JPH0414084B2 - - Google Patents
Info
- Publication number
- JPH0414084B2 JPH0414084B2 JP57215860A JP21586082A JPH0414084B2 JP H0414084 B2 JPH0414084 B2 JP H0414084B2 JP 57215860 A JP57215860 A JP 57215860A JP 21586082 A JP21586082 A JP 21586082A JP H0414084 B2 JPH0414084 B2 JP H0414084B2
- Authority
- JP
- Japan
- Prior art keywords
- radioactive
- amino group
- composition
- physiologically active
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000001875 compounds Chemical class 0.000 claims description 103
- 230000002285 radioactive effect Effects 0.000 claims description 83
- 239000000203 mixture Substances 0.000 claims description 41
- 239000003795 chemical substances by application Substances 0.000 claims description 35
- 229940039227 diagnostic agent Drugs 0.000 claims description 30
- 239000000032 diagnostic agent Substances 0.000 claims description 30
- 125000003277 amino group Chemical group 0.000 claims description 29
- 239000003446 ligand Substances 0.000 claims description 25
- 230000001588 bifunctional effect Effects 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 125000003172 aldehyde group Chemical group 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 11
- 239000003638 chemical reducing agent Substances 0.000 claims description 8
- 229910021645 metal ion Inorganic materials 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 description 56
- 238000000034 method Methods 0.000 description 30
- GYHNNYVSQQEPJS-OIOBTWANSA-N Gallium-67 Chemical compound [67Ga] GYHNNYVSQQEPJS-OIOBTWANSA-N 0.000 description 28
- 229940006110 gallium-67 Drugs 0.000 description 28
- 108010049003 Fibrinogen Proteins 0.000 description 22
- 102000008946 Fibrinogen Human genes 0.000 description 22
- 229940012952 fibrinogen Drugs 0.000 description 22
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 16
- 238000003745 diagnosis Methods 0.000 description 15
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 14
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 description 13
- 238000009206 nuclear medicine Methods 0.000 description 13
- 229940056501 technetium 99m Drugs 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 229940106780 human fibrinogen Drugs 0.000 description 10
- 238000002372 labelling Methods 0.000 description 10
- 208000007536 Thrombosis Diseases 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 102000008100 Human Serum Albumin Human genes 0.000 description 6
- 108091006905 Human Serum Albumin Proteins 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- -1 gallium-67 Chemical class 0.000 description 6
- PNDPGZBMCMUPRI-HVTJNCQCSA-N 10043-66-0 Chemical compound [131I][131I] PNDPGZBMCMUPRI-HVTJNCQCSA-N 0.000 description 5
- 206010053567 Coagulopathies Diseases 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 230000035602 clotting Effects 0.000 description 5
- 229960000958 deferoxamine Drugs 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 4
- 230000000975 bioactive effect Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- OUDSFQBUEBFSPS-UHFFFAOYSA-N ethylenediaminetriacetic acid Chemical compound OC(=O)CNCCN(CC(O)=O)CC(O)=O OUDSFQBUEBFSPS-UHFFFAOYSA-N 0.000 description 4
- 229940055742 indium-111 Drugs 0.000 description 4
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 4
- 229960003330 pentetic acid Drugs 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- FTOAOBMCPZCFFF-UHFFFAOYSA-N 5,5-diethylbarbituric acid Chemical compound CCC1(CC)C(=O)NC(=O)NC1=O FTOAOBMCPZCFFF-UHFFFAOYSA-N 0.000 description 3
- YEEGWNXDUZONAA-UHFFFAOYSA-K 5-hydroxy-2,8,9-trioxa-1-gallabicyclo[3.3.2]decane-3,7,10-trione Chemical compound [Ga+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YEEGWNXDUZONAA-UHFFFAOYSA-K 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 108010006654 Bleomycin Proteins 0.000 description 3
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229960001561 bleomycin Drugs 0.000 description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003480 eluent Substances 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 235000010378 sodium ascorbate Nutrition 0.000 description 3
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 3
- 229960005055 sodium ascorbate Drugs 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- 208000031648 Body Weight Changes Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 229960002319 barbital Drugs 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 230000004579 body weight change Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011033 desalting Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- SYECJBOWSGTPLU-UHFFFAOYSA-N hexane-1,1-diamine Chemical compound CCCCCC(N)N SYECJBOWSGTPLU-UHFFFAOYSA-N 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 235000011150 stannous chloride Nutrition 0.000 description 2
- 239000001119 stannous chloride Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- YOETUEMZNOLGDB-UHFFFAOYSA-N 2-methylpropyl carbonochloridate Chemical compound CC(C)COC(Cl)=O YOETUEMZNOLGDB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-YPZZEJLDSA-N Gallium-68 Chemical compound [68Ga] GYHNNYVSQQEPJS-YPZZEJLDSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- PPHRDZYYHQFBTH-UHFFFAOYSA-N [4-(carbamothioylhydrazinylidene)pentan-2-ylideneamino]thiourea Chemical group NC(=S)NN=C(C)CC(C)=NNC(N)=S PPHRDZYYHQFBTH-UHFFFAOYSA-N 0.000 description 1
- ASVIKLJUPUSDHT-UHFFFAOYSA-N [[3-(aminomethylidene)-4-(carbamothioylhydrazinylidene)pentan-2-ylidene]amino]thiourea Chemical class NC(=S)NN=C(C)C(=CN)C(C)=NNC(N)=S ASVIKLJUPUSDHT-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007717 redox polymerization reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- BKVIYDNLLOSFOA-OIOBTWANSA-N thallium-201 Chemical compound [201Tl] BKVIYDNLLOSFOA-OIOBTWANSA-N 0.000 description 1
- 150000003584 thiosemicarbazones Chemical class 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Description
本発明は、特定臓器の描出、特定疾患の検出及
び生理活性化合物の動態検査などを目的とした核
医学的用途に有用な新しい放射性診断剤に関する
ものである。
すなわち、本発明は次の(1)〜(4)の高分子化合物
(以下、非放射性キヤリヤと略称する)を含む放
射性診断剤調製用組成物に関するものである。
(1) ポリアクロレインのアルデヒド基にアミノ基
含有2官能配位子化合物及びアミノ基含有生理
活性化合物を縮合させて得られる高分子化合
物。
(2) ポリアクロレインのアルデヒド基にアミノ基
含有2官能配位子化合物及びアミノ基含有生理
活性化合物を縮合させ、さらに還元して得られ
る高分子化合物。
(3) ポリアクロレインのアルデヒド基にアミノ基
含有2官能配位子化合物を縮合させて還元した
のち、アミノ基含有生理活性化合物を縮合させ
て得られる高分子化合物。
(4) ポリアクロレインのアルデヒド基にアミノ基
含有生理活性化合物を縮合させて還元したの
ち、アミノ基含有2官能配位子化合物を縮合さ
せて得られる高分子化合物。
また、他の点からは、該組成物を放射性金属塩
を含有する溶液と接触させて形成する放射性金属
標識つき放射性診断剤に関するものである。
特定臓器の描出、特定疾患の検出及び動態検査
などを目的とした非侵襲的核医学診断のために、
従来、ヨード−131で標識された生理活性化合物
が汎用されて来た。例えば、血液循環系の描出及
び動態検査に用いられるヨード−131標識人血清
アルブミン、血栓の検出を目的としたヨード−
131標識フイブリノーゲンなどが挙げられる。し
かしながら、ヨード−131は、半減期が約8日と
長く、かつ、核医学診断に有用なガンマ線の他
に、ベータ線を放出するため、被検者に多量の放
射線被曝を与える欠点があることが指摘されてい
る。
核医学診断により適した物理的特性を有する放
射性金属を、他の方法により生理活性化合物に導
入し、有用な放射性診断剤を得ようとする試みが
続けられている。すなわち、キレート結合の形成
を期待して、生理活性化合物に直接、放射性金属
塩を作用させておこなう標識法である。例えば、
人血清アルブミンに適当な還元剤の存在下に、過
テクネチウム酸塩の形でテクネチウム−99mを含
む水溶液を作用させて、テクネチウム−99m標識
人血清アルブミンを得る方法、ブレオマイシン
に、塩化インジウムの形でインジウム−111を含
む水溶液を作用させて、インジウム−111標識ブ
レオマイシンを得る方法などがこれにあたる。し
かしながら、これら、標識されるべき生理活性化
合物のキレート形成性は、必ずしも大きくなく、
前記のテクネチウム−99m標識人血清アルブミ
ン、インジウム−111標識ブレオマイシンの場合
においても、体内投与後の安定性が低く、放射能
の体内挙動が、生理活性化合物の挙動と一致せ
ず、核医学診断を目的とする用途において、満足
すべきものではないことが指摘されてきた。
ここで言う生理活性化合物とは、特定臓器また
は特定疾患部位に特異な集積性を示し、または、
生体内における生理的な諸状態に対応した特異な
動態をとるような化合物を指すものであり、その
体内挙動を追跡することにより、各種の診断に有
用な情報を提供することが期待されるような化合
物である。このような生理活性化合物に、優れた
物理的特性を有する放射性金属を安定に、しか
も、該化合物の生理活性をそこなうことなく導入
することができれば、核医学診断において、極め
て有用な用途が期待され、核医学界においてその
ような放射性診断剤の出現が強く要望されている
ところであつた。
最近、上記の要望に応えるべく、ジエチレント
リアミン五酢酸(DTPA)、エチレンジアミン三
酢酸(EDTA)、3−オキソブチラールビス(N
−メチルチオセミカルバゾン)カルボン酸、デフ
エロキサミン、3−アミノメチレン−2、4−ペ
ンタンジオンビス(チオセミカルバゾン)誘導体
及び1−(p−アミノアルキル)フエニルプロパ
ン−1、2−ジオン−ビス(N−メチルチオセミ
カルバゾン)誘導体等の2官能配位子化合物の各
種金属に対する強いキレート形成能と、それらの
化合物鎖末端のアミノ基及びカルボキシル基の
種々の生理活性化合物に対する反応性に注目し、
これら2官能配位子化合物を介して、放射性金属
及び生理活性化合物を結合させるという技術が提
起された(G.E.Krejcarek、Biochemical&
Biophysical Research Communication77 2、
581−585 1977、C.S.H.Leung.Int.Appl.
