JPH04147110A - Zoom lens - Google Patents
Zoom lensInfo
- Publication number
- JPH04147110A JPH04147110A JP2270927A JP27092790A JPH04147110A JP H04147110 A JPH04147110 A JP H04147110A JP 2270927 A JP2270927 A JP 2270927A JP 27092790 A JP27092790 A JP 27092790A JP H04147110 A JPH04147110 A JP H04147110A
- Authority
- JP
- Japan
- Prior art keywords
- lens component
- lens
- focusing
- wide
- angle end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 13
- 230000014509 gene expression Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 5
- 230000004075 alteration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B15/00—Optical objectives with means for varying the magnification
- G02B15/14—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
- G02B15/145—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
- G02B15/1451—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
- G02B15/145125—Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +--++
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ズームレンズに関するものであり特にビデオ
カメラ等の小型カメラに応用可能なものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a zoom lens, and is particularly applicable to small cameras such as video cameras.
近年ビデオカメラ等では電子部品のコストダウン、コン
パクト化と同時に高性能化が相当なスピードで達成され
ている。また撮像素子も高解像力のものが民生用にも用
いられ、市場に占める割合も多くなって来ている。この
ため、光学系としてもコンパクト性と同時に高スペック
を求められるようになって来た。In recent years, electronic components for video cameras and the like have been reduced in cost, made more compact, and improved in performance at a considerable speed. Furthermore, high-resolution image sensors are also used for consumer use, and their share in the market is increasing. For this reason, optical systems are now required to be compact and have high specifications as well.
例えば、ズーム比については従来はほとんどが6倍程度
であったものが8倍以上の高ズーム比のものも多く出て
来てる。最短物体距離(レンズ系で7ものが、1m以下
のものが出て来ている。For example, in the past, most zoom ratios were around 6x, but many have come out with high zoom ratios of 8x or more. Shortest object distance (7 lens systems have a minimum object distance of 1 m or less).
フォーカシングの方式では従来の前玉を繰り出して行う
ものではなく、前玉以外のレンズ成分を移動させて行う
いわゆるインナーフォーカス方式の物が数多く出ている
。このインナーフォーカス方式の特徴は、望遠端で、あ
る物体距離に対してフォーカシングするために、レンズ
成分を物体距離5l=(1)7無限遠に相当する位置か
ら移動させる量と広角端で同じ物体距離に対して移動さ
せる量とを比較すると、広角端における移動量の方がは
るかに少なくて良い。又、大きさの面においても前玉繰
り出し方式と比べて前玉径が小さくできる為、重量の軽
量化がはかれる。Instead of the conventional focusing method that involves extending the front lens, there are many so-called inner focusing methods that move lens components other than the front lens. The feature of this inner focus method is that in order to focus on a certain object distance at the telephoto end, the lens component is moved from a position corresponding to the object distance 5l = (1) 7 infinity, and the same object at the wide-angle end. Comparing the amount of movement relative to the distance, the amount of movement at the wide-angle end is much smaller. In addition, in terms of size, the diameter of the front ball can be made smaller compared to the front ball feeding method, so the weight can be reduced.
従来のインナーフォーカス方式のズームレンズの場合、
特開昭59−28120に見られるようものが多い。又
、特開昭55〜40447では、前玉繰り出し方式のズ
ームレンズと同様に前玉、バリエータ、フンペンセータ
、マスターレンズが各1成分で構成され、コンペンセー
タが7オ一カシング時も可動とされており、物体距離S
lが無限遠の時、コンペンセータ兼フォーカシングレン
ズは前玉繰り出し方式の場合と全く同じ動き方をする。In the case of conventional inner focus zoom lenses,
There are many such as can be seen in Japanese Patent Application Laid-Open No. 59-28120. Furthermore, in JP-A No. 55-40447, the front element, variator, compensator, and master lens are each made up of one component, similar to the front element extension type zoom lens, and the compensator is movable even during 7-point adjustment. , object distance S
When l is at infinity, the compensator/focusing lens moves in exactly the same way as in the case of the front lens extension method.
