンなど、通常、
分散型EL素子の発光層に使用されるものがいずれも使
用される。
In addition, examples of organic solvents include dimethylformamide, normal methyl 2-pyrrolidone, dimethyl sulfoxide, isophorone, acetone, methyl ethyl ketone, etc.
Any material used in the light emitting layer of a distributed EL device can be used.

このように、粒子表面が炭素数2〜30のアルキル基を
有するオルガノシラザンでコーティングされた蛍光体を
混合分散した発光層を有する分散型EL素子は、たとえ
ば、第2図および第3図に示すようにガラス板1上のイ
ンジウム−スズ酸化物などからなる透明電極2上に、前
記の蛍光体、高誘電率結合剤樹脂および有機溶剤等を混
合分散して調製された発光塗料を塗布、乾燥して、粒子
表面が炭素数2〜30のアルキル基を有するオルガノシ
ラザン3でコーティングされた蛍光体4を混合分散した
発光層5を形成し、次いで、この発光層5上に、チタン
酸バリウムなどの高誘電率結合剤樹脂および有機溶剤等
を混合分散して調製された絶縁塗料を塗布、乾燥して反
射絶縁層6を形成した後、さらにアルミニウム等からな
る背面電6一 極7を形成し、これらを防湿フィルム8で封止して形成
される。なお、9は交流電源で、分散型EL素子10は
、透明電極2と背面電極7が交流電源9に接続されて駆
動される。
In this way, a dispersion type EL element having a light-emitting layer in which a phosphor whose particle surface is coated with an organosilazane having an alkyl group having 2 to 30 carbon atoms is mixed and dispersed is produced, for example, as shown in FIGS. 2 and 3. A luminescent paint prepared by mixing and dispersing the above-mentioned phosphor, high dielectric constant binder resin, organic solvent, etc. is applied onto a transparent electrode 2 made of indium-tin oxide or the like on a glass plate 1, and then dried. A light-emitting layer 5 is formed by mixing and dispersing a phosphor 4 coated with an organosilazane 3 having an alkyl group having 2 to 30 carbon atoms on the particle surface, and then barium titanate or the like is applied on the light-emitting layer 5. After applying an insulating paint prepared by mixing and dispersing a high dielectric constant binder resin and an organic solvent, etc., and drying it to form a reflective insulating layer 6, a back electrode 6 and a single pole 7 made of aluminum or the like are further formed. , these are sealed with a moisture-proof film 8. Note that 9 is an AC power source, and the distributed EL element 10 is driven by connecting the transparent electrode 2 and the back electrode 7 to the AC power source 9.

ここで、透明電極2は、従来の分散型EL素子の透明電
極と同様にして形成され、例えば、インジウム−スズ酸
化物、In2O3、SnO2、金などからなる透明電極
2が、電子ビーム薄着法やスパッタリング法によって形
成される。
Here, the transparent electrode 2 is formed in the same manner as the transparent electrode of a conventional dispersion type EL element. For example, the transparent electrode 2 made of indium-tin oxide, In2O3, SnO2, gold, etc. It is formed by a sputtering method.

また、発光層5上に形成される反射絶縁層6は、チタン
酸バリウム、ヂタン酸鉛、二酸化チタンなどの高誘電率
無機化合物を、発光層5で使用する高誘電率結合剤樹脂
および有機溶剤とともに混合分散して絶縁塗料を調製し
、この絶縁塗料を発光層5上に塗布、乾燥して形成され
る。
Further, the reflective insulating layer 6 formed on the light emitting layer 5 is made of a high dielectric constant inorganic compound such as barium titanate, lead ditanate, titanium dioxide, etc., and a high dielectric constant binder resin and an organic solvent used in the light emitting layer 5. The insulating paint is prepared by mixing and dispersing the insulating paint, and this insulating paint is applied onto the light emitting layer 5 and dried.

さらに、反射絶縁層6上に形成される背面電極7は、従
来の分散型EL素子の背面電極と同様にして形成され、
たとえば、アルミニウム、金、モリブデン、クロム等の
金属電極、さらにSnO2、InzO:+などの金属酸
化物電極が、真空蒸着法や抵抗加熱法によって形成され
、またAI箔などを加熱圧着するなどの方法でも形成さ
れる。
Furthermore, the back electrode 7 formed on the reflective insulating layer 6 is formed in the same manner as the back electrode of a conventional distributed EL element,
For example, metal electrodes such as aluminum, gold, molybdenum, and chromium, as well as metal oxide electrodes such as SnO2 and InzO:+, are formed by vacuum evaporation or resistance heating, and methods such as heat-pressure bonding of AI foil, etc. But it is formed.