Radiation&Isotopes29 687−692 1978、特開昭
56−34634、特開昭56−125317、特開昭57−
102820、特願昭57−157372)。これらの方法で得
た放射性診断剤は安定でしかも該生理活性化合物
の活性を保持した標識化合物であり、核医学診断
目的に非常に興味のある薬剤である。
しかしながら、これらの公知の方法及びそれら
によつて得られた放射性診断剤の最大の欠点は、
分子量の大きい生理活性化合物(例えば、血栓診
断に使用される分子量約34万のフイブリノーゲン
及びガン診断に使用される分子量約16万のIgG
等)を用いた場合、診断に必要な高比放射能のも
のが得られないという点である。
この手つ取り早い解決法は、生理活性化合物1
分子あたり多くの2官能配位子を結合させ、この
化合物中の2官能配位子に放射性金属を配位させ
ることにより高比放射能のものを得る方法であ
る。しかし、この方法は生理活性化合物を変性さ
せたり、あるいはその活性を低下または消滅させ
る結果となり、好ましくない。また、一般に分子
量の大きい生理活性化合物をヒトに投与する場
合、その抗原性を考慮するとき、できるだけ投与
量を少量にすることが望まれる。このためにも高
比放射能のものが必要である。
本発明者らは、以上の問題点を解決すべく種々
の観点から検討を加えたところ、本明細書に開示
する方法により、生理活性化合物を変性、あるい
は活性低下させることなく高比放射能の放射性診
断剤が得られることを見い出した。
前述の(1)〜(4)の非放射性キヤリヤは、1分子あ
たり多数の配位子を持つ化合物であり、言いかえ
れば、1分子あたり結合する放射性金属イオンの
数はこれまでの単なる2官能配位子化合物を導入
した化合物に比して、格段に多い事を特徴とす
る。しかも、本非放射性キヤリヤの形成に際して
生理活性化合物の関与する部位は非常に少ないの
で、該生理活性化合物の変性及び活性低下を起さ
ずに目的とする高比放射能の放射性診断剤を与え
ることを特徴とする。
すなわち、この非放射性キヤリヤを含む放射性
診断剤調製用組成物に放射性金属イオンを含有す
る水溶液を接触させるという極めて簡単な方法に
より、高比放射能で、しかも、もとの生理活性化
合物の生理活性を保持した放射性金属標識つき生
理活性化合物である放射性診断剤を製造しうるこ
とを見い出した。
本発明にかかわるポリアクロレインは、
Schulzら(Makromol.Chem.、24、141 1957)
が報告したアクロレインのレドツクス重合法等に
より製造される単位分子中に官能基として1つの
アルデヒド基をもつ鎖状高分子である。本発明に
使用する場合、その構成単位数は3〜4000、好ま
しくは10〜500であるのが望ましい。
また、本発明にかかわる生理活性化合物につい
て例示すると、人血清アルブミン、フイブリノー
ゲン、ウロキナーゼ、免疫抗体であるIgGの如き
タンパク、ブレオマイシン、カナマイシンの如き
抗生物質、ホルモン類、糖類、脂肪酸及びそれら
の誘導体が挙げられる。しかし、これらに限ら
ず、特定臓器または特定疾患部位に特異な集積性
を示し、または、生体内における生理的な諸状態
に対応した特異な動態をとり、その体内挙動を追
跡することにより、各種の診断に有用な情報を提
示することが期待されるような化合物であれば、
本発明にかかわる生理活性化合物として使用でき
る。しかし、本発明の実用性を考慮するとき、分
子量約10万以上の生理活性化合物において、その
有用性が好適に発揮される。
また、アミノ基を有しない生理活性化合物の場
合には、適当な方法によりアミノ基を導入した生
理活性化合物誘導体を前駆体として用意すること
により、本発明にかかわる生理活性化合物として
使用できる。生理活性化合物に結合するポリアク
ロレインの分子数は、結合させることによる生理
活性化合物の変性及び活性低下を起こさない量で
あればよく、通常、生理活性化合物1分子当り、
少なくとも10以下好ましくは3以下にすべきであ
る。
次に、本発明に使用し得る2官能配位子化合物
は、種々の放射性金属との強いキレート形成能と
アルデヒド基と穏話な条件下で結合する能力を有
するアミノ基を持つ化合物であればよい。また、
種々の放射性金属との強いキレート形成能とアミ
ノ基と結合する能力を有するカルボキシル基を持
つ化合物においても、そのカルボキシル基をヘキ
サンジアミン等によりアミノ基に変え、アルデヒ
ド基と穏和な条件下で結合する能力を持たせるこ
とにより、本発明に使用することができる。例え
ば、デフエロキサミン、3−アミノメチレン−
2、4−ペンタンジオン−ビス(チオセミカルバ
ゾン)誘導体、1−(p−アミノアルキル)フエ
ニルプロパン−1、2−ジオン−ビス(チオセミ
カルバゾン)誘導体等のアミノ末端含有2官能配
位子化合物、ならびに、ジエチレントリアミン五
酢酸(DTPA)、エチレンジアミン三酢酸
(EDTA)、3−オキソブチラールビス(N−メ
チルチオセミカルバゾン)カルボン酸のようなア
ミノ末端含有化合物に誘導可能な2官能配位子化
合物が挙げられる。ポリアクロレイン1分子あた
り結合させるこれらの2官能配位子化合物の分子
数は任意であるが、5以上好ましくは10以上にお
いて本発明の有用性を好適に発揮しうる。
最後に、本発明にかかわる放射性金属について
は、核医学診断に適した物理的特性を有し、2官
能配位子化合物と安定なキレート形成する放射性
金属であればよく、例えば、ガリウム−67、ガリ
ウム−68、インジウム−111、タリウム−201、テ
クネチウム−99mなど、現在、核医学分野で汎用
されている放射性金属を挙げることができる。但
し、核医学診断において汎用される過テクネチウ
ム酸塩の形で市販されているテクネチウム−99m
などの放射性金属イオンのように、そのままの原
子価状態では前述の2官能配位子化合物と強固に
結合しない場合、このような放射性金属イオン
を、強固な結合の形成に有利な低原子価状態に還
元するために通常用いられている第一スズ塩等の
還元剤を、あらかじめ本発明による放射性診断剤
調製用組成物中に含有させておけば本発明を実施
しうる。
本発明の実施について具体的に説明する。ま
ず、本発明に使用しうる非放射性キヤリヤの製造
法についてであるが、下記に示すように、ポリア
クロレインのアルデヒド基に2官能配位子化合物
及び生理活性化合物のアミノ基を反応させ非放射
性キヤリヤ(1)を得る。さらにこの非放射性キヤリ
ヤを水素化ホウ素ナトリウムの如き還元剤で還元
することにより非放射性キヤリヤ(2)を得る。ポリ
アクロレインの反応させる2官能配位子化合物及
び生理活性化合物の反応順は任意であり、それら
の反応の中途において還元操作をいれることもで
きる。さらに段階的反応をさせようとする場合、
各段階反応の終了時に中間体の単離、精製操作を
加えることもできる。反応終了後、該生理活性化
合物の化学的、物理的性質を勘案して選択される
カラムクロマトグラフ法、ゲル過法及び透析法
などの通常の方法により精製することにより、目
的の非放射性キヤリヤが得られる。
以下に、本発明の理解のために段階的反応の1
例を極めて模式的に例示する。
(式中、X及びYはそれぞれ2官能配位子化合物
及び生理活性化合物のアミノ基反応残基を表わ
す。p、k、l、m、nは構成単位数を表わし、
kは2〜4000、lは1〜4000、mは0〜4000、n
は0〜4000の整数である。但し、p及びk+l+
m+nは3〜4000の整数である。また、Rは−
CH2OH、−CH=N−(CH2)g−OH及び−CH2
−NH−(CH2)g−OHからなる群から選択され
た置換基を表わす。なお、gは1〜5の整数であ
る。)
ここで示した非放射性キヤリヤは直鎖状のもの
のみであるが、生理活性化合物が末端アミノ基を
2個以上持つ場合、この生理活性化合物が架橋物
質となるような架橋高分子化合物も副生する。こ
の架橋高分子化合物も本発明の実施を何ら妨げな
い。但し、前述のごとく生理活性化合物に結合す
るポリアクロレインの分子数は、生理活性化合物
1分子当り少なくとも10以下、好ましくは3以下
にすべきである。
次に、放射性診断剤調製用組成物の調製法につ
いて述べる。本組成物は、前記の方法により得ら
れた非放射性キヤリヤを無菌水、生理食塩液、各
種緩衝液に溶解することにより調製される。ま
た、必要に応じ、非放射性キヤリヤの溶解性を増
すための有機溶媒、PHを調製するための酸、塩基
の添加、放射性金属イオンの原子価状態を調整す
るための還元剤又は酸化剤の添加、および安定化
剤、等張化剤、保存剤の添加をしてもよい。ここ
で言う還元剤としては、薬剤学上容認される水溶
性還元剤が使用されるが、好ましくは第一スズ塩
が挙げられる。本発明の実施において有用な第一
スズ塩は、二価のスズが形成する塩であつて、具
体的には例えば、塩素イオン、フツ素イオンなど
のハロゲン陰イオン、硫酸イオン、硝酸イオンな
どの複素無機酸残基イオン、酢酸イオン、クエン
酸イオンなどの有機酸残基イオンと形成する塩を
言う。
非放射性キヤリヤの量については、最終的に製
造される放射性診断剤の標識率が実用上支障のな
い程度に高くなるような量であればよく、かつ薬
剤学上許容される範囲であることが望ましいこと
はいうまでもない。また、所望により加えられる
第一スズ塩等の還元剤については、放射性金属イ
オンを適当な原子価状態に還元するのに充分な量
で、しかも薬剤学上許容される範囲であればよ
い。
このようにして得られる非放射性組成物は、そ
のまま溶液の形で放射性金属による標識化に供し
てもよく、また、凍結乾燥法または低温減圧蒸発
法などの方法により溶媒を除去した乾燥品の形に
した後、放射性金属による標識化に供してもよ
い。
最後に、放射性診断剤の製造法については、前
記の放射性診断剤調製用組成物と放射性金属を含
む溶液を接触させるという操作だけで極めて簡便
に放射性金属標識つき放射性診断剤を調製するこ
とができる。
接触させる放射性金属の放射能は任意である
が、目的とする核医学診断を実施するに際して、
充分な情報が得られるような放射能であり、か
つ、被検者の放射線被曝を可能な限り低くするよ
うな放射能の範囲であることが望ましいのはいう
までもない。
投与方法については、一般に静脈内投与が行な
われるが、標識されるべき生理活性化合物の投与
後その活性が発現されるに有利な投与方法であれ
ばよく、他の投与方法も実施し得る。
以下に実施例をあげながら、本発明をさらに具
体的に説明する。
実施例 1
2官能配位子化合物としてデフエロキサミ
ン、生理活性化合物としてヒトフイブリノーゲ
ンをポリアクロレインに結合させた非放射性キ
ヤリヤを含む組成物の製造(1)
ポリアクロレイン(以下PAと略す)の125mgを
2.5mlのジメチルスルホキシド(以下、DMSOと
略す)に溶解した。この溶液にデフエロキサミン
(以下、DFOと略す)105mgを含むDMSO溶液25
mlを加えたのち、室温で3時間撹拌した。この溶
液をA液とする。別にヒトフイブリノーゲンの