このようなレンズ系においては望遠端での最短撮影距離
が約1.2mよりも短い時には、広角端では最短撮影距
離はOmより短くなってしまう。In such a lens system, when the shortest photographing distance at the telephoto end is shorter than about 1.2 m, the shortest photographing distance at the wide-angle end is shorter than Om.
つまり、レンズ表面で内部にあるキズやゴミにまで合焦
してしまうので、AFの誤動作の原因となり好ましくな
い。又、キズやゴミに完全な合焦しなくてもその影が画
面に写り、不快感のある映像となってしまう。In other words, the lens surface focuses on scratches and dust inside the lens, which is undesirable as it causes AF malfunction. Furthermore, even if scratches and dust are not completely focused, their shadows will appear on the screen, resulting in an unpleasant image.
特開昭64−35515の実施例の中には物体距離S1
が無限遠の時も、望遠端から広角端にかけて7オーカン
ングレンズを単調に移動させているものが見られる。し
かし、この実施例では、任意の物体距離において、フォ
ー力ノングレンズの軌跡が常に同じ曲線上に乗るように
設計している!こめ、広角端での最短撮影距離が0.5
m〜0,3□くらいで、世間のニーズを充分満足してい
るとは高い難しい。In the embodiments of JP-A-64-35515, the object distance S1
Even when the lens is at infinity, the 7-ocan lens can be seen moving monotonically from the telephoto end to the wide-angle end. However, in this embodiment, the trajectory of the four-force non-lens is designed to always lie on the same curve at any given object distance! The shortest shooting distance at the wide-angle end is 0.5
It is difficult to say that it satisfies the needs of the world at m~0.3□.
本発明は、望遠端においては充分短い最短撮影距離を確
保し、広角端においては約Omの最短物体距離を実現す
るととに、焦点距離にかかわらず、7オ一カシングレン
ズ成分の当たり位置が一定であり、従って、簡単で精度
の良い位置制御が可能なAF誤動作の少ないズームレン
ズを提供することIこある。The present invention secures a sufficiently short minimum object distance at the telephoto end, and realizes a minimum object distance of about 0m at the wide-angle end, and the hitting position of the seven focusing lens components is fixed regardless of the focal length. Therefore, it is an object of the present invention to provide a zoom lens in which the position of the AF is constant and, therefore, the position can be easily and accurately controlled and the AF malfunctions are less likely to occur.
上記の目的を達成する為に、本発明は、最も物体側のレ
ンズ成分以外を移動させることで7オーカシングを行う
フォーカシングレンズ成分を備え、かつ、任意の物体距
離において望遠端から広角端にかけてズーミングを行う
際に前記フォーカシングレンズ成分が光軸上を単調に移
動するようなズームレンズにおいて、以下の条件を満足
すること特徴とする:
C= A−B
O≦X<1.5
但し、
Aは任意の焦点距離において無限遠物体から最Bは広角
端において無限遠物体から最近接物体Cは無限遠の物体
距離においてズーミングを行う際の任意の焦点距離から
広角端にかけてのフォーカシングレンズ成分の移動量;
Xは広角端における最近接物体距離をXfsとして表し
た際の係数(但し、fsは広角端における全系の焦点距
離)である。In order to achieve the above object, the present invention includes a focusing lens component that performs focusing by moving the lens component other than the lens component closest to the object, and zooming from the telephoto end to the wide-angle end at an arbitrary object distance. A zoom lens in which the focusing lens component moves monotonically on the optical axis when performing the focusing, is characterized by satisfying the following conditions: C=A−B O≦X<1.5, where A is arbitrary. The amount of movement of the focusing lens component from an arbitrary focal length to the wide-angle end when zooming is performed at a focal length of , where B is the closest object to the wide-angle end, and C is the closest object to the infinite object at the wide-angle end; X is a coefficient when the closest object distance at the wide-angle end is expressed as Xfs (where fs is the focal length of the entire system at the wide-angle end).
上記条件を満足する時、広角端における最短物体距離5
1wm1nはS l wmin= X fsとなるが、
通常レンズ系には、ゴースト防止等の目的で7−ド等が
取り付けられ、51wm1nは実質上レンズの先端位置
と見なして良い。When the above conditions are satisfied, the shortest object distance at the wide-angle end is 5.
