JPH04169178A - Bacterium capable of producing hydrogen gas - Google Patents

Bacterium capable of producing hydrogen gas

Info

Publication number
JPH04169178A
JPH04169178A JP29538390A JP29538390A JPH04169178A JP H04169178 A JPH04169178 A JP H04169178A JP 29538390 A JP29538390 A JP 29538390A JP 29538390 A JP29538390 A JP 29538390A JP H04169178 A JPH04169178 A JP H04169178A
Authority
JP
Japan
Prior art keywords
hydrogen gas
strain
gas
termites
culture medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29538390A
Other languages
Japanese (ja)
Other versions
JPH0685712B2 (en
Inventor
Fumiaki Taguchi
文章 田口
Masayoshi Morimoto
昌義 森本
Takeshi Kyotani
京谷 健
Mikio Takano
鷹野 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP29538390A priority Critical patent/JPH0685712B2/en
Publication of JPH04169178A publication Critical patent/JPH04169178A/en
Publication of JPH0685712B2 publication Critical patent/JPH0685712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

NEW MATERIAL:A bacterium, capable of producing hydrogen gas,-derived from termites and having the following properties. Anaerobic Gram-positive bacillus having motility. Proliferating in a bouillon culture medium containing 0.3% glucose added thereto and a gum bouillon culture medium. Biochemical property; positive (+) to glucose, lactose, maltose, salicin, aesculin, cellobiose, mannose and raffinose, negative (-) to indole, urease, gelatin and catalase and partially negative (-) to mannitol, xylose, trehalose, etc. EXAMPLE:AM14A-2 strain (FERM P-11793). USE:Production of hydrogen gas, decomposition of organic substances (especially saccharides), etc. PREPARATION:Termites suffocated to death are solidified in an agar culture medium, cultured in an anaerobic gas atmosphere and separated.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、水素ガスの産生菌に関するものであり、詳し
くは、シロアリより単離された新規な水素ガス産生菌を
提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a hydrogen gas producing bacterium, and more specifically, it provides a novel hydrogen gas producing bacterium isolated from termites.

〔背景技術〕[Background technology]

現代工業社会においては、石油、石炭、天然ガスなとの
化石溶料か大量に消費され、その化石燃料は、燃焼によ
り多量のNOx、 SOxおよびCO2などを排出し、
その結果、環境汚染、酸性雨、地球の温暖化などの諸問
題を惹起している。
In modern industrial society, large amounts of fossil fuels such as oil, coal, and natural gas are consumed, and these fossil fuels emit large amounts of NOx, SOx, and CO2 when burned.
As a result, various problems have been caused such as environmental pollution, acid rain, and global warming.

更には、その埋蔵量が有限で近い将来枯渇するといわれ
、重要な社会問題ともなっている。
Furthermore, its reserves are finite and are said to be depleted in the near future, making it an important social problem.

これらのことから、化石燃料に代わる環境汚染のない新
しいクリ−71,エネルギー源が世界的に求められてお
り、石油に代わる次世代のエイ・ルギー源として、現在
、アルコール及びメタンガスが注目されている。しかし
、アルコールやメタンガスは、いずれも燃焼により大量
に002を産生ずる点では、依然として問題があり、し
かも、その内在エネルギーはロケ/1−や航空機用の燃
料に使用し得るほど高いものではないという欠点を有し
ている。
For these reasons, there is a worldwide need for new energy sources that do not pollute the environment in place of fossil fuels, and alcohol and methane gas are currently attracting attention as next-generation energy sources to replace oil. There is. However, alcohol and methane gas still have the problem of producing large amounts of 002 when burned, and furthermore, their inherent energy is not high enough to be used as fuel for filming or aircraft. It has its drawbacks.

ところで、水素ガスは、単位重量当りの燃焼による発熱
エネルギーが石油の3倍もあり、しかも、燻焼による副
生物がH,Oのみであることから、次世代の理想的なり
リーンエネルギー源として期待されている。
By the way, hydrogen gas has three times as much exothermic energy per unit weight of combustion as oil, and the only by-products from smoking are H and O, so it is expected to be an ideal next-generation lean energy source. has been done.

しかしながら、現状での水素ガスの工業的製法は、水の
電気分解や液化プロパン(LPG)、アルコールの高圧
熱分解などの方法によっているため、これらの方法は、
そのエネルギー源として化石燃料を消費するものである
から、製造法におけるエネルギー源の問題が解決されな
い限り前述した環境汚染などの諸問題の基本的解決には
ならない。
However, current industrial methods for producing hydrogen gas rely on methods such as water electrolysis, liquefied propane (LPG), and high-pressure thermal decomposition of alcohol;
Since fossil fuels are consumed as the energy source, the problems such as environmental pollution mentioned above will not be fundamentally solved unless the energy source problem in the manufacturing method is resolved.