200mgをPH8.4の0.01リン酸−0.15食塩緩衝液
(以下、PBSと略す)に溶解した。この溶液をB
液とする。0〜4℃でA液5mlをB液に加え、同
じ温度で約3時間撹拌反応させた。
反応終了後、未反応試薬等を脱塩的に除くた
め、0.01ブドウ糖−0.35クエン酸ナトリウム
溶液(以下GLC溶液と略す)に対して0〜4℃
で24時間透析したのち、さらに、GLC溶液を溶
出剤としてセフアロース4B(4.4φ×50cmカラム)
にかけ、目的とする非放射性キヤリヤを得た。こ
の溶液をフイブリノーゲン濃度として1mg/mlに
なるようにGLC溶液で希釈し、さらに30mに
なるようにアスコルビン酸ナトリウムを加え、そ
の3mlをバイアルに分注したのち、凍結乾燥を行
つて放射性診断剤調製用組成物を得た。以上の操
作は全て無菌的におこなつた。
本実施例により得られた放射性診断剤調製用組
成物は綿状の凍結乾燥品である。
実施例 2
2官能配位子化合物としてデフエロキサミ
ン、生理活性化合物としてヒトフイブリノーゲ
ンをPAに結合させた非放射性キヤリヤを含む
組成物の製造(2)
PAの125mgを2.5mlのDMSOに溶解した。この
溶液にDFO105mgを含むDMSO溶液2.5mlをを加
えたのち、室温で3時間撹拌した。この溶液をA
液とする。別にヒトフイブリノーゲンの200mgを
PH8.4のPBSに溶解した。この溶液をB液とする。
0〜4℃でA液5mlをB液に加え、同じ温度で約
3時間撹拌し反応させた。更に上記反応溶液に、
水素化ホウ素ナトリウム7.0mgを加え、約1時間
0〜4℃で撹拌しながら還元を行つた。
反応終了後、未反応試薬等を脱塩的に除くた
め、GLC溶液に対して0〜4℃で24時間透析し
たのち、さらに、GLC溶液を溶出剤としてセフ
アロース4B(4.4φ×50cmカラム)にかけ、目的と
する非放射性キヤリヤを得た。この溶液をフイブ
リノーゲン濃度として1mg/mlになるように
GLC溶液で希釈し、さらに30mになるように
アスコルビン酸ナトリウムを加え、その3mlをバ
イアルに分注したのち、凍結乾燥を行つて放射性
診断剤調製用組成物を得た。以上の操作は全て無
菌的におこなつた。
本実施例により得られた放射性診断剤調製用組
成物は綿状の凍結乾燥品である。
実施例 3
3−オキソブチラールビス(N−メチルチオ
セミカルバゾン)カルボン酸−ヘキサンジアミ
ンの縮合体の調製
3−オキソブチラールビス(N−メチルチオセ
ミカルバゾン)カルボン酸(以下、KTSと略す)
132mgを5mlの無水ジオキサンに溶解し、10℃付
近に冷却したのち、トリーn−ブチルアミン0.12
ml、更にイソブチルクロロホルメイト64μを加
え、同温度で約50分撹拌して、混合酸無水物溶液
を得た。
別にN−tert−ブチルオキシカルボニル−1.6−
ヘキサンジアミン104mgを無水ジオキサン2mlに
溶解した溶液を調製し、この溶液を混合酸無水物
溶液に加え、10℃付近で約15時間撹拌し、KTS
−N−tert−ブチルオキシカルボニル−1.6−ヘキ
サンジアミン縮合体を得た。この縮合体溶液に濃
塩酸を1〜2滴加えてPH2に下げることにより、
アミノ基の保護基であるN−tert−ブチルオキシ
カルボニル基をはずし、目的とするKTS−ヘキ
サンジアミン縮合体を得た。この縮合体は単離す
るとなく次の反応に用いた。
実施例 4
2官能配位子化合物としてKTS、生理活性
化合物としてヒトフイブリノーゲンを用い、こ
れらをPAに結合させた非放射性キヤリヤを含
む組成物の製造。
PA200mgをジメチルスルホキシド5mlに溶解
し、この溶液に実施例3で得たKTS−ヘキサン
ジアミン縮合体溶液を加え、室温で約3時間反応
させ、PA−ヘキサンジアミン−KTS縮合体溶液
を得た。この溶液5mlを、ヒトフイブリノーゲン
250mgを溶解した50mlPBS(PH=8.4)に加えて室
温で約3時間撹拌し反応させた。その後、形成さ
れたシツフ塩基を還元するため水素化ホウ素ナト
リウム12.9mgを加え約1時間撹拌を続けた。
反応終了後、反応液を通常の透析チユーブに入
れ、未反応試薬等を脱塩的に除くためGLC溶液
に対して一夜透析を行つた。
透析後、より一層の精製を目的とし溶出剤とし
てGLC溶液を用い、セフアロース4B(4.4φ×50cm
カラム)にかけ非放射性キヤリヤを得た。更にこ
の溶液を凍結乾燥することにより綿状の結晶を得
た。
この結晶100mgを、窒素ガスを吹きこんで溶存
酸素を除去した水160mlに溶解し、1m塩化第
一スズ水溶液10ml、更にアスコルビン酸ナトリウ
ム0.6gを加え完全に溶解させた。
この溶液を孔径0.45μmのフイルターを通して
1.5mlずつ、内部を窒素置換したバイアルに充填
し、目的とする放射性診断剤調製用組成物を得
た。以上の操作は全て無菌的におこなつた。
本実施例により得られた放射性診断剤調製用組
成物は、ごく薄い淡黄色の澄明な液である。
実施例 5
非放射性キヤリヤ中の2官能配位子の定量
DFOはFe()と1:1錯体を形成し、420nm
に極大吸収を有する。DFO−Fe()錯体の420n
mにおけるεmaxは2.63×103であつた。
実施例2で製造された放射性診断剤調製用組成
物を注射用蒸溜水(以下SPF水と略す)に溶解
し、フイブリノーゲン濃度として1mg/mlとし
た。この溶液にDFOとFe()が1:1錯体を形
成するに充分な塩化第2鉄溶液を加えた。この混
合溶液を1時間静置したのち、別に同様な方法で
SPF水に溶解した該組成物を対照液として、
420nmにおける吸光度を測定した。
この方法により、フイブリノーゲン1分子当り
のDFO量を求めると、14.8個であつた。
実施例 6
非放射性キヤリヤ中のフイブリノーゲンの定
量
高速液体クロマトグラフイー法により、非放射
性キヤリヤ中のフイブリノーゲンの定量を試み
た。カラムは、TSK−3000SWを用い、溶媒とし
て0.05トリス−0.15食塩・塩酸緩衝液PH7.4を
使用、圧力100Kg/cm2、流速1.0ml/minで行つ
た。
実施例2の精製工程前の副反応物を含む反応溶
液にクエン酸ガリウムとして、ガリウム−67
1mCiを含む溶液を加え標識した。
このガリウム−67標識溶液を上記条件下で
HPLCで分析した。検出はガリウム−67の放射能
によつた。その結果、溶出パターンは、ガリウム
−67標識つきフイブリノーゲン及びガリウム−67
−PA−DFOのほかにガリウム−67−DFOに帰属
する3者のピークとなつた。ガリウム−67−PA
−DFOのピークとガリウム−67−DFOのピーク
との面積比より、PA1分子あたり、18.9個のDFO
が結合されていることが確認された。また、実施
例5に示す様に実施例2で製造された非放射性キ
ヤリヤ中に含有するDFO量は、フイブリノーゲ
ン1分子あたり14.8個であつた。従つて、HPLC
法によつて定量されたPA中のDFOの数18.9個と
フイブリノーゲン1分子あたりに含有される
DFO数14.8個を比較するときPA1分子あたりに結
合されているフイブリノーゲンの数は約0.8個と
算出された。
実施例 7
ガリウム−67標識つき放射性診断剤の製造。
実施例2の方法によつて製造された放射性診断
剤調製用組成物にクエン酸ガリウムとして、ガリ
ウム−67、2mCiを含む溶液2mlを加えて、ガリ
ウム−67標識つき放射性診断剤を得た。本実施例
で得られたガリウム−67標識つき放射性診断は、
ごく薄い淡黄色の澄明な溶液であり、PHは約7.8
である。
実施例 8
テクネチウム−99m標識つき放射性診断剤の
製造
実施例4の方法によつて製造された塩化第一ス
ズを含有する放射性診断剤調製用組成物1.5mlに、
過テクネチウム酸ナトリウムの形でテクネチウム
−99m3.3mCiを含有する生理食塩水1.5mlを加え
て、テクネチウム−99m標識つき放射性診断剤を
得た。以上の操作は全て無菌的におこなつた。本
実施例で得られたテクネチウム−99m標識つき放
射性診断剤は、ごく薄い淡黄色の澄明な液であ
る。
実施例 9
ガリウム−67標識つき放射性診断剤の性質
実施例7により製造されたガリウム−67標識つ
き放射性診断剤について、ベロナール緩衝液(PH
=8.6)を展開液とし、セルロースアセテートを
泳動膜とする電気泳動(1.7mA/cm15分)をお
こなつた後、ラジオクロマトスキヤナーで走査し
た。放射能の位置は、原線から負側に0.5cmの場
所に単一ピークとして認め、かつ、この放射能ピ
ークの位置は、ポンソー3Rによるヒトフイブリ
ノーゲンの発色バンドと一致した。
上記の結果から、本発明の方法で製造されたガ
リウム−67標識つき放射性診断剤の標識率は、ほ
ぼ100%であり、かつその電荷状態についてもヒ
トフイブリノーゲンと差異を認めなかつた。
実施例 10
ガリウム−67標識つき放射性診断剤の凝塊能
(Clottability)
実施例7の方法で製造されたガリウム−67標識
つき放射性診断剤に0.05%塩化カルシウムを含む
0.1ジエチルバルビツール酸ナトリウム塩酸緩
衝液(PH7.3)を加え、フイブリノーゲン濃度と
して1mg/mlになるように調製した。さらにこの
溶液に100unit/mlのトロンビン0.1mlを加え、氷
浴中で30分間放置した。生成したフイブリン凝塊
を完全に除去後、フイブリン凝塊とフイブリン凝
塊を除去した液中の放射能を計数することにより
本剤の凝塊能を測定した結果、出発物質であるヒ
トフイブリノーゲンに対して86%の凝塊能を示し
た。
実施例 11
ガリウム−67標識つき放射性診断剤のラツト
体内における挙動
実施例7の方法で製造されたガリウム−67標識
つき放射性診断剤0.2mlをとり、複数のS.D.系雌
ラツトに静脈内投与し、血中濃度の経時変化及び
体内分布挙動を調べた。
表1に投与直後からの各測定時間における取り
込み率を示した。
本発明のガリウム−67標識つき放射性診断剤の
長時間にわたる極めて高い血中濃度及び他の臓器
への分布の様相は、従来のヨード−131標識フイ
ブリノーゲンの体内分布とほぼ同様であつた。
