JPH04165234A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device

Info

Publication number
JPH04165234A
JPH04165234A JP2290838A JP29083890A JPH04165234A JP H04165234 A JPH04165234 A JP H04165234A JP 2290838 A JP2290838 A JP 2290838A JP 29083890 A JP29083890 A JP 29083890A JP H04165234 A JPH04165234 A JP H04165234A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric conversion
electrode plate
electrode plates
type thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2290838A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
兼二 山田
Kazutoshi Nishizawa
一敏 西沢
Yoshitaka Tomatsu
義貴 戸松
Tatsuya Oike
達也 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2290838A priority Critical patent/JPH04165234A/en
Publication of JPH04165234A publication Critical patent/JPH04165234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

PURPOSE:To improve the efficiency of teat exchange by a method wherein an electrode plate of which an endothermic and a radiation heat exchanger is formed in the shape of a wing. CONSTITUTION:Electrode plates 131, 132,... and 151, 152,... have a fan plate 171 of which a blast wing is formed, and an N-type or a P-type thermoelectric element 18 is mounted on the surface of the electrode plate 17 by soldering. When a direct current is caused to flow in the direction of the N-type thermoelectric element 121 through the two metallic sheets of a radiation electrode plate 15n, the NP joint of endothermic electrode plates 131, 132,... parts to cause a current to flow from N-type thermoelectric elements 121, 122,... in the direction of P-type thermoelectric elements 141, 142,... are reduced in temperature through a Peltier effect. Similarly, the temperature of the radiation electrode plates 151, 152,... parts is increased to a high value. Thus, fan blade parts respectively formed integrally with the endothermic electrode plates 131, 132,... and the radiation electrode plates 151, 152,..., which are reduced and increased in temperature heat-exchange with air making contact therewith, cooled air and heated air are outputted through a blast guide 25.

Description

【発明の詳細な説明】 C産業上の利用分野〕 この発明は、冷却風あるいは加熱風を送風する、N型半
導体を用いたN型熱電素子およびP型半導体を用いたP
型熱電素子によって構成した熱電変換装置に関する。
[Detailed Description of the Invention] C. Industrial Application Field] This invention provides an N-type thermoelectric element using an N-type semiconductor and a P-type thermoelectric element using a P-type semiconductor, which blows cooling air or heating air.
The present invention relates to a thermoelectric conversion device configured using type thermoelectric elements.

[従来の技術] 熱電変換装置は、例えば特開昭53−99796号公報
に示されているが、この様な従来の熱電変換装置は第7
図で示されるように構成される。すなわち、それぞれ複
数のN型半導体によって構成されたN型熱電変換素子7
11 、712 、・・・およびP型半導体によって構
成されたP型熱電素子721.722、・・・を、1つ
の直線上で交互に間隔をおいて配設し、それぞれ異なる
面に設定した吸熱電極板731.732、・・・および
放熱電極板741 、742 、・・・によって、順次
直列的に接続されるようにしている。そして、この直列
回路の両端に直流電源を接続するもので、それぞれN型
熱電素子711 、712、・・・からP型熱電素子7
21.722 、・・・の方向に電流が流されるNP接
合を形成する吸熱電極板731.732、・・の部分が
、ベルチェ効果によって低温となり、また逆のPN接合
の方向に電流を流す放熱電極板741.742、・・の
部分が高温とされるようになる。
[Prior Art] A thermoelectric conversion device is disclosed in, for example, Japanese Patent Application Laid-Open No. 53-99796.
Constructed as shown in the figure. That is, each N-type thermoelectric conversion element 7 is constituted by a plurality of N-type semiconductors.
11, 712, ... and P-type thermoelectric elements 721, 722, ... composed of P-type semiconductors are arranged alternately at intervals on one straight line, and each set on a different surface. The electrode plates 731, 732, . . . and the heat dissipating electrode plates 741, 742, . A DC power supply is connected to both ends of this series circuit, and N-type thermoelectric elements 711, 712, . . . to P-type thermoelectric elements 7 are connected to each other.
21.722, ... parts of the heat-absorbing electrode plates 731, 732, ... forming the NP junction where the current flows in the direction become low temperature due to the Beltier effect, and the heat dissipation where the current flows in the opposite direction of the PN junction. The electrode plates 741, 742, . . . become hot.

この様に構成される熱電変換ユニットの吸熱電極板73
1.732 、・・・の存在する面、および放熱電極板
741.742 、・・・の存在する面には、それぞれ
絶縁板75および76を対接し、この絶縁板75および
76によって熱電変換ユニット部を保持させるようにす
る。そして、この絶縁板75および76のそれぞれ外側
面に、導電性の金属材料によって構成した吸熱熱交換器
77および放熱熱交換器78を取り付けるようにする。
Endothermic electrode plate 73 of the thermoelectric conversion unit configured in this way
1.732, . . . and the heat dissipating electrode plates 741, 742, . . . are provided with insulating plates 75 and 76, respectively. to hold the parts. An endothermic heat exchanger 77 and a radiation heat exchanger 78 made of conductive metal material are attached to the outer surfaces of the insulating plates 75 and 76, respectively.