これまで、微生物による水素ガスの産生に関する研究が
試みられている。微生物により水素ガスを生産するとい
う方法が確立されるとすればその方法の利点は、反応が
常温、常圧で行なわれるから、システム構成が簡単であ
り、また、エネルギー消費も極めて少ないということで
あり、しかも、再生可能なバイオマスを水素ガス産生の
原料として使用するものであって、このバイオマスはも
ともと太陽エネルギーを変換したものであるので自然エ
ネルギーの有効利用であることになる。更に言えば、微
生物による水素ガスの産生には、通常、廃棄物または廃
液中に存在する有機物質を原料とすることが可能である
ので、環境浄化の問題の解決にもなるという利点がある
Research on the production of hydrogen gas by microorganisms has so far been attempted. If a method to produce hydrogen gas using microorganisms is established, the advantages of that method are that the reaction takes place at room temperature and pressure, so the system configuration is simple and energy consumption is extremely low. Moreover, renewable biomass is used as a raw material for hydrogen gas production, and since this biomass is originally converted from solar energy, it is an effective use of natural energy. Furthermore, the production of hydrogen gas by microorganisms has the advantage of solving the problem of environmental purification, since it is possible to use organic substances normally present in waste or waste liquid as a raw material.

このように微生物による水素ガスの産生は、水素ガスの
製造方法として、極めて優れた利点を有してはいるが、
従来の研究業績においては、未だそれを工業的な製造方
法として確立するにはほど遠い状況にある。特に、これ
までに行われている研究では、工業的な生産を可能にす
るほどの水素ガ、子の生産性の高い微生物は見出されて
おらず、したがって、現状では微生物を利用して水素ガ
スを工業的に製造する方法については、全く未開発の状
況にある。
Although the production of hydrogen gas by microorganisms has excellent advantages as a method for producing hydrogen gas,
Based on previous research achievements, it is still far from being established as an industrial manufacturing method. In particular, research conducted to date has not found any microorganisms that are highly productive of hydrogen moths and offspring to enable industrial production. Methods for industrially producing gas are completely undeveloped.

これまでに知られている、水素ガスを産生ずる微生物は
、大5j11すると、光合成微生物と非光合成細菌とに
分けられる。前者には、光合成細菌のRhodobac
Ler 5pharoides、藍藻の0scilla
−toria sp、  Miani  BG7があり
、後者には、窒素固定細菌の^zotobacLer 
chroococuum、 Klebsi−ella 
pneumonia、通性嫌気性細菌のEscheri
−chia coli、 EnLerobacter 
aerogenes、嫌気性細菌のCIosLridi
um butyricum等がある。
Microorganisms known to date that produce hydrogen gas can be roughly divided into photosynthetic microorganisms and non-photosynthetic bacteria. The former includes the photosynthetic bacterium Rhodobacillus
Ler 5pharoides, blue-green algae 0scilla
- toria sp, Miani BG7, the latter includes the nitrogen-fixing bacterium ^zotobacLer
Chroococum, Klebsi-ella
pneumonia, a facultative anaerobic bacterium Escheri
-chia coli, EnLerobacter
aerogenes, anaerobic bacteria CIosLridi
There are um butyricum, etc.

光合成微生物による水素ガスの産生には、光エネルギー
を利用するために、表面積の広い培養槽と多量の水を必
要とする。
The production of hydrogen gas by photosynthetic microorganisms requires a culture tank with a large surface area and a large amount of water in order to utilize light energy.

他方、非光合成細菌による水素ガスの産生は、小規模の
発酵槽によっても可能であり、地下に設置するなど、そ
の設置場所の選択肢が広いなどの利点があり、水素ガス
の産生には、非光合成細菌による方が光合成微生物によ
るよりも有利であると考えられている。
On the other hand, the production of hydrogen gas by non-photosynthetic bacteria is also possible using small-scale fermenters, and has the advantage of having a wide range of installation locations, such as underground installation. It is believed that using photosynthetic bacteria is more advantageous than using photosynthetic microorganisms.

現在までに単離された微生物のなかで、最も効率よく水
素ガスを産生ずる微生物は、Tan1sh。
Among the microorganisms isolated to date, the microorganism that produces hydrogen gas most efficiently is Tan1sh.

S、らが単離したエンテロバクターアエロゲネス(En
terobacLer aerogenes) E82
005株であるとされている(Tanisho S、、
 et al、 Int、J、 Hydr−ogen 
Energy 12623.1987 ; Bioch
im、 Biophys。
Enterobacter aerogenes (En
terobacLer aerogenes) E82
It is said to be the 005 strain (Tanisho S,,
et al., Int. J., Hydrogen
Energy 12623.1987; Bioch
im, Biophys.

Acta、 97311989) 。しかし、この菌株
は、通性嫌気性細菌であり、嫌気状態でも増殖するが、
好気性条件下でより活発に増殖するため、発酵槽内で大
量の水素が産生されると、槽内を好気的に維持すること
が困難になり、水素ガスの工業的生産には適さない。
Acta, 97311989). However, this strain is a facultative anaerobic bacterium and grows even under anaerobic conditions;
Since it grows more actively under aerobic conditions, if a large amount of hydrogen is produced in the fermenter, it will be difficult to maintain the tank aerobically, making it unsuitable for industrial production of hydrogen gas. .