TECHNICAL FIELD The present invention relates to a new radioactive diagnostic agent useful for nuclear medicine applications for the purpose of depicting specific organs, detecting specific diseases, and testing the dynamics of physiologically active compounds. That is, the present invention relates to a composition for preparing a radioactive diagnostic agent containing the following polymer compounds (1) to (4) (hereinafter abbreviated as non-radioactive carrier). (1) A polymer compound obtained by condensing an amino group-containing bifunctional ligand compound and an amino group-containing physiologically active compound with the aldehyde group of polyacrolein. (2) A polymer compound obtained by condensing an amino group-containing bifunctional ligand compound and an amino group-containing physiologically active compound with the aldehyde group of polyacrolein, and further reducing the mixture. (3) A polymer compound obtained by condensing and reducing an amino group-containing bifunctional ligand compound to the aldehyde group of polyacrolein, and then condensing it with an amino group-containing physiologically active compound. (4) A polymer compound obtained by condensing and reducing an amino group-containing physiologically active compound to the aldehyde group of polyacrolein, and then condensing it with an amino group-containing bifunctional ligand compound. Another aspect of the present invention relates to a radiodiagnostic agent with a radioactive metal label, which is formed by contacting the composition with a solution containing a radioactive metal salt. For non-invasive nuclear medicine diagnosis for the purpose of depicting specific organs, detecting specific diseases, and testing dynamics,
Conventionally, bioactive compounds labeled with iodine-131 have been widely used. For example, iodine-131-labeled human serum albumin is used for visualization and dynamic testing of the blood circulation system, and iodine-131-labeled human serum albumin is used for the detection of blood clots.
Examples include 131-labeled fibrinogen. However, iodine-131 has a long half-life of about 8 days and emits beta rays in addition to gamma rays, which are useful for nuclear medicine diagnosis, so it has the disadvantage of subjecting the patient to a large amount of radiation exposure. has been pointed out. Attempts continue to be made to obtain useful radiodiagnostic agents by introducing radioactive metals with physical properties more suitable for nuclear medicine diagnosis into physiologically active compounds by other methods. That is, this is a labeling method in which a radioactive metal salt is directly applied to a physiologically active compound in the hope of forming a chelate bond. for example,
A method for obtaining technetium-99m-labeled human serum albumin by reacting an aqueous solution containing technetium-99m in the form of pertechnetate with human serum albumin in the presence of a suitable reducing agent; This includes a method of obtaining indium-111-labeled bleomycin by reacting with an aqueous solution containing indium-111. However, the chelate-forming properties of these physiologically active compounds to be labeled are not necessarily large;
Even in the case of technetium-99m-labeled human serum albumin and indium-111-labeled bleomycin, the stability after in vivo administration is low, and the behavior of radioactivity in the body does not match that of physiologically active compounds, making nuclear medicine diagnosis difficult. It has been pointed out that it is not satisfactory in its intended use. The physiologically active compound referred to here refers to a compound that exhibits a specific accumulation in a specific organ or a specific disease site, or
It refers to a compound that behaves in a unique manner in response to various physiological conditions in the body, and by tracking its behavior in the body, it is expected to provide useful information for various diagnoses. It is a compound. If radioactive metals with excellent physical properties can be stably introduced into such bioactive compounds without impairing the bioactivity of the compounds, extremely useful applications are expected in nuclear medicine diagnosis. In the field of nuclear medicine, there has been a strong desire for the appearance of such a radioactive diagnostic agent. Recently, in order to meet the above demands, diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetriacetic acid (EDTA), 3-oxobutyral bis(N
-methylthiosemicarbazone) carboxylic acid, deferoxamine, 3-aminomethylene-2,4-pentanedione bis(thiosemicarbazone) derivative and 1-(p-aminoalkyl)phenylpropane-1,2-dione-bis We focused on the strong chelate-forming ability of difunctional ligand compounds such as (N-methylthiosemicarbazone) derivatives with various metals, and the reactivity of the amino groups and carboxyl groups at the chain ends of these compounds with various physiologically active compounds. ,
A technique for binding radioactive metals and physiologically active compounds via these bifunctional ligand compounds was proposed (GEKrejcarek, Biochemical &
Biophysical Research Communication 77 2.
581−585 1977, CSHLeung.Int.Appl.