この様に構成される熱電変換装置にあっては、隣接する
吸熱電極板731 、732 、・・・それぞれの相互
間、および隣接する放熱電極板741 、742 、・
・・それぞれの相互間が、それぞれ吸熱および放熱熱交
換器77および78によって電気的に短絡されないよう
に、絶縁板75および76が介在されている。
In the thermoelectric conversion device configured in this way, between adjacent heat-absorbing electrode plates 731, 732, . . . and between adjacent heat-radiating electrode plates 741, 742, .
...Insulating plates 75 and 76 are interposed to prevent electrical short-circuiting between the heat exchangers 77 and 78, respectively.

したがって、吸熱電極板731 、732 、・・・部
分の低温の状態、および放熱電極板741.742 、
・・・部なり、吸熱効率並びに放熱効率が著しく低下さ
れる。また、熱電変換ユニットを流れる電流は、各電極
板731.732 、・・・、741.742 、・・
・をそれぞれ流れ、したがって各電極板の電気的抵抗に
よって、この各電極板部分にジュール熱が発生し、冷却
効果に悪影響を与える。
Therefore, the low temperature state of the heat-absorbing electrode plates 731, 732, . . . and the heat-radiating electrode plates 741, 742, .
. . ., heat absorption efficiency and heat radiation efficiency are significantly reduced. In addition, the current flowing through the thermoelectric conversion unit is 731.732,..., 741.742,...
. . Therefore, due to the electrical resistance of each electrode plate, Joule heat is generated in each electrode plate portion, which adversely affects the cooling effect.

さらにこの様に構成される熱電変換装置によって、空気
流と熱交換を行なわせる場合、吸熱熱交換器77の部分
、および放熱熱交換器78の部分に、それぞれ被冷却風
、冷却風を送り込む送風機構を別に備えなければならな
く、システムとしては大きなものとなってしまう。
Furthermore, when the thermoelectric conversion device configured in this way performs heat exchange with the air flow, an air blower is used to send the cooled air and the cooling air to the endothermic heat exchanger 77 section and the exothermic heat exchanger 78 section, respectively. A separate mechanism must be provided, resulting in a large system.

[発明が解決しようとする課題] この発明は上記のような点に鑑みなされたちので、吸熱
電極板および放熱電極板部分から熱が効率的に取り出さ
れて、熱交換効率が良好とされるようにすると共に、別
体の送風機構を持たずに、送風可能である、システムと
して小型である熱電変換装置を提供しようとするもので
ある。
[Problems to be Solved by the Invention] This invention has been made in view of the above points, so that heat can be efficiently extracted from the heat-absorbing electrode plate and the heat-radiating electrode plate portion, and heat exchange efficiency can be improved. In addition, the present invention aims to provide a thermoelectric conversion device that can blow air without having a separate air blowing mechanism and is compact as a system.

[課題を解決するための手段] この発明に係る熱電変換装置は、N型熱電変換素子、吸
熱電極板、P型熱電素子、および放熱電極板を、複数組
この順序で積層して環状に構成し、前記吸熱電極板に伝
熱的に結合した吸熱熱交換器を、前記熱電変換ユニット
の環状にした軸線に沿う一方の側に突設して形成すると
共に、前記放熱電極板に伝熱的に結合される放熱熱交換
器を、前記吸熱熱交換器と反対の側に突設形成するもの
で、前記吸熱および放熱熱交換器を構成する電極板が、
翼形状とされるようにしたものであり、前記熱電変換装
置は環の中心軸として回転するようにしたものである。
[Means for Solving the Problems] A thermoelectric conversion device according to the present invention is configured in a ring shape by laminating a plurality of sets of an N-type thermoelectric conversion element, a heat-absorbing electrode plate, a P-type thermoelectric element, and a heat-radiating electrode plate in this order. An endothermic heat exchanger thermally coupled to the heat-absorbing electrode plate is formed so as to protrude from one side along the annular axis of the thermoelectric conversion unit, and a heat-transmitting heat exchanger is thermally coupled to the heat-radiating electrode plate. An exothermic heat exchanger coupled to the exothermic heat exchanger is formed protrudingly on the side opposite to the endothermic heat exchanger, and the electrode plates constituting the exothermic and exothermic heat exchanger are
The ring is shaped like a wing, and the thermoelectric conversion device rotates about the center axis of the ring.

[作用] この様に構成される熱電変換装置にあっては、環状に構
成された熱電変換ユニットの軸線に沿った両側に、吸熱
および放熱の熱交換器が形成される。そして、これら熱
交換器はそれぞれファンを構成する翼形状とされている
ものであるため、環状にした熱電変換ユニットをその軸
線を中心に回転させることによって、吸熱熱交換器が存
在する領域で冷風が発生され、放熱熱交換器を構成する
領域で温風が発生されるようになる。すなわち、熱電変
換ユニット部を、絶縁板等の熱伝導の障害物を使用する
ことなく、吸熱電極板および放熱電極板部分から熱が効
率的に取り出され、熱交換効率が良好にできると共に、
特別に送風機構を設けることなく、熱交換された冷風お
よび温風が発生される。
[Operation] In the thermoelectric conversion device configured in this manner, heat exchangers for heat absorption and heat radiation are formed on both sides of the annularly configured thermoelectric conversion unit along the axis. Since each of these heat exchangers has a blade shape that constitutes a fan, by rotating the annular thermoelectric conversion unit around its axis, cold air can be generated in the area where the endothermic heat exchanger is located. is generated, and hot air is generated in the region constituting the radiation heat exchanger. That is, heat can be efficiently extracted from the heat-absorbing electrode plate and the heat-radiating electrode plate portion of the thermoelectric conversion unit without using any heat conduction obstacles such as insulating plates, and heat exchange efficiency can be improved.
Heat-exchanged cold air and hot air are generated without providing a special blowing mechanism.