〔発明の開示〕[Disclosure of the invention]

本発明者らは、鋭意研究を重ねた結果、水素ガス産生細
菌を過去試みられたことのない昆虫に求め、シロアリ(
Termites formosans)より、極めて
反応速度の速く、かつ大量の水素ガスを産生ずる新規な
細菌を単離することに成功しに 。
As a result of extensive research, the present inventors sought hydrogen gas-producing bacteria in insects, which had never been tried before, and found that they
We succeeded in isolating a new bacterium from Termites formosans that has an extremely fast reaction rate and produces large amounts of hydrogen gas.

すなわち、本発明は、 l)クロストリジウム属に属する水素ガス産生細菌。That is, the present invention l) Hydrogen gas-producing bacteria belonging to the genus Clostridium.

2)別掲衣1−1.表1−2、表1−3に記載された一
般的性状、生化学的性状および酵素活性を有する水素ガ
ス産生細菌。
2) Separate clothing 1-1. A hydrogen gas producing bacterium having the general properties, biochemical properties and enzymatic activity listed in Tables 1-2 and 1-3.

3)  AM14A−2株、AM37E株、AM21B
株、へM9A−2株、AM37F株、AM40A株、A
M18B株、AM38C刊株およびAM42F株より選
択される水素ガス産生細菌 を提供するものである。
3) AM14A-2 strain, AM37E strain, AM21B
strain, M9A-2 strain, AM37F strain, AM40A strain, A
The present invention provides hydrogen gas-producing bacteria selected from M18B strain, AM38C strain, and AM42F strain.

上記のAM14A−2株、AM37F株、AM21B株
、AM9A−2株、AM37F株、へM40A株、AM
18B株、AM38C−1株およびAM42F株は、工
業技術院微生物工業研究所において、微工研菌寄第11
793号、同、第11794号、同、第11795号、
同、第11800号、同、第11799号、同、第11
798号、同、第11796号、同、第11797号お
よび同、第11801号として寄託されている。
The above AM14A-2 strain, AM37F strain, AM21B strain, AM9A-2 strain, AM37F strain, M40A strain, AM
18B strain, AM38C-1 strain, and AM42F strain were collected at the Institute of Microbiology, Agency of Industrial Science and Technology,
No. 793, No. 11794, No. 11795,
Same, No. 11800, Same, No. 11799, Same, No. 11
No. 798, No. 11796, No. 11797, and No. 11801.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者らは、イエシロアリ(Termites fo
r−mosans)を生きた状態のままで窒息死させ、
後に詳述する操作を経て、嫌気性細菌を分離した。
The present inventors have discovered that Termites fo.
R-mosans) was suffocated to death while still alive.
Anaerobic bacteria were isolated through operations detailed later.

細菌の分離培養用培地として普通ブイヨン(日水製薬株
式会社製)を通常の50分の1に希釈した培養液(以下
115ONと略記する)にメタンガスの基質である酢酸
ソーダと水素ガスの基質である蟻酸ソーダとをそれぞれ
2.5g/(+づつ加えて調製した培養液(以下115
ON’″と略記する)を考案して用いた。また、このl
15ON″″に1.5%の割に寒天を加えた貧栄養11
5ON“寒天培地を創案した。次に培養条件として、将
来エネルギー回収型の廃液処理にも応用することを考慮
し、35℃での嫌気性培養を用いることにした。
As a culture medium for bacterial isolation and culture, a culture solution (hereinafter abbreviated as 115ON) prepared by diluting ordinary bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) to 1/50th of the usual amount was mixed with sodium acetate, which is a substrate for methane gas, and a substrate for hydrogen gas. A culture solution prepared by adding 2.5 g/(+) of certain sodium formate (hereinafter referred to as 115
(abbreviated as ON''') was devised and used.
Poor nutrition 11 with 1.5% agar added to 15ON''
We devised a 5ON agar medium.Next, we decided to use anaerobic culture at 35°C as the culture condition, considering that it would be applied to energy recovery type waste liquid treatment in the future.