Radiation & Isotopes 29 687−692 1978, Tokukai Sho
56-34634, JP-A-56-125317, JP-A-57-
102820, patent application No. 57-157372). The radioactive diagnostic agent obtained by these methods is a stable labeled compound that retains the activity of the physiologically active compound, and is a drug of great interest for the purpose of nuclear medicine diagnosis. However, the biggest drawback of these known methods and the radioactive diagnostic agents obtained by them is that
Physiologically active compounds with large molecular weights (e.g. fibrinogen with a molecular weight of approximately 340,000 used for blood clot diagnosis and IgG with a molecular weight of approximately 160,000 used in cancer diagnosis)
etc.), the high specific radioactivity required for diagnosis cannot be obtained. This quick solution is based on the bioactive compound 1
This is a method of obtaining a compound with high specific radioactivity by bonding many bifunctional ligands per molecule and coordinating a radioactive metal to the bifunctional ligands in this compound. However, this method is not preferable because it results in denaturation of the physiologically active compound, or a reduction or disappearance of its activity. Furthermore, when a physiologically active compound with a large molecular weight is administered to humans, it is generally desirable to keep the dose as small as possible when considering its antigenicity. For this purpose, a material with high specific radioactivity is required. The present inventors conducted studies from various viewpoints in order to solve the above problems, and found that the method disclosed herein allows bioactive compounds to have high specific radioactivity without denaturing or reducing their activity. It was discovered that a radioactive diagnostic agent can be obtained. The non-radioactive carriers mentioned in (1) to (4) above are compounds with a large number of ligands per molecule. It is characterized by a significantly higher number of molecules compared to compounds into which a ligand compound has been introduced. Moreover, since there are very few sites in which the physiologically active compound is involved in the formation of this non-radioactive carrier, it is possible to provide the desired radiodiagnostic agent with high specific radioactivity without causing denaturation or activity reduction of the physiologically active compound. It is characterized by That is, by an extremely simple method of bringing an aqueous solution containing a radioactive metal ion into contact with a composition for preparing a radioactive diagnostic agent containing this non-radioactive carrier, it is possible to obtain high specific radioactivity and the physiological activity of the original physiologically active compound. We have discovered that it is possible to produce a radioactive diagnostic agent that is a physiologically active compound with a radioactive metal label that retains the following properties. The polyacrolein involved in the present invention is
Schulz et al. (Makromol.Chem., 24, 141 1957)
It is a chain polymer having one aldehyde group as a functional group in the unit molecule produced by the redox polymerization method of acrolein reported by et al. When used in the present invention, the number of structural units is preferably 3 to 4000, preferably 10 to 500. Further, examples of the physiologically active compounds according to the present invention include human serum albumin, fibrinogen, urokinase, proteins such as IgG which is an immune antibody, antibiotics such as bleomycin and kanamycin, hormones, saccharides, fatty acids and their derivatives. It will be done. However, this is not limited to the above, and by tracking the in-vivo behavior, it is possible to develop various types of If the compound is expected to provide useful information for the diagnosis of
It can be used as a physiologically active compound related to the present invention. However, when considering the practicality of the present invention, physiologically active compounds with a molecular weight of about 100,000 or more suitably exhibit their usefulness. Furthermore, in the case of a physiologically active compound that does not have an amino group, it can be used as a physiologically active compound according to the present invention by preparing a physiologically active compound derivative into which an amino group is introduced by an appropriate method as a precursor. The number of molecules of polyacrolein bound to the physiologically active compound may be an amount that does not cause denaturation or activity reduction of the physiologically active compound due to binding, and usually, per molecule of the physiologically active compound,
It should be at least 10 or less, preferably 3 or less. Next, the bifunctional ligand compound that can be used in the present invention is a compound having an amino group that has a strong ability to form chelates with various radioactive metals and an ability to bond to an aldehyde group under moderate conditions. good. Also,
Even in compounds with carboxyl groups that have a strong chelate-forming ability with various radioactive metals and the ability to bond with amino groups, the carboxyl group can be converted to an amino group using hexanediamine, etc., and bonded to an aldehyde group under mild conditions. By providing this ability, it can be used in the present invention. For example, deferoxamine, 3-aminomethylene-
Amino-terminated bifunctional moieties such as 2,4-pentanedione-bis(thiosemicarbazone) derivatives and 1-(p-aminoalkyl)phenylpropane-1,2-dione-bis(thiosemicarbazone) derivatives. difunctional coordination that can be induced into ligated compounds and amino-terminated compounds such as diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetriacetic acid (EDTA), and 3-oxobutyral bis(N-methylthiosemicarbazone)carboxylic acid. child compounds. The number of molecules of these bifunctional ligand compounds bonded per molecule of polyacrolein is arbitrary, but the usefulness of the present invention can be suitably exhibited when it is 5 or more, preferably 10 or more. Finally, the radioactive metal related to the present invention may be any radioactive metal that has physical properties suitable for nuclear medical diagnosis and that forms a stable chelate with a difunctional ligand compound, such as gallium-67, Examples of radioactive metals currently commonly used in the field of nuclear medicine include gallium-68, indium-111, thallium-201, and technetium-99m. However, technetium-99m, which is commercially available in the form of pertechnetate, which is commonly used in nuclear medicine diagnosis,
When a radioactive metal ion, such as a radioactive metal ion such as The present invention can be carried out if a reducing agent such as a stannous salt, which is commonly used for reducing the radioactive diagnostic agent, is previously included in the composition for preparing a radiodiagnostic agent according to the present invention. The implementation of the present invention will be specifically explained. First, regarding the method for producing a non-radioactive carrier that can be used in the present invention, as shown below, the aldehyde group of polyacrolein is reacted with a bifunctional ligand compound and the amino group of a physiologically active compound to form a non-radioactive carrier. Obtain (1). Further, the non-radioactive carrier (2) is obtained by reducing this non-radioactive carrier with a reducing agent such as sodium borohydride. The reaction order of the bifunctional ligand compound and the physiologically active compound with which polyacrolein is reacted is arbitrary, and a reduction operation may be performed in the middle of the reaction. If you want to create a more stepwise reaction,
Isolation and purification operations of intermediates can also be added at the end of each stage reaction. After the reaction, the desired non-radioactive carrier is purified by a conventional method such as column chromatography, gel filtration, or dialysis, which is selected based on the chemical and physical properties of the physiologically active compound. can get. Below, one step-by-step reaction is provided for understanding the present invention.
An example is illustrated very schematically. (In the formula, X and Y represent a bifunctional ligand compound and an amino group-reactive residue of a physiologically active compound, respectively. p, k, l, m, and n represent the number of structural units,
k is 2-4000, l is 1-4000, m is 0-4000, n
is an integer from 0 to 4000. However, p and k+l+
m+n is an integer from 3 to 4000. Also, R is -
CH2OH , -CH=N-( CH2 )g-OH and -CH2
Represents a substituent selected from the group consisting of -NH-( CH2 )g-OH. In addition, g is an integer of 1-5. ) The non-radioactive carrier shown here is only a linear one, but if the physiologically active compound has two or more terminal amino groups, a crosslinked polymer compound in which the physiologically active compound acts as a crosslinking substance can also be used as a secondary carrier. live. This crosslinked polymer compound also does not interfere with the implementation of the present invention. However, as mentioned above, the number of polyacrolein molecules bound to the physiologically active compound should be at least 10 or less, preferably 3 or less, per molecule of the physiologically active compound. Next, a method for preparing a composition for preparing a radioactive diagnostic agent will be described. The present composition is prepared by dissolving the non-radioactive carrier obtained by the above method in sterile water, physiological saline, or various buffer solutions. Additionally, as necessary, addition of an organic solvent to increase the solubility of the non-radioactive carrier, acid or base to adjust the pH, and addition of a reducing agent or oxidizing agent to adjust the valence state of the radioactive metal ion. , and stabilizers, tonicity agents, and preservatives may be added. As the reducing agent referred to herein, a pharmaceutically acceptable water-soluble reducing agent is used, preferably stannous salt. The stannous salts useful in the practice of the present invention are salts formed by divalent tin, and specifically include, for example, halogen anions such as chloride ions and fluoride ions, sulfate ions, nitrate ions, etc. Refers to salts formed with organic acid residue ions such as heteroinorganic acid residue ions, acetate ions, and citrate ions. The amount of the non-radioactive carrier should be such that the labeling rate of the radioactive diagnostic agent to be finally produced is high enough to cause no practical problems, and it should be within a pharmaceutically acceptable range. Needless to say, this is desirable. Further, the reducing agent such as a stannous salt that may be added as needed may be added in an amount sufficient to reduce the radioactive metal ion to an appropriate valence state and within a pharmaceutically acceptable range. The non-radioactive composition obtained in this way may be subjected to labeling with a radioactive metal in the form of a solution as it is, or in the form of a dry product from which the solvent is removed by a method such as freeze-drying or low-temperature vacuum evaporation. After that, it may be labeled with a radioactive metal. Finally, regarding the method for producing a radioactive diagnostic agent, a radioactive diagnostic agent labeled with a radioactive metal can be prepared extremely simply by simply bringing the composition for preparing a radioactive diagnostic agent into contact with a solution containing a radioactive metal. . The radioactivity of the radioactive metal to be contacted is arbitrary, but when carrying out the intended nuclear medicine diagnosis,
Needless to say, it is desirable that the radioactivity range be such that sufficient information can be obtained, and that the radiation exposure of the subject be as low as possible. As for the administration method, intravenous administration is generally performed, but any other administration method may be used as long as it is advantageous for the physiologically active compound to be labeled to exhibit its activity after administration, and other administration methods may also be used. The present invention will be described in more detail below with reference to Examples. Example 1 Production of a composition containing a non-radioactive carrier in which deferoxamine as a bifunctional ligand compound and human fibrinogen as a physiologically active compound are bound to polyacrolein (1) 125 mg of polyacrolein (hereinafter abbreviated as PA) was added.