[実施例コ 以下、図面を参照してこの発明の一実施例を説明する。[Example code] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図および第2図はその構成を示しているもので、熱
電変換ユニット11は環状に構成される。この熱雷変換
ユニット11は、それぞれ複数のN型熱電素子1.21
.122 、・・・、吸熱電極板131 。
FIG. 1 and FIG. 2 show the configuration, and the thermoelectric conversion unit 11 is configured in an annular shape. This thermal lightning conversion unit 11 each includes a plurality of N-type thermoelectric elements 1.21.
.. 122,..., endothermic electrode plate 131.

132、・・・、P型熱電素子1.41.142 、・
・・、および放熱電極板151.152 、・・・を、
この順序で交互に禎層して環状に形成されているもので
、各熱電素子と電極板との間は、それぞれ半田によって
導電的に結合されている。
132,..., P-type thermoelectric element 1.41.142,...
..., and heat dissipation electrode plates 151, 152, ...,
The thermoelectric elements are formed into an annular shape by alternating layers in this order, and each thermoelectric element and the electrode plate are electrically connected with each other by solder.

ここで、突き合わされる位置に設定されるN型熱電素子
121とP型熱電素子14nとの間の放熱電極板15n
は、間に絶縁層16を介在させた2枚の金属板によって
構成され、N型熱電素子121とP型熱電素子14nと
の間は、電気的に絶縁されるようにしている。
Here, the heat dissipation electrode plate 15n between the N-type thermoelectric element 121 and the P-type thermoelectric element 14n that are set at the butt position.
is composed of two metal plates with an insulating layer 16 interposed therebetween, and the N-type thermoelectric element 121 and the P-type thermoelectric element 14n are electrically insulated.

電極板1315132 、・・・および151.152
 、・・・は、それぞれ第3図に代表して示す電極板1
7のように、送風翼を構成するファンブレード171を
有する構造となっているもので、この電極板17の面に
N型あるいはP型の熱電素子18が半田によって取り付
けられている。
Electrode plates 1315132,... and 151.152
, . . . are electrode plates 1 representatively shown in FIG. 3, respectively.
7, it has a structure having a fan blade 171 constituting a blower blade, and an N-type or P-type thermoelectric element 18 is attached to the surface of this electrode plate 17 by soldering.

この様に構成された吸熱電極板131.132 、・・
および放熱電極板151. 、152 、・・・は、第
1図で示されるように環状に構成される熱電変換ユニッ
ト11の軸線に沿って、互いに反対の方向に延長して構
成される。そして、その一方の端面、例えば放熱放電板
151.152 、・・・の端面部は、例えば樹脂等の
絶縁体によって構成した円形側板19に結合され、構造
的に一体化されている。なお、図では特に示していない
が、吸熱電極板131 、1.32 、・・・の端面部
にも、絶縁性の材料で構成された円形側板によって結合
してもよい。この様にファンブレードを含み円筒状に構
成された熱電変換ユニット11は、モータ20によって
回転駆動される。
The endothermic electrode plates 131, 132 configured in this manner...
and heat dissipation electrode plate 151. , 152 , . . . extend in opposite directions along the axis of the annular thermoelectric conversion unit 11 as shown in FIG. One end face, for example, the end face portion of the heat dissipating discharge plates 151, 152, . . . is connected to a circular side plate 19 made of an insulator such as resin, and is structurally integrated. Although not particularly shown in the figure, the end surfaces of the heat-absorbing electrode plates 131, 1, 32, . . . may also be connected by circular side plates made of an insulating material. The thermoelectric conversion unit 11, which has a cylindrical shape and includes fan blades in this manner, is rotationally driven by the motor 20.

そして、この円形側板I9の外周に互いに絶縁して2列
の電極21.22を環状に形成し、この電極21および
22にはそれぞれブラシ23および24が接触されるよ
うにする。この電極21および22は、図では詳細に示
されないが、放熱電極板15nの絶縁層16を挟んで設
定された2枚の金属板にそれぞれ電気的に接続されてい
る。そして、ブラシ23および24は、それぞれ直流電
源の正端子および負端子に接続され、放熱電極板15n
の一方の金属板を介して、直流電流がN型熱電素子12
1に方向に流されるようにする。
Two rows of electrodes 21 and 22 are formed in an annular shape on the outer periphery of the circular side plate I9 so as to be insulated from each other, and brushes 23 and 24 are brought into contact with the electrodes 21 and 22, respectively. Although not shown in detail in the figure, the electrodes 21 and 22 are each electrically connected to two metal plates set on both sides of the insulating layer 16 of the heat dissipation electrode plate 15n. The brushes 23 and 24 are connected to the positive terminal and negative terminal of the DC power source, respectively, and are connected to the heat dissipation electrode plate 15n.
Direct current flows through one metal plate of the N-type thermoelectric element 12.
Make it flow in the direction of 1.