イエシロアリから嫌気性細菌を効率よく分離培養するた
めに、極力酸素との接触を避けることに留意し、そのた
めに、巣より取り出した生きているイエシロアリをペト
リー皿に入れ、それを嫌気性培養器(グローブボックス
、米国フォーマ社製)内に納め、嫌気性混合ガス(Ha
 10%、Co、 10%、N、80%)の雰囲気下で
窒息死させた。このイエシロアリをすりつぶすことなく
、シロアリ10匹を115ON+寒天培地2011(!
に加え、充分に混和して固化させた。この操作によって
、シロアリが寒天中に埋設した状態となり混合ガスにも
あまり接触しない条件が作り出された。
In order to efficiently isolate and culture anaerobic bacteria from Forensic termites, it is important to avoid contact with oxygen as much as possible. To do this, live Forensic termites taken from the nest are placed in a petrie dish and placed in an anaerobic incubator ( It is stored in a glove box (manufactured by Forma, USA) and is equipped with an anaerobic mixed gas (Ha
The animals were suffocated to death in an atmosphere of (10%, Co, 10%, N, 80%). Without grinding these house termites, 10 termites were added to 115ON + agar medium 2011 (!
In addition, the mixture was thoroughly mixed and solidified. This operation created conditions in which the termites were buried in the agar and did not come into much contact with the mixed gas.

この寒天平板10枚を嫌気性混合ガスの雰囲気下で35
℃で3週間培養を行った。
Ten plates of this agar were heated for 35 minutes in an anaerobic mixed gas atmosphere.
Culture was performed at ℃ for 3 weeks.

次いで、細菌学的な分離操作により153株の細菌を単
離し、その153株の細菌の水素ガス産生能をスクリー
ニング法により検定した結果、93%に相当する141
株が水素ガスを産生ずることが見出された。次いで酸素
要求性試験を行った結果、8株が通性嫌気性細菌であっ
た。最終的には、目的に適う候補菌37株の分離に成功
しIこ。
Next, 153 strains of bacteria were isolated by bacteriological separation, and the hydrogen gas production ability of the 153 strains was tested using a screening method.
The strain was found to produce hydrogen gas. Next, an oxygen demand test was performed, and as a result, 8 strains were facultative anaerobic bacteria. In the end, we succeeded in isolating 37 candidate bacterial strains suitable for our purpose.

現在までに分離された微生物のなかで、最も効率よく水
素ガスを産生する微生物は、前述したとおり、Ente
robacLer  aerogenes  E820
05株とされているが、この菌株はl1m+1IoQ 
Hz/Q−medium −hr又は246txQ H
z/ f)−w+edium ・hrの水素ガスを産生
ずるのに対し、本発明者が単離した菌株のうち、9株は
、これをはるかに超える水素ガス産生能を有する。
Among the microorganisms isolated to date, the microorganism that most efficiently produces hydrogen gas is Ente.
robacLer aerogenes E820
05 strain, but this strain is l1m+1IoQ
Hz/Q-medium-hr or 246txQ H
z/f)-w+edium·hr, whereas nine of the strains isolated by the present inventors have a hydrogen gas production ability that far exceeds this.

これら9株の一般的性状、生化学的性状、酵素活性を表
1−1、表1−2及び表1−3に示す。
The general properties, biochemical properties, and enzyme activities of these nine strains are shown in Tables 1-1, 1-2, and 1-3.