防、湿フィルム8としては、37フ化塩化エチレンフイ
ルムなどが使用される。
As the moisture-proof film 8, a 37-fluorochloroethylene film or the like is used.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 蛍光体ZnS:Cu、Cl30重量部を、トルエン30
重量部およびオルガノシラザン(CHz)2S t (
NH) 2/□2重量部とともに、超音波洗浄器中に備
えたスクリュー瓶に投入し、洗浄溶液の温度を25°C
として1時間混合した。混合後、−晩装置し、吸引濾過
した。濾過後、真空中にて80°Cで24時間乾燥し、
粒子表面がオルガノシラザンでコーティングされた蛍光
体を得た。
Example 1 Phosphor ZnS: Cu, 30 parts by weight of Cl, 30 parts by weight of toluene
Parts by weight and organosilazane (CHz) 2S t (
NH) 2/□2 parts by weight into a screw bottle equipped in an ultrasonic cleaner, and the temperature of the cleaning solution was adjusted to 25°C.
The mixture was mixed for 1 hour. After mixing, the mixture was stored overnight and filtered with suction. After filtration, dry in vacuum at 80°C for 24 hours,
A phosphor whose particle surface was coated with organosilazane was obtained.

次いで、この防湿処理された蛍光体ZnS:Cu、Cl
40重量部を、シアノエチル化プルラン40重量部をジ
メチルホルムアミド20重量部中に溶解した中に、70
°Cに加熱しながら混合分散して発光塗料を調製した。
Next, this moisture-proof treated phosphor ZnS:Cu,Cl
70 parts by weight of 40 parts by weight of cyanoethylated pullulan were dissolved in 20 parts by weight of dimethylformamide.
A luminescent paint was prepared by mixing and dispersing while heating to °C.

次に、この発光塗料を、第2図に示すように厚さ1.1
闘のガラス板1上に形成したインジウム−スズ酸化物か
らなる厚さ0.2μmの透明電極2上にスクリーン印刷
によって塗布し、70“Cで24時間乾燥して、厚さ4
0μmの発光層5を形成した。
Next, apply this luminescent paint to a thickness of 1.1 mm as shown in Figure 2.
It was applied by screen printing onto a 0.2 μm thick transparent electrode 2 made of indium-tin oxide formed on a glass plate 1, and dried at 70"C for 24 hours to form a 4" thick transparent electrode 2.
A light emitting layer 5 having a thickness of 0 μm was formed.

さらに、シアンエチル化プルラン40重量部をジメチル
ホルムアミド20重量部中に溶解し、これにチタン酸バ
リウムを40重量部混合分散して絶縁塗料を調製し、こ
の絶縁塗料をスクリーン印刷によって発光層5上に塗布
し、70 ’Cで24時間乾燥して、厚さ60μmの反
射絶縁層6を形成した。
Furthermore, 40 parts by weight of cyanethylated pullulan was dissolved in 20 parts by weight of dimethylformamide, and 40 parts by weight of barium titanate was mixed and dispersed therein to prepare an insulating paint, and this insulating paint was applied onto the luminescent layer 5 by screen printing. The reflective insulating layer 6 with a thickness of 60 μm was formed by coating the film on the substrate and drying it at 70° C. for 24 hours.

次に、この反射絶縁層6上に抵抗加熱蒸着法によってア
ルミニウムを蒸着して、アルミニウムからなる背面電極
7を形成し、これらを防湿フィルム8で被覆して、第2
図に示すような分散型EL素子10を作製した。
Next, aluminum is vapor-deposited on this reflective insulating layer 6 by a resistance heating vapor deposition method to form a back electrode 7 made of aluminum, and these are covered with a moisture-proof film 8.
A dispersion type EL element 10 as shown in the figure was manufactured.

実施例2 実施例1における蛍光体の防湿処理において、オルガノ
シラザン(CH:+)231  (NH)zy。に代え
て、オルガノシラザンCI 8 H3□5i(NH)3
/2を同量使用した以外は、実施例1と同様にして蛍光
体の防湿処理を行った。
Example 2 In the moisture-proofing treatment of the phosphor in Example 1, organosilazane (CH:+)231 (NH)zy. Instead of organosilazane CI 8 H3□5i(NH)3
The moisture-proofing treatment of the phosphor was carried out in the same manner as in Example 1 except that the same amount of phosphor /2 was used.

次いで、この防湿処理された蛍光体を90%RH雰囲気
中に約48時間放置した後、実施例1で使用した蛍光体
に代えて同量使用し、実施例1と同様にして分散型EL
素子10を作製した。
Next, after leaving this moisture-proof treated phosphor in a 90% RH atmosphere for about 48 hours, the same amount of the phosphor used in Example 1 was used in place of the phosphor used in Example 1, and a dispersed EL was produced in the same manner as in Example 1.
Element 10 was produced.