この様に環状に構成される熱電変換ユニット11の外周
部には送風ガイド25が形成され、この熱電変換ユニッ
ト1】がモータ20によって回転されたときに、各電極
131.132 、・・・および151.152、・・
・に形成されたファンブレードによって発生された、図
に矢印で示すような空気流が発生されるようにする。
A blowing guide 25 is formed on the outer periphery of the thermoelectric conversion unit 11 having an annular structure as described above, and when the thermoelectric conversion unit 1 is rotated by the motor 20, each electrode 131, 132, . . . 151.152,...
・Enable the airflow generated by the fan blades formed in the figure as shown by the arrows in the figure.

この様に構成される熱電変換装置において、放熱電極板
15nの2枚の金属板を介してN型熱電素子121の方
向に直流電流が流されると、N型熱電素子121.12
2 、・・・からP型熱電素子141.142、・・・
の方向に電流を流す吸熱電極板Ill 、132 、・
・・部分のNP接合部が、ベルチェ効果によって低温と
される。同様にP型熱電素子1415142 、・・・
からN型熱電素子121 、122 、・・・の方向に
電流を流すPN接合を構成する放熱電極板151.15
2 、・・・の部分が高温とされる。したがって、この
低温および高温となる吸熱電極板131.132 、・
・・および放熱電極板1515152 、・・・それぞ
れに一体に形成されるファンブレード部で、接触されて
いる空気との熱交換が行われ、冷却された空気および加
温された空気が、送風ガイド25を介して出力されるよ
うになる。
In the thermoelectric conversion device configured in this way, when a direct current is passed in the direction of the N-type thermoelectric element 121 via the two metal plates of the heat dissipation electrode plate 15n, the N-type thermoelectric element 121.12
2,... to P-type thermoelectric elements 141, 142,...
A heat-absorbing electrode plate Ill, 132, which allows current to flow in the direction of
. . . The NP junction in the area is kept at a low temperature by the Beltier effect. Similarly, P-type thermoelectric element 1415142,...
Heat dissipation electrode plates 151.15 constituting a PN junction that allows current to flow in the direction from N-type thermoelectric elements 121, 122, . . .
2,... are considered to be high temperature. Therefore, the heat-absorbing electrode plates 131, 132, which become these low and high temperatures.
... and the heat dissipation electrode plate 1515152, ... At the fan blade portion formed integrally with each, heat exchange with the air in contact is performed, and the cooled air and warmed air are transferred to the blower guide. 25.

ここで、この冷却された空気流および加温された空気流
は、円筒型の熱電変換ユニッ)IIの軸線の方向で異な
る位置で発生される。したがって、第4図で示すように
熱電変換ユニット11の、熱電変換素子が並べられる位
置に対応して、分流ガイド板26を設け、冷却風および
加温された温風が、送風ガイド25内で分離して取り出
されるようにしている。
Here, the cooled air flow and the heated air flow are generated at different positions in the direction of the axis of the cylindrical thermoelectric conversion unit II. Therefore, as shown in FIG. 4, branch guide plates 26 are provided in the thermoelectric conversion unit 11 corresponding to the positions where the thermoelectric conversion elements are lined up, so that the cooling air and the heated warm air can flow within the air blower guide 25. It is designed to be separated and taken out.

この様に構成される熱電変換ユニット11にあっては、
N型熱電素子121 、!22 、・・・およびP型熱
電素子141.142 、・・・それぞれの相互間に介
在設定される吸熱電極板131.132 、・・・およ
び放熱電極板151.1.52 、・・・が、それぞれ
吸熱熱交換器および放熱熱交換器を構成するようになる
。したがって、ベルチェ効果によって低温となる吸熱電
極板部分および高温となる放熱電極板部分と各熱交換部
との間に、例えば絶縁板のような不要な熱伝達手段が存
在せず、熱交換部との間の伝熱抵抗が充分に小さく設定
できる。したがって、熱電変換効率を充分に高いものと
することができる。また、電流がN型熱電素子121.
122 、・・・およびP型熱電素子141.142 
、・・・の積層方向に流れるものであるため、その間に
設定される電極板131.132、・・・および151
.152 、・・・の電流方向の断面積を大きく設定で
き、さらに通電距離が電極板のそれぞれの厚さに相当す
る距離となる。したがって、抵抗電力損失およびそれに
よるジュール熱発生量を大幅に減らすことができる。
In the thermoelectric conversion unit 11 configured in this way,
N-type thermoelectric element 121,! 22, . . . and P-type thermoelectric elements 141, 142, . . . and heat-absorbing electrode plates 131, 132, . , constitute an endothermic heat exchanger and an exothermic heat exchanger, respectively. Therefore, there is no unnecessary heat transfer means, such as an insulating plate, between the heat-absorbing electrode plate portion, which becomes low temperature due to the Beltier effect, and the heat-radiating electrode plate portion, which becomes high temperature, and each heat exchange portion. The heat transfer resistance between the two can be set sufficiently small. Therefore, thermoelectric conversion efficiency can be made sufficiently high. Also, the current flows through the N-type thermoelectric element 121.
122 , ... and P-type thermoelectric element 141.142
, . . . , so that the electrode plates 131, 132, . . . and 151 set between
.. The cross-sectional area of 152, . Therefore, resistive power loss and the resulting amount of Joule heat generation can be significantly reduced.