表1−3 ^M38C−1−−出   =   ↓   −〒  
 −AM40A          −−士    士
     +−+−AM37F      −−−−e
−e   −AM42F       −−−−+  
  −+    −AM14A−2−−±    + 
    (9−e    −AM21B       
−−−−+    +    +    −AM37F
      −−−+   e−+    −AM18
B       −−−+    +    −+  
  −Rap ANA  II  Syscem(Su
bstance) LIRE     Urea BLTS   p−N1trophenyl−B、D−
disaccharideaARA   p−N1tr
ophenyl−a、L−arabinosideOP
NG   o−N1trophenyl−B、 D−g
alactosideaGLU   p−Ni1rop
henyl−a、D−glucosideBGLU  
 p−N1trophenyl−B、D−glucos
ideaGAL    p−N1trophenyl−
a、D−galactosideaFUc    p−
N1trophenyl−a、L(ucosideNA
G   p−N1trophenyl−N−acety
l−B、D−glucosaIIIinidePO4p
−n1trophenylphosphate1、GY
    Leucyl−glycine−B−naph
thylamideC;LY    Glycine−
B−naphthylamidePROProline
−B−napt+thylamidePAL   Ph
enylalanine−B−naphthylami
deARG     Arginine−B−naph
thylamideSER5erine−B−naph
thyla+n1dePYRPyrrolidonyl
−B−naphthylamideIND    Tr
yptophane註、e印は極めて強い 酵素活性 ハ旦 密 戻■ 唄 叩p シ山 M旦 計重 顯上 
P史β−Galactosidase t −Glucosidase β−Glucosidase a −Galactosidase a −Fucosidase N−AcetylglucosaminidaseAl
kaline phosphataseLeucylg
lycine  aminopeptidaseGly
cine a+n1nopepLidaseProli
ne a+n1nopeptidasePhenyla
lanine aminopepticlaseArg
inine aminopeptidaseSerin
e aminopeptidasePyrrolido
ne aminopeptidaseTryptoph
anase(indole production)こ
れらの各菌株の性状(API  2OA、 Rap A
NAU systemによる)より、AM21BはC1
ostridiunbeiierinckii、  A
M37Fと八M14^−2はClosLridiumb
uLyricumと同定された。八138C−1,AM
42F及びAM18Bの3m株はC1ostridiu
m属と考えらfi6が、これまで知らtlでいない新規
な細菌である。さらに、AM37F、AM9^−2及び
八M40^の3株は、同定不能4全く新しい水素産生菌
である。更に詳細1=言えば、AM37F、八M9A−
2及びAM40Aのように、ダラム陽性、桿菌、無芽胞
性嫌気性細菌で水素ガスを産生ずるm菌Iごついては、
これまで全く報告さねておらず、例なみないものである
。これらの3菌株は、世界で初めて見出された細菌であ
る。
Table 1-3 ^M38C-1--out = ↓ -〒
-AM40A ---Samurai +-+-AM37F ---e
−e −AM42F −−−−+
−+ −AM14A-2−−± +
(9-e -AM21B
−−−−+ + + −AM37F
---+ e-+ -AM18
B −−−+ + −+
-Rap ANA II System (Su
bstance) LIRE Urea BLTS p-N1trophenyl-B, D-
disaccharideaARA p-N1tr
ophenyl-a, L-arabinoside OP
NG o-N1trophenyl-B, D-g
alactosideaGLU p-Ni1rop
henyl-a, D-glucoside BGLU
p-N1trophenyl-B, D-glucos
ideaGAL p-N1trophenyl-
a, D-galactosidea FUc p-
N1trophenyl-a, L (ucoside NA
G p-N1trophenyl-N-acety
l-B, D-glucosaIIIinidePO4p
-n1trophenylphosphate1, GY
Leucyl-glycine-B-naph
thylamideC;LY Glycine-
B-naphthylamide PROProline
-B-napt+thylamidePAL Ph
enylalanine-B-naphthylami
deARG Arginine-B-naph
thylamideSER5erine-B-naph
thyla+n1dePYRPpyrrolidonyl
-B-naphthylamide IND Tr
yptophaneNote: The e mark indicates extremely strong enzyme activity.
P history β-Galactosidase t -Glucosidase β-Glucosidase a -Galactosidase a -Fucosidase N-Acetylglucosaminidase Al
kaline phosphotase Leucylg
lycine aminopeptidase Gly
cine a+n1nopepLidaseProli
ne a+n1 no peptidase Phenyla
lanine aminopepticlaseArg
inine aminopeptidase Serin
e aminopeptidase Pyrrolido
ne aminopeptidase Tryptoph
anase (indole production) Properties of each of these strains (API 2OA, Rap A
According to NAU system), AM21B is C1
ostridiunbeiierinckii, A
M37F and eight M14^-2 are ClosLridium
It was identified as uLyricum. 8138C-1, AM
42F and AM18B 3m strains are C1ostridiu
fi6, which is thought to belong to the genus M, is a novel bacterium that has not been previously known as a tl. Furthermore, three strains, AM37F, AM9^-2, and HachiM40^, are completely new hydrogen-producing bacteria that cannot be identified. More details 1 = To say, AM37F, 8M9A-
2 and AM40A, which are Durham-positive, bacillus, and non-spore-producing anaerobic bacteria that produce hydrogen gas.
This has never been reported before and is unprecedented. These three strains are the first bacteria discovered in the world.

これら菌株のガム寒天の高層斜面培地におけるガス産生
性能を表1−4に示す。
Table 1-4 shows the gas production performance of these strains in a high slant medium of gum agar.

表1−4 ガム寒天の高層斜面培地におけるガス産生能AM 9A
−2−−−+    + AM 14A−2+     +    +AM  1
8B            −+         
  十        +AM 21B     −+
     +    +AM  37E       
    −半          +       +
AM 37F     −+     +    +A
M  38C−1−十         +     
   +AM 40A     −+    →−+A
M 42E     −+     +    +まt
;、人工汚水におけるガス産生能を表1−表1−5 人工汚水lこよるガス産生能 八M 14A−2−±  十  ±  +  +++A
M  18B      −±    十    ± 
   十    ++十八へ 21B   −±  十
  ±  +  +++AM 37E   −±  十
  ±  +  +++^M 37F   −±  十
  ±  +  +++^M  38G−1−土   
士   土   十   十++AM  40A   
   −土   +   土   十   +++AM
 42E   −±  十  ±  +  +++本 (1)N:普通ブイヨン(日本製薬製)(2) NY 
: 0.5%イーストエキストラクト(田水製薬If)
加N(3) ND : 0.3%グルコース加N(4)
 PY : 0.5%ペプトンとイーストエキストラク
ト(5) PYG : 1%グルフース加PY(5) 
PYS : 1%殿粉加PY (7) GAM :ガムブイヨン(日本製薬製)(8)
 K−meet :クツクドミー1−培地(日本製薬製
)+は、ガス産生量がダーラム管の≧l/、程度土は、
ガス産生量がダーラム管の1A程度ガス産土量の測定は
、添付図面第1図に示す装置を用いて行った。
Table 1-4 Gas production capacity AM 9A in high slope culture medium of gum agar
-2---+ + AM 14A-2+ + +AM 1
8B −+
10 +AM 21B -+
+ +AM 37E
-half + +
AM 37F −+ + +A
M38C-1-10 +
+AM 40A -+ →-+A
M 42E −+ + +mat
Table 1-Table 1-5 Gas production capacity of artificial sewage 8M 14A-2-± 10 ± + +++A
M 18B −± 10 ±
10 ++ To 18 21B -± 10 ± + +++AM 37E -± 10 ± + +++^M 37F -± 10 ± + +++^M 38G-1-Sat
Shi Sat 10 ++ AM 40A
-Earth + Earth 10 +++AM
42E −± 10 ± + +++ Book (1) N: Ordinary bouillon (manufactured by Nippon Pharmaceutical) (2) NY
: 0.5% yeast extract (Tamizu Pharmaceutical If)
Added N(3) ND: Added 0.3% glucose N(4)
PY: 0.5% peptone and yeast extract (5) PYG: PY with 1% glufus (5)
PYS: PY with 1% starch (7) GAM: Gum bouillon (manufactured by Nippon Pharmaceutical) (8)
K-meet: K-meet 1-medium (manufactured by Nippon Pharmaceutical)
The amount of gas produced was about 1A in the Durham tube.The amount of gas produced was measured using the apparatus shown in FIG. 1 of the attached drawings.