It was dissolved in 2.5 ml of dimethyl sulfoxide (hereinafter abbreviated as DMSO). 25 DMSO solution containing 105 mg of deferoxamine (hereinafter abbreviated as DFO) in this solution
ml and then stirred at room temperature for 3 hours. This solution will be referred to as Solution A. In particular, human fibrinogen
200 mg was dissolved in 0.01 phosphate-0.15 saline buffer (hereinafter abbreviated as PBS) of pH 8.4. This solution is B
Make it into a liquid. 5 ml of solution A was added to solution B at 0 to 4°C, and the mixture was stirred and reacted at the same temperature for about 3 hours. After the reaction is complete, in order to remove unreacted reagents, etc. by desalting, the solution is heated to 0 to 4°C against a 0.01 glucose-0.35 sodium citrate solution (hereinafter abbreviated as GLC solution).
After dialysis for 24 hours, Sepharose 4B (4.4φ x 50cm column) was added using GLC solution as eluent.
The desired non-radioactive carrier was obtained. This solution was diluted with GLC solution so that the fibrinogen concentration was 1 mg/ml, and sodium ascorbate was further added to give a fibrinogen concentration of 30 m. After dispensing 3 ml into a vial, it was freeze-dried to prepare a radioactive diagnostic agent. A composition for use was obtained. All of the above operations were performed aseptically. The composition for preparing a radioactive diagnostic agent obtained in this example is a cotton-like freeze-dried product. Example 2 Production of a composition containing a non-radioactive carrier in which deferoxamine as a bifunctional ligand compound and human fibrinogen as a physiologically active compound were bound to PA (2) 125 mg of PA was dissolved in 2.5 ml of DMSO. After adding 2.5 ml of a DMSO solution containing 105 mg of DFO to this solution, the mixture was stirred at room temperature for 3 hours. This solution is A
Make it into a liquid. Separately 200mg of human fibrinogen
Dissolved in PBS at pH 8.4. This solution will be referred to as Solution B.
5 ml of solution A was added to solution B at 0 to 4°C, and the mixture was stirred and reacted at the same temperature for about 3 hours. Furthermore, to the above reaction solution,
7.0 mg of sodium borohydride was added, and reduction was carried out with stirring at 0 to 4°C for about 1 hour. After the reaction, the GLC solution was dialyzed at 0 to 4°C for 24 hours in order to desalt unreacted reagents, etc., and then applied to a Sepharose 4B (4.4φ x 50cm column) using the GLC solution as an eluent. , the desired non-radioactive carrier was obtained. Adjust the fibrinogen concentration of this solution to 1 mg/ml.
The mixture was diluted with a GLC solution, sodium ascorbate was added to the solution to a total volume of 30 ml, and 3 ml of the solution was dispensed into vials, followed by freeze-drying to obtain a composition for preparing a radioactive diagnostic agent. All of the above operations were performed aseptically. The composition for preparing a radioactive diagnostic agent obtained in this example is a cotton-like freeze-dried product. Example 3 Preparation of condensate of 3-oxobutyral bis(N-methylthiosemicarbazone)carboxylic acid-hexanediamine 3-oxobutyralbis(N-methylthiosemicarbazone)carboxylic acid (hereinafter abbreviated as KTS)
After dissolving 132 mg in 5 ml of anhydrous dioxane and cooling to around 10℃, 0.12 mg of tri-n-butylamine was dissolved in 5 ml of anhydrous dioxane.
ml, and 64μ of isobutyl chloroformate were added thereto and stirred at the same temperature for about 50 minutes to obtain a mixed acid anhydride solution. Separately N-tert-butyloxycarbonyl-1.6-
A solution of 104 mg of hexanediamine dissolved in 2 ml of anhydrous dioxane was prepared, and this solution was added to the mixed acid anhydride solution, stirred at around 10°C for about 15 hours, and KTS
A -N-tert-butyloxycarbonyl-1,6-hexanediamine condensate was obtained. By adding 1 to 2 drops of concentrated hydrochloric acid to this condensate solution to lower the pH to 2,
The N-tert-butyloxycarbonyl group, which is a protecting group for the amino group, was removed to obtain the desired KTS-hexanediamine condensate. This condensate was used in the next reaction without being isolated. Example 4 Production of a composition containing a non-radioactive carrier in which KTS is used as a bifunctional ligand compound, human fibrinogen is used as a physiologically active compound, and these are bonded to PA. 200 mg of PA was dissolved in 5 ml of dimethyl sulfoxide, and the KTS-hexanediamine condensate solution obtained in Example 3 was added to this solution, and the mixture was reacted at room temperature for about 3 hours to obtain a PA-hexanediamine-KTS condensate solution. Add 5 ml of this solution to human fibrinogen.
It was added to 50 ml of PBS (PH=8.4) in which 250 mg was dissolved, and the mixture was stirred at room temperature for about 3 hours to react. Thereafter, 12.9 mg of sodium borohydride was added to reduce the Schiff base formed, and stirring was continued for about 1 hour. After the reaction was completed, the reaction solution was placed in a regular dialysis tube and dialyzed against the GLC solution overnight to remove unreacted reagents and the like by desalting. After dialysis, for further purification, GLC solution was used as the eluent, and Sepharose 4B (4.4φ x 50cm
column) to obtain a non-radioactive carrier. Furthermore, flocculent crystals were obtained by freeze-drying this solution. 100 mg of the crystals were dissolved in 160 ml of water to which dissolved oxygen had been removed by blowing nitrogen gas, and 10 ml of a 1 m aqueous stannous chloride solution and 0.6 g of sodium ascorbate were added and completely dissolved. Pass this solution through a filter with a pore size of 0.45 μm.
1.5 ml each was filled into vials whose insides were purged with nitrogen to obtain the desired composition for preparing a radioactive diagnostic agent. All of the above operations were performed aseptically. The composition for preparing a radioactive diagnostic agent obtained in this example is a very pale pale yellow and clear liquid. Example 5 Quantification of bifunctional ligands in non-radioactive carriers DFO forms a 1:1 complex with Fe() and 420 nm
It has maximum absorption in . 420n of DFO−Fe() complex
εmax at m was 2.63×10 3 . The composition for preparing a radioactive diagnostic agent produced in Example 2 was dissolved in distilled water for injection (hereinafter abbreviated as SPF water) to give a fibrinogen concentration of 1 mg/ml. To this solution was added enough ferric chloride solution to form a 1:1 complex of DFO and Fe(). After leaving this mixed solution for 1 hour, use the same method separately.
The composition dissolved in SPF water was used as a control solution,
Absorbance was measured at 420 nm. Using this method, the amount of DFO per fibrinogen molecule was determined to be 14.8. Example 6 Quantification of fibrinogen in a non-radioactive carrier An attempt was made to quantify fibrinogen in a non-radioactive carrier by high performance liquid chromatography. The column was run using TSK-3000SW, using 0.05 Tris-0.15 saline/hydrochloric acid buffer PH7.4 as the solvent, at a pressure of 100 Kg/cm 2 , and at a flow rate of 1.0 ml/min. Gallium-67 was added as gallium citrate to the reaction solution containing side reactants before the purification step in Example 2.
A solution containing 1 mCi was added for labeling. This gallium-67 labeled solution was added under the above conditions.
Analyzed by HPLC. Detection was based on the radioactivity of gallium-67. As a result, the elution pattern of gallium-67 labeled fibrinogen and gallium-67
In addition to -PA-DFO, there were three peaks attributed to gallium-67-DFO. Gallium-67-PA
Based on the area ratio of −DFO peak and gallium −67−DFO peak, there are 18.9 DFO per molecule of PA.
It was confirmed that they were connected. Further, as shown in Example 5, the amount of DFO contained in the non-radioactive carrier produced in Example 2 was 14.8 per fibrinogen molecule. Therefore, HPLC
The number of DFO in PA determined by the method is 18.9 and the content per fibrinogen molecule.
When comparing the number of DFOs (14.8), the number of fibrinogen bound per PA molecule was calculated to be approximately 0.8. Example 7 Production of radioactive diagnostic agent labeled with gallium-67. 2 ml of a solution containing 2 mCi of gallium-67 as gallium citrate was added to the composition for preparing a radiodiagnostic agent produced by the method of Example 2 to obtain a radiodiagnostic agent labeled with gallium-67. The gallium-67 labeled radiodiagnosis obtained in this example was as follows:
It is a very pale yellow clear solution with a pH of approximately 7.8.