そして、吸熱電極板1.315132 、・・・および
放熱電極板151 、1.52 、・・・がそれぞれフ
ァンブレードの形状をしており送風翼を構成するように
なるものであるため、この円筒型の熱電変換ユニット1
1を回転させることによって、とくに送風機を設定する
ことなく、熱交換された空気を送風制御することができ
、空気との熱交換システムとして小形化が可能となる。
Since the heat-absorbing electrode plates 1.315132, . . . and the heat-radiating electrode plates 151, 1.52, . type thermoelectric conversion unit 1
By rotating 1, it is possible to control the blowing of heat-exchanged air without particularly setting up a blower, and it is possible to downsize the system for exchanging heat with air.

上記実施例では、N型熱電素子およびP型熱電素子を環
状に配列した変換ユニットを1列として示したが、これ
を2列あるいはさらに多数列に構成することもできる。
In the above embodiment, the conversion unit in which the N-type thermoelectric elements and the P-type thermoelectric elements are arranged in a ring is shown as one row, but it is also possible to configure this in two rows or even more rows.

第5図および第6図は、2列の熱電変換ユニット111
および112を用いて構成した例を示すもので、第6図
に展開して示すように、それぞれ複数のN型熱電素子お
よびP型熱電素子を交互に積層して環状に形成した熱電
変換ユニット111および112が同軸的に設定され、
一体的にモータ20によって回転されるようにする。そ
して、熱雷変換ユニットillに設定される吸熱電極板
131 、132、・・・と、熱電変換ユニッ)112
に形成される放熱電極板151.152 、・・・を、
互いに外の方向に向けて設定する。また、熱電変換ユニ
ットlllの放熱電極板部と熱電変換ユニット112の
吸熱電極板とは、共通の電極板311.312 、・・
・によって構成する。
5 and 6 show two rows of thermoelectric conversion units 111
and 112, and as shown expanded in FIG. 6, the thermoelectric conversion unit 111 is formed into an annular shape by alternately stacking a plurality of N-type thermoelectric elements and P-type thermoelectric elements. and 112 are set coaxially,
They are rotated integrally by a motor 20. Then, the heat-absorbing electrode plates 131, 132, . . . are set in the thermal lightning conversion unit ill, and the thermoelectric conversion unit
The heat dissipation electrode plates 151, 152, . . .
Set them facing outward from each other. Further, the heat dissipation electrode plate portion of the thermoelectric conversion unit lll and the heat absorption electrode plate of the thermoelectric conversion unit 112 are common electrode plates 311, 312, . . .
・Constituted by.

そして、熱電変換ユニッ) 112の放熱電極板15n
を間に絶縁層16を介在させた構造とすると共に、 −
熱電変換ユニッl−111の吸熱電極板13nも間に絶
縁層161を介在した構造で構成し、熱電変換ユニッ)
 +12の放熱電極板15nの2枚の金属板が、円形側
板19に形成した電極21および22に接続されるよう
にする。
And thermoelectric conversion unit) 112 heat dissipation electrode plate 15n
has a structure in which an insulating layer 16 is interposed between, and -
The heat-absorbing electrode plate 13n of the thermoelectric conversion unit l-111 is also configured with an insulating layer 161 interposed therebetween, and the thermoelectric conversion unit)
The two metal plates of the +12 heat dissipation electrode plate 15n are connected to electrodes 21 and 22 formed on the circular side plate 19.

すなわち、第6図で示すように直流電源が接続されて、
熱電変換ユニット112に矢印で示す直流電流が流れ、
さらに電極all 、312 、・・・を介して熱電変
換ユニット111にも直流電流が流されるようになる。
That is, as shown in Fig. 6, a DC power supply is connected,
A direct current indicated by an arrow flows through the thermoelectric conversion unit 112,
Further, direct current is also caused to flow through the thermoelectric conversion unit 111 via the electrodes all, 312, .

したがって、熱電変換ユニット111の吸熱電極板13
1 、132 、・・・部分が低温とされると共に、熱
電変換ユニッl−112の放熱電極板151、+52、
・・・部が高温となる。また電極板311 、812、
・・・の熱電変換ユニットillに近接する部分は高温
とされると共に、逆の熱電変換ユニット112に近接す
る部分は低温とされる。そして、図に熱の流れとして示
す矢印のように熱が伝達されるようになる。
Therefore, the heat-absorbing electrode plate 13 of the thermoelectric conversion unit 111
1, 132, .
... parts become hot. In addition, electrode plates 311, 812,
... are set close to the thermoelectric conversion unit 112 at a high temperature, and at the same time, the parts near the opposite thermoelectric conversion unit 112 are set at a low temperature. Heat then begins to be transferred as shown by the arrows shown as heat flow in the figure.

この様に構成される熱電変換装置にあっては、吸熱電極
板131.132 、・・・部が低温となるとと共に、
放熱電極板151.152 、・・・の部分が高温とな
り、さらにその間の電極板311.312、・・・の部
分はその間の温度状態となる3温度の状態が設定される
In the thermoelectric conversion device configured in this way, as the heat-absorbing electrode plates 131, 132, . . . become low temperature,
Three temperature states are set in which the heat dissipating electrode plates 151, 152, . . . have high temperatures, and the electrode plates 311, 312, .