1wm1n becomes S l wmin = X fs, but
Normally, a lens system is equipped with a 7-domain for the purpose of preventing ghosts, etc., and 51wm1n can be regarded as the actual tip position of the lens.
S1=■においてズーミングした時にフォーカシングレ
ンズ成分が移動する量Cの方向は普通A。When zooming at S1=■, the direction of the amount C by which the focusing lens component moves is normally A.
Bと同方向であるが、望遠端における最短物体距離が約
1.2mよりも長い場合にはCはA、Bと逆方向となり
、広角端でのフォー力シングレンス生
成分の→移動量が、望遠端での全移動量よりも犬きくな
ってしまう。しかしながら、民生用のビデオレンズは室
内で使用される事も多い為、望遠端での最短物体距離は
、少なくとも1.2m程度は必要である。この時フォー
カシングレンズ成分は物体距離S1−■においてズーミ
ングを行っり時、静止していることが可能になる。Although it is in the same direction as B, if the shortest object distance at the telephoto end is longer than about 1.2 m, C will be in the opposite direction to A and B, and the amount of → movement generated by the force single lens at the wide-angle end will be The distance becomes sharper than the total amount of movement at the telephoto end. However, since consumer video lenses are often used indoors, the shortest object distance at the telephoto end is required to be at least about 1.2 m. At this time, the focusing lens component can remain stationary during zooming at the object distance S1-■.
これらの構成を採る事により、望遠端での充分短い最短
物体距離を確保しながら広角端ではレンズ先端より内部
ヘフォーカノングしないレンズ系が簡単な鏡胴構成で実
現できる。このような構成旺
フォーカシングしてしまうかのどちらかである。By adopting these configurations, it is possible to realize a lens system with a simple lens barrel configuration that ensures a sufficiently short minimum object distance at the telephoto end and does not cause the lens to cannon toward the inside from the tip of the lens at the wide-angle end. Either you want a configuration like this or you end up focusing.
レンズの内部にフォーカシングするのを防ぐような構成
とする事も可能であるが、第7図に示す従来例の様に斜
線部分の間だけ7オ一カンングレンズ成分を規制する部
材を設ける必要がある。この場合の機構はかなり複雑と
なり、繰り返し精度も数十mmぐらいの誤差を生じる。Although it is possible to adopt a configuration that prevents focusing inside the lens, it is necessary to provide a member that restricts the 7-focus lens component only between the shaded areas, as in the conventional example shown in FIG. There is. In this case, the mechanism becomes quite complicated, and the repeatability has an error of about several tens of millimeters.
この誤差は広角端の物体距離に換算すれば数十cmとな
る。本発明のように構成すれば一定の所にメカ当たりを
設けることができ、またこの当たり位置でフォーカシン
グレンズ位置基準が0クリアされれば繰り返し精度は充
分正確となる。This error is several tens of centimeters when converted to the object distance at the wide-angle end. If configured as in the present invention, a mechanical contact can be provided at a fixed location, and if the focusing lens position reference is cleared to 0 at this contact position, the repeatability will be sufficiently accurate.
尚、上記ズームレンズは以下の5つのレンズ成分より構
成されているのが望ましい。すなわち、物体側より順に
、正の屈折力を有する固定の第2レンズ成分と、負の屈
折力を有し主として焦点距離を変化させるために光軸上
を移動する第2レンズ成分と、負の屈折力を有し像点位
置を補正するために光軸上を移動する第3レンズ成分と
、正の屈折力を有しフォーカシングのために光軸上を移
動する第4レンズ成分と、正の屈折力を有する固定の第
5成分とである。このレンズ構成に、Iす、上記した条
件を満足することが容易となり、コンパクトで高倍率の
ズームレンズを得ることができる。Incidentally, it is preferable that the zoom lens is composed of the following five lens components. That is, in order from the object side, a fixed second lens component having a positive refractive power, a second lens component having a negative refractive power and moving on the optical axis mainly to change the focal length, and a second lens component having a negative refractive power and moving on the optical axis mainly to change the focal length. a third lens component that has refractive power and moves on the optical axis to correct the image point position; a fourth lens component that has positive refractive power and moves on the optical axis for focusing; and a fixed fifth component having refractive power. With this lens configuration, it becomes easy to satisfy the above-mentioned conditions, and a compact zoom lens with high magnification can be obtained.