It is. Example 8 Production of radiodiagnostic agent labeled with technetium-99m To 1.5 ml of the composition for preparing a radiodiagnostic agent containing stannous chloride produced by the method of Example 4,
1.5 ml of physiological saline containing 3.3 mCi of technetium-99m in the form of sodium pertechnetate was added to obtain a radiodiagnostic agent labeled with technetium-99m. All of the above operations were performed aseptically. The technetium-99m-labeled radiodiagnostic agent obtained in this example is a very pale pale yellow clear liquid. Example 9 Properties of gallium-67-labeled radiodiagnostic agent The gallium-67-labeled radiodiagnostic agent produced in Example 7 was treated with veronal buffer (PH
After electrophoresis (1.7 mA/cm, 15 minutes) using cellulose acetate as a developing solution and a cellulose acetate electrophoresis membrane, scanning was performed using a radiochromato scanner. The position of the radioactivity was recognized as a single peak at a location 0.5 cm on the negative side from the original line, and the position of this radioactivity peak coincided with the color band of human fibrinogen produced by Ponceau 3R. From the above results, the labeling rate of the gallium-67 labeled radiodiagnostic agent produced by the method of the present invention was approximately 100%, and no difference was observed in its charge state from that of human fibrinogen. Example 10 Clotability of radiodiagnostic agent labeled with gallium-67 The radiodiagnostic agent labeled with gallium-67 produced by the method of Example 7 contains 0.05% calcium chloride.
A 0.1 sodium diethyl barbiturate hydrochloride buffer (PH7.3) was added to adjust the fibrinogen concentration to 1 mg/ml. Furthermore, 0.1 ml of 100 unit/ml thrombin was added to this solution, and the mixture was left in an ice bath for 30 minutes. After completely removing the generated fibrin clots, the clotting ability of this drug was measured by counting the fibrin clots and the radioactivity in the liquid from which the fibrin clots had been removed. The clotting ability was 86%. Example 11 Behavior of gallium-67-labeled radiodiagnostic agent in rat bodies 0.2 ml of gallium-67-labeled radiodiagnostic agent produced by the method of Example 7 was taken and intravenously administered to multiple SD female rats. Changes in blood concentration over time and distribution behavior in the body were investigated. Table 1 shows the uptake rate at each measurement time immediately after administration. The extremely high concentration in the blood of the gallium-67-labeled radiodiagnostic agent of the present invention over a long period of time and its distribution to other organs were almost the same as the distribution of conventional iodine-131-labeled fibrinogen in the body.
【表】
実施例 12
ガリウム−67標識つき放射性診断剤の担血栓
ウサギ体内のおける挙動
家兎の大腿静脈部にホルマリン塗布法により、
血栓を生成せしめ、この家兎に、実施例7の方法
で製造されたガリウム−67標識つき放射性診断剤
の0.5mlを、耳静脈から投与した。投与後24時間
後に、一定量の血液を採取し、ただちに血栓部位
を取り出した。これら採取した血液及び血栓部位
を試料とし、両者の放射能を計測した。両者の同
一重量中に含まれる放射能比(血栓部位/血液)
は7.44±3.41(10匹の平均値±S.D.値)であつた。
本実施例、実施例8及び実施例11の結果から、
本放射性診断剤はフイブリノーゲンの生理活性を
ほぼそのまま保持しており、血栓検出を目的とし
た核医学診断に極めて有用なものであると考えら
れる。
実施例 13
テクネチウム−99m標識つき放射性診断剤の
性質
実施例8により得たテクネチウム−99m標識つ
き放射性診断剤につき実施例9と同様の方法によ
り、その標識率を測定したところ、ほぼ100%で
あり、かつその電荷状態についてもヒトフイブリ
ノーゲンと差異を認めなかつた。
実施例 14
テクネチウム−99m標識つき放射性診断剤の
凝塊能
実施例8により得たテクネチウム−99m標識つ
き放射性診断剤につき実施例10と同様の方法によ
り、その凝塊能を測定したところ、出発物質であ
るヒトフイブリノーゲンに対して93%の凝塊能を
示した。
実施例 15
ガリウム−67標識つき放射性診断剤の標識能
実施例2で製造された放射性診断剤調製用組成
物にSPF水を加え溶解し、フイブリノーゲン量と
して、それぞれ0.5、0.75、1.0、1.5、2.0、3.0mg
に相当する液量を別のバイアルにより、それぞれ
にガリウム−67として、1mCiを含むクエン酸ガ
リウム1mlを加えた。これらの試料を室温にて1
時間放置した後、実施例7の方法により標識率を
測定した。また、従来のDFOを直接フイブリノ
ーゲンに結合させた化合物を用いて得られるガリ
ウム−67標識フイブリノーゲンについても本実施
例と同様の方法により、その標識率を測定した。
結果を表2に示す。[Table] Example 12 Behavior of gallium-67-labeled radiodiagnostic agent in the body of a rabbit with a blood clot.
A thrombus was generated, and 0.5 ml of the gallium-67-labeled radiodiagnostic agent produced by the method of Example 7 was administered to the rabbit through the ear vein. Twenty-four hours after administration, a certain amount of blood was collected and the thrombus site was immediately removed. The collected blood and the thrombus site were used as samples, and the radioactivity of both was measured. Radioactivity ratio contained in the same weight of both (thrombus site/blood)
was 7.44±3.41 (mean value±SD value of 10 animals). From the results of this example, example 8, and example 11,
This radioactive diagnostic agent retains almost all of the physiological activity of fibrinogen, and is considered to be extremely useful in nuclear medicine diagnosis for the purpose of detecting blood clots. Example 13 Properties of radiodiagnostic agent labeled with technetium-99m When the labeling rate of the radiodiagnostic agent labeled with technetium-99m obtained in Example 8 was measured in the same manner as in Example 9, it was found to be approximately 100%. , and no difference was observed in its charge state from that of human fibrinogen. Example 14 Clotting ability of radiodiagnostic agent labeled with technetium-99m When the clotting ability of the radiodiagnostic agent labeled with technetium-99m obtained in Example 8 was measured in the same manner as in Example 10, it was found that the starting material It showed a clotting ability of 93% for human fibrinogen. Example 15 Labeling ability of radiodiagnostic agent labeled with gallium-67 SPF water was added to the composition for preparing the radiodiagnostic agent prepared in Example 2 and dissolved, and the amount of fibrinogen was 0.5, 0.75, 1.0, 1.5, and 2.0, respectively. ,3.0mg
To each vial, 1 ml of gallium citrate containing 1 mCi was added as gallium-67. These samples were incubated at room temperature for 1
After standing for a period of time, the labeling rate was measured by the method of Example 7. Furthermore, the labeling rate of gallium-67-labeled fibrinogen obtained using a conventional compound in which DFO was directly bound to fibrinogen was measured by the same method as in this example.
The results are shown in Table 2.
【表】
表2に示すごとく、本発明の化合物による非放
射性キヤリヤは、フイブリノーゲン1mgを使用し
た場合、実用的な標識時間である1時間におい
て、1mCiのガリウム−67を97.8%標識し得るの
に対し、従来法では、同様の条件下では17.0%し
か標識し得ないばかりでなく、25.1mgを用いても
1mCiのガリウム−67を83.5%しか標識し得ない。
以上の結果から、本発明の化合物を使用すること
により、高比放射能のガリウム−67標識フイブリ
ノーゲン誘導体を製造することができ、かつ、こ
の標識体は血栓の検出を目的とする核医学診断の
用途に極めて適したものであることが示された。
実施例 16
ガリウム−67標識つき放射性診断剤の毒性
実施例7に示した方法により得られたガリウム
−67標識つき放射性診断剤を放射能を適度に減衰
させた後、S.D.系雌雄ラツト各5匹の各群に対
し、体重100gあたり1mlを(予定している人体
投与量の600倍に相当)、またICR系雌雄マウス各
5匹の各群に対し体重1.0gあたり0.5ml(予定し
ている人体投与量の3000倍)、いずれも静脈内投
与した。別に対照群として同数の各動物群に対し
て、同容量の生理食塩水を静脈内投与した。以上
の各動物を10日間飼育し、毎日体重変化を記録し
た。体重変化において、放射性診断剤を投与した
群と対照群の間には有意の差は認められなかつ
た。10日間の飼育観察の後、すべての動物を解剖
し、各臓器について異常の有無を観察したが、異
常を認めた動物はなかつた。すなわち、本発明の
製剤は予定している人体投与量の600ないし3000
倍を2種の実験動物に投与した場合においても全
く異常は認められなかつた。
以上の実施例を示して本発明を説明してきた
が、当業者は、これらの実施例が、本発明を例示
するために意図されたものであり、その範囲をな
んら制限するものではないことを理解すべきであ
る。[Table] As shown in Table 2, when using 1 mg of fibrinogen, the non-radioactive carrier of the compound of the present invention can label 97.8% of 1 mCi of gallium-67 in 1 hour, which is a practical labeling time. In contrast, with the conventional method, not only could only 17.0% be labeled under similar conditions, but even if 25.1 mg was used,
Only 83.5% of 1 mCi of gallium-67 can be labeled.