この実施例において、熱電変換ユニット11を構成する
吸熱電極板13nを絶縁層61を有する構造としたが、
この電極板11nを挟む両側の熱電素子部を、それぞれ
絶縁体によって構成するようにしてもよい。また熱電変
換ユニット111と熱電変換ユニット112との間の電
極板311、・・・は、電極板13nの前後のものを除
いて、熱電変換ユニット111と112との間を絶縁す
る構造としてもよい。
In this embodiment, the heat-absorbing electrode plate 13n constituting the thermoelectric conversion unit 11 has a structure having an insulating layer 61;
The thermoelectric element portions on both sides of the electrode plate 11n may be made of insulators. Further, the electrode plates 311, . . . between the thermoelectric conversion units 111 and 112 may have a structure that insulates between the thermoelectric conversion units 111 and 112, except for those before and after the electrode plates 13n. .

[発明の効果] 以上のようにこの発明に係る熱電変換装置によれば、小
型で簡単な構成によって熱電変換効率の良好なものとす
ることができると共に、とくに送風機構を設定すること
なく熱交換された冷却風、温風を発生することができる
ものであり、各種熱交換やシステムを効果的に構成可能
とされるものであり、温度制御の可能な空調装置も簡単
に構成できるようになる。
[Effects of the Invention] As described above, according to the thermoelectric conversion device according to the present invention, it is possible to achieve good thermoelectric conversion efficiency with a small and simple configuration, and also to perform heat exchange without particularly setting up a blowing mechanism. It is possible to generate cooled air and hot air, and it is said that various heat exchange and systems can be effectively configured, and air conditioning equipment that can control temperature can be easily configured. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る熱電変換装置を示す
斜視図、第2図はこの装置の側面から見た構成を示す図
、第3図は電極板の1つを取り出して示す図、第4図は
風の分離構成を説明する図、第5図はこの発明の他の実
施例を示す斜視図、第6図はこの実施例を展開して示す
図、第7図は従来の熱電変換装置を説明する図である。 11、111.112・・・熱電変換ユニット、121
.122、・・・N型熱電変換素子、131.132 
、・・・吸熱電極、板、141 、142 、・・・P
型熱電素子、1511152、・・・放熱電極板、16
・・・絶縁層、17・・・電極板、171・・・ファン
ブレード。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第4図 第5図 熱の流れ 第6図 第7図
FIG. 1 is a perspective view showing a thermoelectric conversion device according to an embodiment of the present invention, FIG. 2 is a view showing the configuration of this device as seen from the side, and FIG. 3 is a view showing one of the electrode plates taken out. , FIG. 4 is a diagram explaining the wind separation structure, FIG. 5 is a perspective view showing another embodiment of the present invention, FIG. 6 is a diagram showing this embodiment developed, and FIG. 7 is a diagram illustrating the conventional It is a figure explaining a thermoelectric conversion device. 11, 111.112...Thermoelectric conversion unit, 121
.. 122,...N-type thermoelectric conversion element, 131.132
, ... endothermic electrode, plate, 141 , 142 , ... P
type thermoelectric element, 1511152, ... heat dissipation electrode plate, 16
... Insulating layer, 17 ... Electrode plate, 171 ... Fan blade. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 4 Figure 5 Heat flow Figure 6 Figure 7

Claims (1)

【特許請求の範囲】  N型熱電素子、吸熱電極板、P型熱電素子、および放
熱電極板を、この順序で複数組積層して環状に構成した
熱電変換ユニットと、 この熱電変換ユニットの環状にした軸線に沿った一方に
突設して形成され、前記吸熱電極板に伝熱可能に結合さ
れた吸熱熱交換器と、 前記熱電変換ユニットの環状にした軸線に沿って、前記
吸熱熱交換器と反対の側に突設して形成され、前記放熱
電極板に伝熱可能に結合された放熱熱交換器とを具備し
、 前記吸熱および放熱熱交換器は、それぞれ前記吸熱電極
板および放熱電極板にそれぞれ結合された、ファンを構
成する翼形状とされるようにしたことを特徴とする熱電
変換装置。
[Claims] A thermoelectric conversion unit configured in a ring shape by laminating a plurality of sets of an N-type thermoelectric element, a heat-absorbing electrode plate, a P-type thermoelectric element, and a heat-radiating electrode plate in this order; an endothermic heat exchanger protrudingly formed on one side along the annular axis of the thermoelectric conversion unit and coupled to the endothermic electrode plate in a heat transferable manner; and an exothermic heat exchanger formed protrudingly formed on the opposite side and coupled to the exothermic electrode plate in a heat-transferable manner, and the exothermic and exothermic heat exchangers are connected to the exothermic electrode plate and the exothermic electrode, respectively. 1. A thermoelectric conversion device characterized by having blade shapes constituting a fan, each of which is connected to a plate.
JP2290838A 1990-10-30 1990-10-30 Thermoelectric conversion device Pending JPH04165234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2290838A JPH04165234A (en) 1990-10-30 1990-10-30 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2290838A JPH04165234A (en) 1990-10-30 1990-10-30 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH04165234A true JPH04165234A (en) 1992-06-11