さらに、上記ズームレンズは以下の条件を満足すること
が望ましい。Furthermore, it is desirable that the zoom lens satisfies the following conditions.
0.06< ψ・T < 0.25
但し、
市は第4レンズ成分の屈折力;
Tは広角端における第4レンズ成分の最も像側のレンズ
面から第5レンズ成分の最も物体側のレンズ面までの軸
上空気間隔である。0.06< ψ・T < 0.25 However, T is the refractive power of the fourth lens component; T is the distance from the lens surface closest to the image side of the fourth lens component to the lens closest to the object side of the fifth lens component at the wide-angle end. is the axial air spacing to the surface.
上記条件式の下限を越えてψ・Tが小さくなる場合、も
しTが小さいのであれば、広角端においてほぼレンズ先
端にまでフォーカシングすることが不可能となる。また
、ψが小さいのであれば、望遠端において物体距離5l
=1.2m付近までフォーカシングすることが不可能と
なり、ともに充分ナスペックのズームレンズを得ること
ができない。一方、上記条件式の上限を越えてψ・Tが
大きくなる場合、もしTが大きいのであれば、レンズ全
長が長くなり前玉径も大きくなるためコンパクトなズー
ムレンズを得ることができない。まI;、ψが大きいの
であれば、ズーム全域で球面収差が犬きくアンダー側に
出てしまい良好な結像性能を得ることができない。When ψ·T becomes small beyond the lower limit of the above conditional expression, if T is small, it becomes impossible to focus almost to the tip of the lens at the wide-angle end. Also, if ψ is small, the object distance is 5l at the telephoto end.
It becomes impossible to focus up to approximately 1.2 m, and it is impossible to obtain a zoom lens with sufficient NA specifications. On the other hand, when ψ·T increases beyond the upper limit of the above conditional expression, if T is large, the overall length of the lens becomes long and the diameter of the front lens becomes large, making it impossible to obtain a compact zoom lens. However, if ψ is large, spherical aberration will appear on the under side over the entire zoom range, making it impossible to obtain good imaging performance.
以下に、本発明を適用したズームレンズの無限遠物体に
フォーカシングした際の諸元を示す。第4レンズ成分の
像側に配置されている平板は、焦点検出光学系へ光束を
導く光路分割用のプリズムであり、第5レンズ成分の像
側に配置されている平板は、ダイクロイックプリズムや
ローパスフィルターに相当する平板である。The specifications of the zoom lens to which the present invention is applied when focusing on an object at infinity are shown below. The flat plate placed on the image side of the fourth lens component is a prism for splitting the optical path that guides the light beam to the focus detection optical system, and the flat plate placed on the image side of the fifth lens component is a dichroic prism or a low-pass prism. It is a flat plate that corresponds to a filter.
尚、第1実施例の望遠端における最短物体距離は0.5
mであり、第2実施例の望遠端における最短物体距離は
Qmである。また、各実施例における条件式の値あるい
はパラメーターは以下の表に示すとおりである。Note that the shortest object distance at the telephoto end in the first embodiment is 0.5
m, and the shortest object distance at the telephoto end in the second embodiment is Qm. Further, the values or parameters of the conditional expressions in each example are as shown in the table below.
第1表
(ン′人14b)
第
■
実施例
f−66,0〜】9,0〜88
F8゜−14
曲率半径
軸上面間隔
屈折率(Nd)
アツベ数(νd)
第
2実施例
f−66,3〜19.0〜88
F8゜−1,4
曲率半径
軸上面間隔
屈折率(Nd)
77ベ数(νd)
実施例の望遠端くL〉、中間焦点距離くM〉、広ンズ成
分のズーミング時における移動曲線を示す図、第7図は
従来のズームレンズにおけるフォーカシングレンズ成分
のズーミング時における移動曲線を示す図、第8図は本
発明の動作原理を説明する説明図である。Table 1 (N'person 14b) Part ■ Example f-66,0~]9,0~88 F8゜-14 Radius of curvature axis upper surface interval Refractive index (Nd) Atsube number (νd) Second example f- 66,3 to 19.0 to 88 F8゜-1,4 Radius of curvature axis upper surface interval Refractive index (Nd) 77 Beam number (νd) Telephoto end (L) of Example, intermediate focal length (M), wide lens component FIG. 7 is a diagram showing a movement curve of a focusing lens component in a conventional zoom lens during zooming, and FIG. 8 is an explanatory diagram illustrating the operating principle of the present invention.