比較例1 実施例1において、蛍光体の防湿処理を省き、蛍光体Z
nS:Cu、CIをそのまま実施例1の防湿処理された
蛍光体に代えて同量使用した以外は、実施例1と同様に
して分散型EL素子を作製した。
Comparative Example 1 In Example 1, the moisture-proofing treatment of the phosphor was omitted, and the phosphor Z
A dispersion type EL device was produced in the same manner as in Example 1, except that the same amount of nS:Cu and CI was used in place of the moisture-proofed phosphor of Example 1.

比較例2 実施例2において、蛍光体の防湿処理を省き、蛍光体Z
nS:Cu、CIをそのまま90%RH雰囲気中に約4
8時間放置した後、実施例2の防湿処理された蛍光体に
代えて同量使用した以外は、実施例2と同様にして分散
型EL素子を作製した。
Comparative Example 2 In Example 2, the moisture-proofing treatment of the phosphor was omitted, and the phosphor Z
nS: Cu, CI in a 90% RH atmosphere as it is about 4
After leaving it for 8 hours, a dispersion type EL element was produced in the same manner as in Example 2, except that the same amount of the moisture-proofed phosphor of Example 2 was used.

各実施例および比較例で得られた分散型EL素子を、2
0°C190%RH雰囲気で、200 V/400Hz
の交流駆動で作動させ、輝度の経時変化を8周べた。
The dispersion type EL elements obtained in each example and comparative example were
200V/400Hz at 0°C, 190%RH atmosphere
It was operated with AC drive, and the change in brightness over time was observed over eight cycles.

第4図および第5図はその結果を輝度と駆動時間の関係
図で表したものであり、第4図および第5図から明らか
なように、実施例1で得られた分散型EL素子は、比較
例1で得られた分散型EL素子に比し、防湿処理によっ
て初期輝度は低下するが、輝度半減時間はほぼ2倍であ
り、同様に、実施例2で得られた分散型EL素子は、比
較例2で得られた分散型EL素子に比し、防湿処理によ
って初期輝度は低下するが、輝度半減時間はほぼ2倍で
ある。
FIGS. 4 and 5 show the results as relationship diagrams between luminance and driving time. As is clear from FIGS. 4 and 5, the distributed EL element obtained in Example 1 Compared to the dispersion type EL element obtained in Comparative Example 1, the initial brightness decreases due to the moisture-proofing treatment, but the luminance half-life time is almost twice that of the dispersion type EL element obtained in Example 2. Compared to the dispersion type EL element obtained in Comparative Example 2, the initial brightness is lowered by the moisture proofing treatment, but the brightness half-life time is approximately twice as long.

〔発明の効果〕〔Effect of the invention〕

第4図および第5図から明らかなように、この発明で得
られた分散型EL素子(実施例1および2)は、いずれ
も比較例1および2で得られた分散型EL素子に比し、
輝度半減時間が長くほぼ2 。
As is clear from FIGS. 4 and 5, the dispersion EL devices obtained in this invention (Examples 1 and 2) are both compared to the dispersion EL devices obtained in Comparative Examples 1 and 2. ,
The luminance half-life time is long, almost 2.