Family

ID=17761146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2290838A Pending JPH04165234A (en) 1990-10-30 1990-10-30 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH04165234A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6948321B2 (en) 2001-02-09 2005-09-27 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US6959555B2 (en) 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US7111465B2 (en) 2001-02-09 2006-09-26 Bsst Llc Thermoelectrics utilizing thermal isolation
US7178344B2 (en) 1998-05-12 2007-02-20 Amerigon, Inc. Thermoelectric heat exchanger
US7231772B2 (en) 2001-02-09 2007-06-19 Bsst Llc. Compact, high-efficiency thermoelectric systems
US7273981B2 (en) 2001-02-09 2007-09-25 Bsst, Llc. Thermoelectric power generation systems
US7426835B2 (en) 2001-08-07 2008-09-23 Bsst, Llc Thermoelectric personal environment appliance
US8490412B2 (en) 2001-08-07 2013-07-23 Bsst, Llc Thermoelectric personal environment appliance
US8915091B2 (en) 2005-04-08 2014-12-23 Gentherm Incorporated Thermoelectric-based thermal management system
US8974942B2 (en) 2009-05-18 2015-03-10 Gentherm Incorporated Battery thermal management system including thermoelectric assemblies in thermal communication with a battery
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
US9038400B2 (en) 2009-05-18 2015-05-26 Gentherm Incorporated Temperature control system with thermoelectric device
US9103573B2 (en) 2006-08-02 2015-08-11 Gentherm Incorporated HVAC system for a vehicle
US9121414B2 (en) 2010-11-05 2015-09-01 Gentherm Incorporated Low-profile blowers and methods
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9335073B2 (en) 2008-02-01 2016-05-10 Gentherm Incorporated Climate controlled seating assembly with sensors
US9365090B2 (en) 2004-05-10 2016-06-14 Gentherm Incorporated Climate control system for vehicles using thermoelectric devices
US9447994B2 (en) 2008-10-23 2016-09-20 Gentherm Incorporated Temperature control systems with thermoelectric devices
US9555686B2 (en) 2008-10-23 2017-01-31 Gentherm Incorporated Temperature control systems with thermoelectric devices
US9622588B2 (en) 2008-07-18 2017-04-18 Gentherm Incorporated Environmentally-conditioned bed
US9662962B2 (en) 2013-11-05 2017-05-30 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US9685599B2 (en) 2011-10-07 2017-06-20 Gentherm Incorporated Method and system for controlling an operation of a thermoelectric device
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US9857107B2 (en) 2006-10-12 2018-01-02 Gentherm Incorporated Thermoelectric device with internal sensor
US9989267B2 (en) 2012-02-10 2018-06-05 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US10005337B2 (en) 2004-12-20 2018-06-26 Gentherm Incorporated Heating and cooling systems for seating assemblies
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US10405667B2 (en) 2007-09-10 2019-09-10 Gentherm Incorporated Climate controlled beds and methods of operating the same
US10603976B2 (en) 2014-12-19 2020-03-31 Gentherm Incorporated Thermal conditioning systems and methods for vehicle regions
US10625566B2 (en) 2015-10-14 2020-04-21 Gentherm Incorporated Systems and methods for controlling thermal conditioning of vehicle regions
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11033058B2 (en) 2014-11-14 2021-06-15 Gentherm Incorporated Heating and cooling technologies
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11240883B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7178344B2 (en) 1998-05-12 2007-02-20 Amerigon, Inc. Thermoelectric heat exchanger
US6948321B2 (en) 2001-02-09 2005-09-27 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US6959555B2 (en) 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US7111465B2 (en) 2001-02-09 2006-09-26 Bsst Llc Thermoelectrics utilizing thermal isolation
US7231772B2 (en) 2001-02-09 2007-06-19 Bsst Llc. Compact, high-efficiency thermoelectric systems
US7273981B2 (en) 2001-02-09 2007-09-25 Bsst, Llc. Thermoelectric power generation systems
US7421845B2 (en) 2001-02-09 2008-09-09 Bsst Llc Thermoelectrics utilizing convective heat flow
US8490412B2 (en) 2001-08-07 2013-07-23 Bsst, Llc Thermoelectric personal environment appliance
US7426835B2 (en) 2001-08-07 2008-09-23 Bsst, Llc Thermoelectric personal environment appliance
US9365090B2 (en) 2004-05-10 2016-06-14 Gentherm Incorporated Climate control system for vehicles using thermoelectric devices
US10005337B2 (en) 2004-12-20 2018-06-26 Gentherm Incorporated Heating and cooling systems for seating assemblies
US8915091B2 (en) 2005-04-08 2014-12-23 Gentherm Incorporated Thermoelectric-based thermal management system
US9863672B2 (en) 2005-04-08 2018-01-09 Gentherm Incorporated Thermoelectric-based air conditioning system
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
US9103573B2 (en) 2006-08-02 2015-08-11 Gentherm Incorporated HVAC system for a vehicle
US9857107B2 (en) 2006-10-12 2018-01-02 Gentherm Incorporated Thermoelectric device with internal sensor
US9366461B2 (en) 2007-05-25 2016-06-14 Gentherm Incorporated System and method for climate control within a passenger compartment of a vehicle
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US10405667B2 (en) 2007-09-10 2019-09-10 Gentherm Incorporated Climate controlled beds and methods of operating the same
US9335073B2 (en) 2008-02-01 2016-05-10 Gentherm Incorporated Climate controlled seating assembly with sensors
US9651279B2 (en) 2008-02-01 2017-05-16 Gentherm Incorporated Condensation and humidity sensors for thermoelectric devices
US10228166B2 (en) 2008-02-01 2019-03-12 Gentherm Incorporated Condensation and humidity sensors for thermoelectric devices
US9719701B2 (en) 2008-06-03 2017-08-01 Gentherm Incorporated Thermoelectric heat pump
US10473365B2 (en) 2008-06-03 2019-11-12 Gentherm Incorporated Thermoelectric heat pump
US12016466B2 (en) 2008-07-18 2024-06-25 Sleep Number Corporation Environmentally-conditioned mattress
US9622588B2 (en) 2008-07-18 2017-04-18 Gentherm Incorporated Environmentally-conditioned bed
US10226134B2 (en) 2008-07-18 2019-03-12 Gentherm Incorporated Environmentally-conditioned bed
US11297953B2 (en) 2008-07-18 2022-04-12 Sleep Number Corporation Environmentally-conditioned bed
US9555686B2 (en) 2008-10-23 2017-01-31 Gentherm Incorporated Temperature control systems with thermoelectric devices
US9447994B2 (en) 2008-10-23 2016-09-20 Gentherm Incorporated Temperature control systems with thermoelectric devices
US9038400B2 (en) 2009-05-18 2015-05-26 Gentherm Incorporated Temperature control system with thermoelectric device
US11264655B2 (en) 2009-05-18 2022-03-01 Gentherm Incorporated Thermal management system including flapper valve to control fluid flow for thermoelectric device
US8974942B2 (en) 2009-05-18 2015-03-10 Gentherm Incorporated Battery thermal management system including thermoelectric assemblies in thermal communication with a battery
US10106011B2 (en) 2009-05-18 2018-10-23 Gentherm Incorporated Temperature control system with thermoelectric device
US11203249B2 (en) 2009-05-18 2021-12-21 Gentherm Incorporated Temperature control system with thermoelectric device
US9666914B2 (en) 2009-05-18 2017-05-30 Gentherm Incorporated Thermoelectric-based battery thermal management system
US12025151B2 (en) 2010-11-05 2024-07-02 Gentherm Incorporated Low-profile blowers and methods
US11408438B2 (en) 2010-11-05 2022-08-09 Gentherm Incorporated Low-profile blowers and methods
US9121414B2 (en) 2010-11-05 2015-09-01 Gentherm Incorporated Low-profile blowers and methods
US10288084B2 (en) 2010-11-05 2019-05-14 Gentherm Incorporated Low-profile blowers and methods
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9685599B2 (en) 2011-10-07 2017-06-20 Gentherm Incorporated Method and system for controlling an operation of a thermoelectric device
US10208990B2 (en) 2011-10-07 2019-02-19 Gentherm Incorporated Thermoelectric device controls and methods
US9989267B2 (en) 2012-02-10 2018-06-05 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US10495322B2 (en) 2012-02-10 2019-12-03 Gentherm Incorporated Moisture abatement in heating operation of climate controlled systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
US9662962B2 (en) 2013-11-05 2017-05-30 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US10266031B2 (en) 2013-11-05 2019-04-23 Gentherm Incorporated Vehicle headliner assembly for zonal comfort
US11240883B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11240882B2 (en) 2014-02-14 2022-02-01 Gentherm Incorporated Conductive convective climate controlled seat
US11033058B2 (en) 2014-11-14 2021-06-15 Gentherm Incorporated Heating and cooling technologies
US11639816B2 (en) 2014-11-14 2023-05-02 Gentherm Incorporated Heating and cooling technologies including temperature regulating pad wrap and technologies with liquid system
US11857004B2 (en) 2014-11-14 2024-01-02 Gentherm Incorporated Heating and cooling technologies
US10603976B2 (en) 2014-12-19 2020-03-31 Gentherm Incorporated Thermal conditioning systems and methods for vehicle regions
US11358433B2 (en) 2014-12-19 2022-06-14 Gentherm Incorporated Thermal conditioning systems and methods for vehicle regions
US10625566B2 (en) 2015-10-14 2020-04-21 Gentherm Incorporated Systems and methods for controlling thermal conditioning of vehicle regions
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board