From the above results, by using the compound of the present invention, it is possible to produce a gallium-67-labeled fibrinogen derivative with high specific radioactivity, and this labeled substance can be used for nuclear medicine diagnosis for the purpose of detecting blood clots. It was shown to be extremely suitable for the application. Example 16 Toxicity of radiodiagnostic agent labeled with gallium-67 After appropriately attenuating the radioactivity of the radiodiagnostic agent labeled with gallium-67 obtained by the method shown in Example 7, it was administered to five male and female SD rats. 1 ml per 100 g of body weight (equivalent to 600 times the planned human dose), and 0.5 ml per 1.0 g of body weight for each group of 5 male and female ICR mice (scheduled). (3000 times the human dose), both were administered intravenously. Separately, the same volume of physiological saline was intravenously administered to each group of animals of the same number as a control group. Each of the above animals was kept for 10 days, and body weight changes were recorded every day. No significant difference in body weight change was observed between the radiodiagnostic agent administered group and the control group. After 10 days of observation, all animals were dissected and each organ was observed for abnormalities, but no abnormalities were found in any of the animals. That is, the formulation of the present invention has a dosage of 600 to 3000 of the intended human dose.
No abnormalities were observed when the same amount was administered to two types of experimental animals. Although the present invention has been described with reference to the above examples, those skilled in the art will appreciate that these examples are intended to illustrate the invention and are not intended to limit its scope in any way. You should understand.
Claims (1)
含有2官能配位子化合物及びアミノ基含有生理活
性化合物を縮合させて得られる高分子化合物を含
むことを特徴とする放射性診断剤調製用組成物。 2 ポリアクロレインのアルデヒド基にアミノ基
含有2官能配位子化合物及びアミノ基含有生理活
性化合物を縮合させ、さらに還元して得られる高
分子化合物を含むことを特徴とする放射性診断剤
調製用組成物。 3 ポリアクロレインのアルデヒド基にアミノ基
含有2官能配位子化合物を縮合させて還元したの
ち、アミノ基含有生理活性化合物を縮合させて得
られる高分子化合物を含むことを特徴とする放射
性診断剤調製用組成物。 4 ポリアクロレインのアルデヒド基にアミノ基
含有生理活性化合物を縮合させて還元したのち、
アミノ基含有2官能配位子化合物を縮合させて得
られる高分子化合物を含むことを特徴とする放射
性診断剤調製用組成物。 5 ポリアクロレインの構成単位数が3〜4000で
あるような特許請求の範囲第1項乃至第4項記載
の放射性診断剤調製用組成物。 6 ポリアクロレインに導入されるアミノ基含有
生理活性化合物1分子当りアミノ基含有2官能配
位子化合物の分子数が2以上であることを特徴と
する特許請求の範囲第1項乃至第5項記載の放射
性診断剤調製用組成物。 7 アミノ基含有生理活性化合物と結合するポリ
アクロレインは、該アミノ基含有生理活性化合物
1分子当り10分子以下であることを特徴とする特
許請求の範囲第1項乃至第6項記載の放射性診断
剤調製用組成物。 8 特許請求の範囲第1項乃至第7項記載の放射
性診断剤調製用組成物を放射性金属イオンを含有
する溶液と接触させることからなる放射性金属標
識つき放射性診断剤。 9 放射性金属イオンを、特許請求の範囲第1項
乃至第7項記載の高分子化合物と結合する低原子
価状態に還元するのに十分な量の還元剤をさらに
含有する特許請求の範囲第1項乃至第7項記載の
放射性診断剤調製用組成物。 10 特許請求の範囲第9項記載の放射性診断剤
調製用組成物を、放射性金属イオンを含有する溶
液と接触させることからなる放射性金属標識つき
放射性診断剤。[Scope of Claims] 1. A radiodiagnostic agent preparation comprising a polymer compound obtained by condensing an amino group-containing bifunctional ligand compound and an amino group-containing physiologically active compound with an aldehyde group of polyacrolein. Composition. 2. A composition for preparing a radioactive diagnostic agent characterized by containing a polymer compound obtained by condensing an amino group-containing bifunctional ligand compound and an amino group-containing physiologically active compound with the aldehyde group of polyacrolein and further reducing the same. . 3 Preparation of a radioactive diagnostic agent characterized by containing a polymer compound obtained by condensing and reducing an amino group-containing bifunctional ligand compound to the aldehyde group of polyacrolein, and then condensing the amino group-containing physiologically active compound. Composition for use. 4 After condensing and reducing the aldehyde group of polyacrolein with an amino group-containing physiologically active compound,
A composition for preparing a radioactive diagnostic agent, comprising a polymer compound obtained by condensing an amino group-containing bifunctional ligand compound. 5. The composition for preparing a radioactive diagnostic agent according to claims 1 to 4, wherein the number of constituent units of polyacrolein is 3 to 4,000. 6 Claims 1 to 5, characterized in that the number of molecules of the amino group-containing bifunctional ligand compound is 2 or more per molecule of the amino group-containing physiologically active compound introduced into polyacrolein. A composition for preparing a radioactive diagnostic agent. 7. The radioactive diagnostic agent according to claims 1 to 6, characterized in that the number of polyacrolein bound to the amino group-containing physiologically active compound is 10 or less molecules per molecule of the amino group-containing physiologically active compound. Preparative composition. 8. A radiodiagnostic agent with a radioactive metal label, which comprises bringing the composition for preparing a radiodiagnostic agent according to claims 1 to 7 into contact with a solution containing a radioactive metal ion. 9 Claim 1 further contains a reducing agent in an amount sufficient to reduce the radioactive metal ion to a low valence state that binds to the polymer compound according to Claims 1 to 7. A composition for preparing a radioactive diagnostic agent according to items 7 to 7. 10. A radiodiagnostic agent with a radioactive metal label, which comprises bringing the composition for preparing a radiodiagnostic agent according to claim 9 into contact with a solution containing a radioactive metal ion.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57215860A JPS59106426A (en) | 1982-12-08 | 1982-12-08 | Radioactive diagnostic for nucleomedical use containing polymeric compound |
US06/558,333 US4666697A (en) | 1982-12-08 | 1983-12-05 | Radioactive diagnostic agent |
KR1019830005819A KR860000843B1 (en) | 1982-12-08 | 1983-12-08 | Process for preparing radioactive-diagnostic agent and non-radioactive carriers |
CA000442833A CA1252087A (en) | 1982-12-08 | 1983-12-08 | Radioactive diagnostic agent, and non-radioactive carriers therefor |
EP83112331A EP0111311B1 (en) | 1982-12-08 | 1983-12-08 | Non-radioactive carriers and radioactive diagnostic agent |
DE8383112331T DE3382191D1 (en) | 1982-12-08 | 1983-12-08 | NON-RADIOACTIVE CARRIERS AND RADIODIAGNOSTIC AGENTS. |
AU22219/83A AU565287B2 (en) | 1982-12-08 | 1983-12-08 | Radioactive diagnostic agent, and non-radioactive carriers therefor |
US06/947,093 US5077389A (en) | 1982-12-08 | 1986-12-29 | Chemical product usable as a non-radioactive carrier |
CA000570612A CA1258851A (en) | 1982-12-08 | 1988-06-28 | Chemical product useful as a non-radioactive carrier |
CA000570616A CA1258850A (en) | 1982-12-08 | 1988-06-28 | Radioactive chemical product for use as a diagnostic agent |
US08/215,671 US5384401A (en) | 1982-12-08 | 1994-03-22 | Chemical product usable as a non-radioactive carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57215860A JPS59106426A (en) | 1982-12-08 | 1982-12-08 | Radioactive diagnostic for nucleomedical use containing polymeric compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59106426A JPS59106426A (en) | 1984-06-20 |
JPH0414084B2 true JPH0414084B2 (en) | 1992-03-11 |
Family
ID=16679468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57215860A Granted JPS59106426A (en) | 1982-12-08 | 1982-12-08 | Radioactive diagnostic for nucleomedical use containing polymeric compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59106426A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10384078B2 (en) * | 2013-10-15 | 2019-08-20 | Ip Liberty Vision Corporation | Polymeric radiation-sources |
-
1982
- 1982-12-08 JP JP57215860A patent/JPS59106426A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59106426A (en) | 1984-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4855353A (en) | High molecular compounds having amino groups, and their utilization | |
US4666697A (en) | Radioactive diagnostic agent | |
US5118798A (en) | Radioactive metallic element-labelled high molecular compound useful in nuclear medicine | |
EP0035765B1 (en) | A physiologically active substance-combined compound and its use for the preparation of a radioactive metallic element-labeled compound | |
KR860001565B1 (en) | Method for preparing radioactive diagnostic agent | |
JPS641449B2 (en) | ||
US5380513A (en) | Methods for reducing non-target retention of immunoconjugates and metabolites thereof | |
JPH0414084B2 (en) | ||
JP2564459B2 (en) | Carrier for radiopharmaceutical preparation | |
JP2548711B2 (en) | Reactive polymer compound having amino group and bifunctional ligand and use thereof | |
JPH047329B2 (en) | ||
JP2677543B2 (en) | Bioactive substance-bound polymer compound and carrier for preparing radiopharmaceutical containing the compound | |
JP2677544B2 (en) | Radioactive metal element-bonded polymer compound and radiopharmaceutical containing the compound | |
JPH0421682B2 (en) | ||
CA1258851A (en) | Chemical product useful as a non-radioactive carrier | |
JPH0460974B2 (en) | ||
JPH0433767B2 (en) | ||
JPH0615478B2 (en) | Radiopharmaceuticals and polymeric compounds for their preparation | |
JPH0345723B2 (en) | ||
JPH0759524B2 (en) | Radiopharmaceuticals and polymeric compounds for their preparation |