以 上 出願人 ミノルタカメラ株式会社 第 図 1I2 図 膠4図 球面収差正弦条件 非泊収差 土日070 $5 図 SlTm1n=0.5 SlTm1n=0 S1wmin=0that's all Applicant: Minolta Camera Co., Ltd. No. figure 1I2 figure Glue figure 4 Spherical aberration sine condition Non-night aberration Saturday and Sunday 070 $5 figure SlTm1n=0.5 SlTm1n=0 S1wmin=0
Claims (1)
フォーカシングを行うフォーカシングレンズ成分を備え
、かつ、任意の物体距離において望遠端から広角端にか
けてズーミングを行う際に前記フォーカシングレンズ成
分が光軸上を単調に移動するようなズームレンズにおい
て、以下の条件を満足することを特徴とするズームレン
ズ: C=A−B 0≦X<1.5 但し、 Aは任意の焦点距離において無限遠物体から最近接物体
までフォーカシングを行う際のフォーカシングレンズ成
分の移動量; Bは広角端において無限遠物体から最近接物体までフォ
ーカシングを行う際のフォーカシングレンズ成分の移動
量; Cは無限遠の物体距離においてズーミングを行う際の任
意の焦点距離から広角端にかけてのフォーカシングレン
ズ成分の移動量; Xは広角端における最近接物体距離をXfsとして表し
た際の係数(但し、fsは広角端における全系の焦点距
離)である。 (2)前記フォーカシングレンズ成分は望遠端から広角
端へのズーミングに際しては静止していることを特徴と
する請求項1に記載のズームレンズ。 (3)前記ズームレンズは物体側より順に、正の屈折力
を有する固定の第1レンズ成分と、負の屈折力を有し主
として焦点距離を変化させるために光軸上を移動する第
2レンズ成分と、負の屈折力を有し像点位置を補正する
ために光軸上を移動する第3レンズ成分と、正の屈折力
を有しフォーカシングのために光軸上を移動する第4レ
ンズ成分と、正の屈折力を有する固定の第5成分とから
なり、前記第4レンズ成分が前記フォーカシングレンズ
成分であることを特徴とする請求項1に記載のズームレ
ンズ。 (4)前記ズームレンズは以下の条件を満足することを
特徴とする請求項3に記載のズームレンズ: 0.06<Ψ・T<0.25 但し、 Ψは第4レンズ成分の屈折力; Tは広角端における第4レンズ成分の最も像側のレンズ
面から第5レンズ成分の最も物体側のレンズ面までの軸
上空気間隔である。[Scope of Claims] (1) A focusing lens component that performs focusing by moving a lens component other than the lens component closest to the object, and when zooming from a telephoto end to a wide-angle end at a given object distance, the focusing lens component A zoom lens whose lens components move monotonically on the optical axis is characterized by satisfying the following conditions: C=A-B 0≦X<1.5, where A is any focal point B is the amount of movement of the focusing lens component when focusing from an object at infinity to the nearest object at the wide-angle end; C is the amount of movement of the focusing lens component when focusing from an object at infinity to the nearest object at the wide-angle end; The amount of movement of the focusing lens component from a given focal length to the wide-angle end when zooming at a far object distance; X is the coefficient when the closest object distance at the wide-angle end is expressed as Xfs (however, fs is focal length of the entire system). (2) The zoom lens according to claim 1, wherein the focusing lens component remains stationary during zooming from a telephoto end to a wide-angle end. (3) The zoom lens includes, in order from the object side, a fixed first lens component having a positive refractive power, and a second lens component having a negative refractive power and moving on the optical axis mainly to change the focal length. component, a third lens component that has negative refractive power and moves on the optical axis to correct the image point position, and a fourth lens component that has positive refractive power and moves on the optical axis for focusing. 2. The zoom lens according to claim 1, wherein said fourth lens component is said focusing lens component and said fourth lens component is said focusing lens component. (4) The zoom lens according to claim 3, wherein the zoom lens satisfies the following condition: 0.06<Ψ・T<0.25, where Ψ is the refractive power of the fourth lens component; T is the axial air distance from the lens surface of the fourth lens component closest to the image side to the lens surface of the fifth lens component closest to the object side at the wide-angle end.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2270927A JPH04147110A (en) | 1990-10-09 | 1990-10-09 | Zoom lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2270927A JPH04147110A (en) | 1990-10-09 | 1990-10-09 | Zoom lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04147110A true JPH04147110A (en) | 1992-05-20 |