Similar Documents

Publication Publication Date Title
JPH04165234A (en) Thermoelectric conversion device
JP4781606B2 (en) Thermoelectric module, method of thermally changing material in thermoelectric module, and method of manufacturing thermoelectric module
US5254178A (en) Thermoelectric transducer apparatus comprising N- and P-type semiconductors and having electronic control capabilities
US2992538A (en) Thermoelectric system
JP5787755B2 (en) Heat exchange tube bundle provided with device for generating electric energy, and heat exchanger provided with this tube bundle
US8997502B2 (en) Thermoelectric assembly for improved airflow
JP2005523589A (en) Modular thermocouple and laminate
JP2006127920A (en) Power supply device
JP2008078587A (en) Fin for heat exchange
JPH09196505A (en) Thermoelectric device
JPH0539966A (en) Heat pump device
JPH10106514A (en) Cylindrical secondary battery and battery pack using this secondary battery
US3167926A (en) Thermoelectric apparatus
JP3350705B2 (en) Heat transfer control thermoelectric generator
JP2007019260A (en) Thermoelectric conversion system
KR101177266B1 (en) Heat Exchanger using Thermoelectric Modules
JPH08121898A (en) Thermoelectric converter
JPH06318736A (en) Thin film peltier thermoelectric element
JP3139090B2 (en) Thermoelectric converter
JPH04139773A (en) Thermoelectric conversion equipment
JPH06201215A (en) Electronic refrigeration unit
CN221858675U (en) Thermal crystal semiconductor electric heater
JPH0712813Y2 (en) Cold / heat recovery type heating / cooling machine
JPS62108717U (en)
JPH04139329A (en) Thermoelectric type air conditioning apparatus