すなわち、培養ビンの口を密栓しl;ゴム栓に18号注
射針を刺し通し、そこtこビニールチューブをつなぎ、
この排気管をガス測定用ノリンダーlこS統した。培養
後、逆さにした/リンダーに溜まっtこガス産生量を測
定した。
That is, seal the mouth of the culture bottle; insert a No. 18 syringe needle through the rubber stopper, and connect a vinyl tube there.
This exhaust pipe was fitted with a Norindar S for gas measurement. After culturing, the cells were turned upside down/remained in a linder and the amount of gas produced was measured.

前記したとおり、En[erobacIer aero
genes E82005株の水素ガス産生能は246
1111/12−hrであるのに対し、本発明者がイエ
シロアリより分離に成功した前記の9菌株の水素産生能
は、表1−6に示ずようにE82005株と比較して全
く比較にならないほど大量の水素ガスを産生ずる。
As mentioned above, En[erobacIer aero
The hydrogen gas production capacity of Genes E82005 strain is 246
1111/12-hr, on the other hand, the hydrogen production ability of the above-mentioned nine strains that the present inventors successfully isolated from the house termite is completely incomparable with that of the E82005 strain, as shown in Table 1-6. It produces a large amount of hydrogen gas.

表1−6  水素ガス産生能 菌株名   水素ガス産生t@ CwaQ L/ (1
−hr)AM37F       2,790    
 11.3AM21B       2.515   
  10.2八138C−12,3969,7 AM42E       2,380      9.
7AM18B       I 、898      
7.7AM37E       I 、815    
  7.4AM9A−21,5016,1 AM14A−21,478’     6.0^114
0^       759      3.1次に、上
記の9菌株の糖分解能と糖分解系酵素活性をみると、非
常に多種多様な活性を有し゛ていることが判明した(表
1−2、表1−3参照)。
Table 1-6 Hydrogen gas production capacity strain name Hydrogen gas production t@ CwaQ L/ (1
-hr) AM37F 2,790
11.3AM21B 2.515
10.28 138C-12,3969,7 AM42E 2,380 9.
7AM18B I, 898
7.7AM37E I, 815
7.4AM9A-21,5016,1 AM14A-21,478' 6.0^114
0^ 759 3.1 Next, when we looked at the glycolytic ability and glycolytic enzyme activity of the nine strains mentioned above, we found that they had a very wide variety of activities (Table 1-2, Table 1-2). (See 3).

特に八M9^−2、八137F、^1114^−2及び
AM37Fの4株の+r −glucosidase活
性及びtr −galactosidase活性は極め
て強力であることが判明した。これらの研究結果よりみ
て、糖を成分とする天然物をはじめ、例えばバルブ植物
繊維、殿粉あるいは多糖類などを含む廃液を処理するに
あたって、これらの菌株は特に有効な細菌株であるとい
うことができ、廃液・廃棄物の処理による環境浄化やあ
るいは、水素ガスの製造の工業化においてこれらの菌株
は極めて重要な役割を果たすものである。
In particular, the +r-glucosidase activity and tr-galactosidase activity of the four strains HachiM9^-2, Hachi137F, H1114^-2, and AM37F were found to be extremely strong. These research results indicate that these bacterial strains are particularly effective in treating wastewater containing natural products containing sugars, such as bulb fiber, starch, and polysaccharides. These strains play an extremely important role in environmental purification through the treatment of waste liquids and waste, and in the industrialization of hydrogen gas production.