Family
ID=17492935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2270927A Pending JPH04147110A (en) | 1990-10-09 | 1990-10-09 | Zoom lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04147110A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013019985A (en) * | 2011-07-08 | 2013-01-31 | Fujifilm Corp | Variable power optical system for projection and projection type display device |
EP2620797A1 (en) | 2012-01-26 | 2013-07-31 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
JP2018146869A (en) * | 2017-03-08 | 2018-09-20 | 富士フイルム株式会社 | Zoom lens and image capturing device |
-
1990
- 1990-10-09 JP JP2270927A patent/JPH04147110A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013019985A (en) * | 2011-07-08 | 2013-01-31 | Fujifilm Corp | Variable power optical system for projection and projection type display device |
EP2620797A1 (en) | 2012-01-26 | 2013-07-31 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
US8736969B2 (en) | 2012-01-26 | 2014-05-27 | Canon Kabushiki Kaisha | Zoom lens and image pickup apparatus including the same |
JP2018146869A (en) * | 2017-03-08 | 2018-09-20 | 富士フイルム株式会社 | Zoom lens and image capturing device |
CN108572435A (en) * | 2017-03-08 | 2018-09-25 | 富士胶片株式会社 | Zoom lens and photographic device |
CN108572435B (en) * | 2017-03-08 | 2021-10-29 | 富士胶片株式会社 | Zoom lens and image pickup apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9274325B2 (en) | Zoom lens and image pickup device provided with the same | |
JP5071380B2 (en) | Imaging device, imaging method, and high zoom lens | |
US9684155B2 (en) | Optical system and image pickup apparatus including the same | |
JP2552861B2 (en) | Zoom lens | |
US20090135498A1 (en) | Zoom lens, optical apparatus equipped with the zoom lens and method for forming an image of an object and varying a focal length | |
JP2596755B2 (en) | Focusing system with two focal length switching type lens system | |
JP6818546B2 (en) | Zoom lens and imaging device with it | |
JP2017173680A (en) | Zoom lens and image capturing device having the same | |
JP2002287031A (en) | Zoom lens and optical equipment using the same | |
JP6304969B2 (en) | Attachment optical system and imaging apparatus having the same | |
JPS6119010B2 (en) | ||
JP2015034903A5 (en) | ||
JP4447706B2 (en) | Variable magnification optical system having anti-vibration function and optical apparatus including the same | |
KR101600764B1 (en) | Optical system and optical device provided therewith | |
JP4411010B2 (en) | Zoom lens and imaging device using the same | |
WO2016194774A1 (en) | Variable-power optical system, optical device, and method for manufacturing variable-power optical system | |
JP6268792B2 (en) | Zoom lens, optical device, and zoom lens manufacturing method | |
RU2614658C2 (en) | Variable focus lens, optical device, and zoom lens manufacturing method | |
JPH02103014A (en) | Zoom lens having optical system for correcting camera-shake | |
JP6646251B2 (en) | Zoom lens and imaging device having the same | |
JPH04147110A (en) | Zoom lens | |
JP6287243B2 (en) | Amphibious zoom lens device and imaging device | |
JP2019090952A (en) | Zoom lens and image capturing device having the same | |
JP2004101739A (en) | Large aperture zoom lens | |
JP2008242392A (en) | Zoom lens and imaging apparatus with the same |