倍であり、このことからこの発明で得られる分散型EL
素子は、輝度の経時劣化が小さくて、安定性に優れ、長
寿命の分散型EL素子が得られることがわかる。
Therefore, the distributed EL obtained by this invention is
It can be seen that a dispersion type EL element with little luminance deterioration over time, excellent stability, and long life can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蛍光体の粒子表面にオルガノジシラザンが吸着
される吸着機構を反応式で示した説明図、第2図はこの
発明で得られた分散型EL素子の一実施例を示す断面図
、第3図は第2図に示す分散型BL素子の発光層の部分
拡大断面図、第4図および第5図はこの発明で得られた
分散型EL素子の輝度と駆動時間との関係図である。 1・・・ガラス板、2・・・透明電極、3・・・オルガ
ノシラザン、4・・・蛍光体、5・・・発光層、6・・
・反射絶縁層、7・・・背面電極、8・・・防湿フィル
ム、10・・−分散型EL素子 特許出願人  日立マクセル株式会社 特許出願人  信越化学工業株式会社
Figure 1 is an explanatory diagram showing the adsorption mechanism by which organodisilazane is adsorbed onto the surface of phosphor particles using a reaction formula, and Figure 2 is a cross-sectional diagram showing an example of a dispersion type EL element obtained by this invention. , FIG. 3 is a partially enlarged sectional view of the light emitting layer of the dispersion type BL element shown in FIG. It is. DESCRIPTION OF SYMBOLS 1... Glass plate, 2... Transparent electrode, 3... Organosilazane, 4... Fluorescent substance, 5... Light emitting layer, 6...
・Reflective insulation layer, 7... Back electrode, 8... Moisture-proof film, 10... - Dispersed EL element patent applicant Hitachi Maxell Co., Ltd. Patent applicant Shin-Etsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.高誘電率結合剤樹脂中に蛍光体を分散させた発光層
を有する分散型EL素子において、発光層中に、粒子表
面が炭素数2〜30のアルキル基を有するオルガノシラ
ザンでコーティングされた蛍光体を混合分散させたこと
を特徴とする分散型EL素子
1. In a dispersed EL device having a light-emitting layer in which a phosphor is dispersed in a high dielectric constant binder resin, the phosphor is coated in the light-emitting layer with an organosilazane whose particle surface has an alkyl group having 2 to 30 carbon atoms. A dispersion type EL element characterized by mixing and dispersing
JP2297660A 1990-11-02 1990-11-02 Distributed el element Pending JPH04171696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2297660A JPH04171696A (en) 1990-11-02 1990-11-02 Distributed el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2297660A JPH04171696A (en) 1990-11-02 1990-11-02 Distributed el element

Publications (1)

Publication Number Publication Date
JPH04171696A true JPH04171696A (en) 1992-06-18

Family

ID=17849475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2297660A Pending JPH04171696A (en) 1990-11-02 1990-11-02 Distributed el element

Country Status (1)

Country Link
JP (1) JPH04171696A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855680A (en) * 1994-08-12 1996-02-27 Nec Kansai Ltd Electroluminescent lamp and manufacture thereof
KR100685917B1 (en) * 2000-12-27 2007-02-22 엘지.필립스 엘시디 주식회사 Electro luminescence device and method for manufacturing the same
JP6332522B1 (en) * 2017-05-17 2018-05-30 住友化学株式会社 Composition and method for producing the composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855680A (en) * 1994-08-12 1996-02-27 Nec Kansai Ltd Electroluminescent lamp and manufacture thereof
KR100685917B1 (en) * 2000-12-27 2007-02-22 엘지.필립스 엘시디 주식회사 Electro luminescence device and method for manufacturing the same
JP6332522B1 (en) * 2017-05-17 2018-05-30 住友化学株式会社 Composition and method for producing the composition
WO2018212260A1 (en) * 2017-05-17 2018-11-22 住友化学株式会社 Composition and method for producing composition
JP2018193467A (en) * 2017-05-17 2018-12-06 住友化学株式会社 Composition, and manufacturing method of composition
CN109275335A (en) * 2017-05-17 2019-01-25 住友化学株式会社 The manufacturing method of composition and composition
CN109275335B (en) * 2017-05-17 2019-10-15 住友化学株式会社 The manufacturing method of composition and composition
US11621299B2 (en) 2017-05-17 2023-04-04 Sumitomo Chemical Company, Limited Composition and method for producing composition

Similar Documents

Publication Publication Date Title
CN1211455C (en) EL plate
JPH04230996A (en) Capsulated electro luminescent phosphor material and manufacture thereof
JPH04335087A (en) Organic electroluminescent element
JP2002501293A (en) Electroluminescent lamp with improved interfacial adhesion
JPH09272866A (en) Electric field-luminescent phosphor and its production
JPH06299146A (en) Production of silica-coated fluorescent material
CN1381541A (en) Fluorophor film and manufacturing method thereof, and EL plate
JPH04171696A (en) Distributed el element
JPH07216351A (en) Dispersion-type el element
JP3325942B2 (en) Electroluminescent phosphor and EL panel using the same
JPH0758636B2 (en) Electroluminescent lamp
JP2003217859A (en) El panel
JPH06184533A (en) Production of coated stimulable phosphor
JPS587477A (en) Light emitting element in electrical field
JP2000106280A (en) Organic light-emitting element
JPH06310276A (en) Phosphor and dispersed el element using it
JP2806651B2 (en) Dispersion type electroluminescence device
JP2823352B2 (en) Organic electroluminescent device
JPH0432194A (en) Dispersing type electroluminescence element
JPH03250582A (en) Dispersion type el element and its manufacture
JPH06306356A (en) Production of coated phosphor
JPH02152194A (en) Distributed el element
JPH03297090A (en) Dispersion type el element
JP2000204367A (en) El fluorescent body with moisture-proof coat and el light emission element by using the same
JPH06267697A (en) Generating method for plasma and its device and manufacture of coating powder