本発明者の見出した新規な水素カス産生菌は、極めて速
い反応速度で、かつ時間あたり極めて大量の水素ガスを
産生するという画期的な特徴的性格を有するものであり
、食品工業・製紙工業などに由来する廃水、あるいは生
活廃水あるいはあらゆる有機物質含有廃棄物などの処理
にとって極めて有効な細菌である。
The novel hydrogen sludge-producing bacteria discovered by the present inventors has the revolutionary characteristic of producing an extremely large amount of hydrogen gas per hour at an extremely fast reaction rate, and is useful in the food industry and paper manufacturing industry. It is an extremely effective bacterium for the treatment of wastewater originating from other sources, domestic wastewater, and all types of waste containing organic substances.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 グルコースをそhそれ、0.3%及び1.0%加えた普
通ブイヨン(田水製薬!!りにAM21B菌を接種し、
第1図に示す装置を用いて、36°Cの水槽で培養し、
発生する水素ガスの量を1時間毎に測定した。結果は表
1−7に示すとおりであった。
Example 1 AM21B bacteria was inoculated into ordinary broth (Tamizu Seiyaku) to which glucose was added, 0.3% and 1.0%,
Cultured in a 36°C water tank using the apparatus shown in Figure 1,
The amount of hydrogen gas generated was measured every hour. The results were as shown in Table 1-7.

実施例2 人工汚水からの水素カスの産生0.3%グル
コース加普通ブイヨン(日本製薬製)とガムブイヨン培
地(日本製薬製)の各300mQに各画を接種して、3
6℃で1液静置培養した。産生されたガス量と水素ガス
濃度より水素ガス産生量を算出した。結果は表1−8に
示すとおりであった。
Example 2 Production of hydrogen scum from artificial sewage Each plot was inoculated into 300 mQ each of 0.3% glucose-added ordinary broth (manufactured by Nippon Pharmaceutical Co., Ltd.) and gum bouillon medium (manufactured by Nippon Pharmaceutical Co., Ltd.).
One solution was statically cultured at 6°C. The amount of hydrogen gas produced was calculated from the amount of gas produced and the hydrogen gas concentration. The results were as shown in Table 1-8.

表1−8 実施例3 新規な水素ガス産生菌による水素ガス産生 人工汚水としてのガムブイヨン(日本製薬製)培地90
0mCに各培養菌液100+nf2を添加し撹拌して培
養した。1時間毎にガス産生量、菌量(OD)、pH及
び糖濃度を測定し、ガス産生量が200mQ以上の場合
のガスの組成分析を行った。ガス産生量とガス濃度から
、水素ガスの産生量を算出し、培養時間と水素ガス産生
量の関係を検討した。
Table 1-8 Example 3 Gum bouillon (manufactured by Nippon Seiyaku) medium 90 as hydrogen gas production artificial wastewater by novel hydrogen gas producing bacteria
100+nf2 of each culture was added to 0 mC, stirred, and cultured. The amount of gas produced, the amount of bacteria (OD), pH, and sugar concentration were measured every hour, and the composition of the gas was analyzed when the amount of gas produced was 200 mQ or more. The amount of hydrogen gas produced was calculated from the amount of gas produced and the gas concentration, and the relationship between the culture time and the amount of hydrogen gas produced was examined.

’El−9はその結果を示すものである。'El-9 shows the results.

表1−9(続) 表1−9(統) 表+−9(J−X) 以上、述べたところから明らかなように、本発明に係る
新規な水素ガス産生菌は、水素ガスの工業的製造法ある
いは廃水処理、廃棄物処理に有用な優れた活性を有し、
産業上極めて価値ある微生物である。
Table 1-9 (Continued) Table 1-9 (Continued) Table +-9 (J-X) As is clear from the above, the novel hydrogen gas-producing bacteria according to the present invention is suitable for the hydrogen gas industry. It has excellent activity that is useful for industrial production methods, wastewater treatment, and waste treatment.
It is an extremely valuable microorganism in industry.

【図面の簡単な説明】[Brief explanation of drawings]

添付第1図は、本発明に係る新規微生物のガス産生量を
測定するために使用した装置の1例を示すものである。 特許出願人   1)口 文 章
Attached FIG. 1 shows an example of an apparatus used to measure the amount of gas produced by the novel microorganism according to the present invention. Patent applicant 1) Oral text

Claims (1)

【特許請求の範囲】 1)クロストリジウム属に属する水素ガス産生細菌。 2)別掲表1−1、表1−2、表1−3に記載された一
般的性状、生化学的性状および酵素活性を有する水素ガ
ス産生細菌。 3)AM14A−2株(微工研菌寄第11793号)、
AM37E株(同、第11794号)、AM21B株(
同、第11795号)、AM9A−2株(同、第118
00号)、AM37F株(同、第11799号)、AM
40A株(同、第11798号)、AM18B株(同、
第11796号)、AM38C−1株(同、第1179
7号)およびAM42E株(同、第11801号)より
選択される水素ガス産生細菌。
[Claims] 1) A hydrogen gas-producing bacterium belonging to the genus Clostridium. 2) Hydrogen gas-producing bacteria having the general properties, biochemical properties, and enzyme activity listed in Tables 1-1, 1-2, and 1-3. 3) AM14A-2 strain (Feikoken Bibori No. 11793),
AM37E strain (No. 11794), AM21B strain (
Id., No. 11795), AM9A-2 strain (Id., No. 118)
00), AM37F strain (same, No. 11799), AM
40A strain (No. 11798), AM18B strain (No. 11798),
No. 11796), AM38C-1 strain (No. 1179)
A hydrogen gas-producing bacterium selected from AM42E strain (No. 7) and AM42E strain (No. 11801).
JP29538390A 1990-11-02 1990-11-02 Hydrogen gas-producing bacteria Expired - Lifetime JPH0685712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29538390A JPH0685712B2 (en) 1990-11-02 1990-11-02 Hydrogen gas-producing bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29538390A JPH0685712B2 (en) 1990-11-02 1990-11-02 Hydrogen gas-producing bacteria

Publications (2)

Publication Number Publication Date
JPH04169178A true JPH04169178A (en) 1992-06-17
JPH0685712B2 JPH0685712B2 (en) 1994-11-02

Family

ID=17819917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29538390A Expired - Lifetime JPH0685712B2 (en) 1990-11-02 1990-11-02 Hydrogen gas-producing bacteria

Country Status (1)

Country Link
JP (1) JPH0685712B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074495A1 (en) * 2003-02-24 2004-09-02 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
US6978572B1 (en) 1998-11-06 2005-12-27 Colorado State University Research Foundation Method and device for attracting insects
US7258938B2 (en) 2001-03-06 2007-08-21 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
WO2008120486A1 (en) * 2007-03-29 2008-10-09 Sapporo Breweries Limited Novel microorganism
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6978572B1 (en) 1998-11-06 2005-12-27 Colorado State University Research Foundation Method and device for attracting insects
US7258938B2 (en) 2001-03-06 2007-08-21 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
US7527883B2 (en) 2001-03-06 2009-05-05 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
WO2004074495A1 (en) * 2003-02-24 2004-09-02 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
US7432091B2 (en) 2003-02-24 2008-10-07 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
WO2008120486A1 (en) * 2007-03-29 2008-10-09 Sapporo Breweries Limited Novel microorganism
US9150883B2 (en) 2007-03-29 2015-10-06 Sapporo Breweries Limited Strain of Thermoanaerobacterium thermosaccharolyticum and mutant thereof
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen

Also Published As

Publication number Publication date
JPH0685712B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
Baumann et al. Taxonomy of marine bacteria: the genus Beneckea
JPH04169186A (en) Production of hydrogen by utilization of microorganism
Canale-Parola Biology of the sugar-fermenting Sarcinae
Asada et al. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV
Zeikus et al. Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium
Ferry et al. Anaerobic degradation of benzoate to methane by a microbial consortium
VAN HAO et al. Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov.
Sinha et al. Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03
Huber et al. The Thermotogales: hyperthermophilic and extremely thermophilic bacteria
Sickles et al. A systematic study of microörganisms which decompose the specific carbohydrates of the pneumococcus
CN102399726B (en) Sporosarcina and application thereof
JPH04169178A (en) Bacterium capable of producing hydrogen gas
NO824163L (en) MICRO-ORGANISMS OF GENUS PSEUDOMONAS AND PROCEDURES FOR THE DISPOSAL OF METHYL GROUP-CONTAINED COMPOUNDS IN Aqueous SOLUTIONS
Li et al. Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying ability from soil
Dinesh et al. Anaerobic process for biohydrogen production using keratin degraded effluent
US4721676A (en) Novel thermophile isolate having thermostable hydrolytic activity
JP5410685B2 (en) Ethanol production method
Yamada et al. Studies on the Utilization of Hydrocarbons by Microorganisms: Part II. Taxonomical Studies on the Amino Acids-producing Bacteria from Hydrocarbons
RU2759807C1 (en) Strain of serratia plymuthica bacteria rncim b-12668 extracted from biomaterial of paleontological sample (calf of fossil woolly rhinoceros) - destructor of petroleum and petroleum products
De et al. An Insight into the Celluloytic Potential of Three Strains of Bacillus Spp. Isolated from Benthic Soil of Aquaculture Farms in East Kolkata Wetlands, India.
KR100355496B1 (en) A novel obligately symbiotic thermophile Symbiobacterium toebii SC-1 producing thermostable L-tyrosine phenol-lyase and L-tryptophan indole-lyase and a method for screening its relative bacteria
JP5248139B2 (en) New microorganism
JP5214272B2 (en) New microorganism
Douglas Glycine fermentation by nongas forming anaerobic micrococci
Kamalambigeswari et al. Lipase production from Enterobacter Sp.