JPH04118515A - Angular speed detector and acceleration detector - Google Patents
Angular speed detector and acceleration detectorInfo
- Publication number
- JPH04118515A JPH04118515A JP2239521A JP23952190A JPH04118515A JP H04118515 A JPH04118515 A JP H04118515A JP 2239521 A JP2239521 A JP 2239521A JP 23952190 A JP23952190 A JP 23952190A JP H04118515 A JPH04118515 A JP H04118515A
- Authority
- JP
- Japan
- Prior art keywords
- tuning fork
- vibration
- acceleration
- fork member
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 45
- 238000001514 detection method Methods 0.000 claims abstract description 61
- 230000010355 oscillation Effects 0.000 claims abstract description 4
- 230000005284 excitation Effects 0.000 claims description 26
- 230000035882 stress Effects 0.000 description 48
- 230000000694 effects Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Landscapes
- Gyroscopes (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、それ自身の回転を検出し回転に応じた信号を
出力する、いわゆる振動ジャイロと呼ばれる角速度検出
器に関し、また、他の観点からは、それ自身に加わる加
速度に応じた信号を出力する加速度検出器に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an angular velocity detector called a so-called vibrating gyro that detects its own rotation and outputs a signal according to the rotation, and , from another point of view, relates to an acceleration detector that outputs a signal according to acceleration applied to itself.
本発明の角速度検出器あるいは加速度検出器は、例えば
、自動車、航空機、船舶などのナビゲーションに用いる
角速度センサおよび又は加速度センサ、自動車の姿勢制
御、ブレーキ制御、4WS制御、4WD制御等に用いる
ための自動車の運動検出用の角速度センサおよび又は加
速度センサ、ロボットアームなどの多軸制御に用いる角
速度センサおよび又は加速度センサ、等々に用い得る。The angular velocity detector or acceleration detector of the present invention is, for example, an angular velocity sensor and/or acceleration sensor used for navigation of automobiles, aircraft, ships, etc., and automobiles used for attitude control, brake control, 4WS control, 4WD control, etc. of automobiles. The present invention can be used as an angular velocity sensor and/or acceleration sensor for detecting motion of a robot arm, an angular velocity sensor and/or acceleration sensor used for multi-axis control of a robot arm, etc.
(従来の技術)
いわゆる振動ジャイロは、一般的に、第3図に示すよう
な構造となっている。即ち、相対向する一対の音叉のよ
うな機械振動子を駆動素子により相対的に近づく方向お
よび離れる方向に駆動してそれらに位相が180度ずれ
た振動を与えて慣性力を作り出し、ベースの回転によっ
て振動子に作用するコリオリカを、音叉に装着した検知
素子によって検知する。コリオリカが角速度ωに応じて
変化するので、コリオリカにより発生する音叉のたわみ
を圧電素子などの歪検出素子によって検出することによ
り、回転の角速度を検出できる。特開昭62−101+
109号公報には、1対の円板状の振動子の中心間を結
ぶ連結部材のねじりを検出する振動ジャイロが提案され
ている。(Prior Art) A so-called vibrating gyroscope generally has a structure as shown in FIG. In other words, a pair of opposing mechanical oscillators, such as tuning forks, are driven by a drive element in the direction of approaching and moving away from each other, giving them vibrations with a phase shift of 180 degrees to create an inertial force, which causes the rotation of the base. Coriolis acting on the vibrator is detected by a detection element attached to the tuning fork. Since Coriolis changes according to the angular velocity ω, the angular velocity of rotation can be detected by detecting the deflection of the tuning fork caused by Coriolis using a strain detection element such as a piezoelectric element. JP-A-62-101+
No. 109 proposes a vibrating gyroscope that detects torsion of a connecting member connecting the centers of a pair of disc-shaped vibrators.
なお、本出願人は、この種の振動ジャイロの改良をすで
に提示した(特願昭63−283157号、特願昭63
−283158号特願昭63−283]59号および特
願平1−284542号)。The present applicant has already proposed improvements to this type of vibrating gyroscope (Japanese Patent Application No. 63-283157, Japanese Patent Application No. 63-283)
-283158 (Japanese Patent Application No. 1983-283] 59 and Japanese Patent Application No. 1-284542).
(発明が解決しようとする課題)
従来の振動ジャイロにおいては、次のような様々な難点
があった。(Problems to be Solved by the Invention) Conventional vibrating gyroscopes have had the following various drawbacks.
第1点
音叉の形状が複雑であったり、振動面に対して対称でな
かったりして、定常振動の波形が正弦波の単振動からひ
ずむ。よって、検出角速度にかなりの誤差が含まれ、検
出した角速度の積分で得られる回転角にかなりの誤差(
偏差)を生ずる。If the shape of the first point tuning fork is complicated or not symmetrical with respect to the vibration plane, the waveform of steady vibration is distorted from a simple harmonic motion of a sine wave. Therefore, the detected angular velocity contains a considerable error, and the rotation angle obtained by integrating the detected angular velocity contains a considerable error (
deviation).
第2点
予定した共振周波数に音叉を製作することがむつかしい
。音叉の共振周波数や検出感度などの調整に多くの工数
が必要である。Second point: It is difficult to manufacture a tuning fork at the intended resonance frequency. Many man-hours are required to adjust the resonant frequency of the tuning fork, detection sensitivity, etc.
第3点
音叉の構成機素、音叉を励振する振動子、コリオリカを
検出するセンサなど、素子数が多く、生産上、1つ1つ
組み付は精度を保証するために、各素子の製造および組
付けに多くの工数が必要である。The number of elements is large, such as the constituent elements of the third tuning fork, the vibrator that excites the tuning fork, and the sensor that detects Coriolis. Many man-hours are required for assembly.
本発明は、これら従来の問題点を改善することを目的と
してなされた。The present invention was made with the aim of improving these conventional problems.
(課題を解決するための手段)
本発明の角速度検出器は、音叉部材(1)、該音叉部材
(1)の中心軸(z)を振る振動(Fl)を音叉部材に
励起する励振部材(4,5)、および、該音叉部材(1
)に接合され、該音叉部材(1)の、その中心軸(z)
を含み前記振動(Fi)の方向に延びる面に対して対称
な位置に装着された第1および第2の応力検出部材(2
,3)、を備える。(Means for Solving the Problems) The angular velocity detector of the present invention includes a tuning fork member (1), an excitation member ( 4, 5), and the tuning fork member (1
), and the central axis (z) of the tuning fork member (1)
first and second stress detection members (2) mounted at symmetrical positions with respect to a plane extending in the direction of the vibration (Fi).
, 3).
本発明の加速度検出器は、音叉部材(1)、該音叉部材
(1)の中心軸(りを振る振動(Fi)を音叉部材に励
起する励振部材(4,5)、および、該音叉部材(1)
に接合され、該音叉部材(1)の、その中心軸(χ)を
含み前記振動(Fi)の方向に延びる面に対して対称な
位置に装着された第1および第2の応力検出部材(2,
3)、を備える。The acceleration detector of the present invention includes a tuning fork member (1), an excitation member (4, 5) that excites vibration (Fi) around the central axis of the tuning fork member (1) in the tuning fork member, and (1)
first and second stress detection members ( 2,
3).
なお、カッコ内の記号は、図面に示し後述する実施例の
対応要素を示すものである。Note that symbols in parentheses indicate corresponding elements in the embodiments shown in the drawings and described later.
(作用)
本発明の角速度検出器によれば、音叉部材(1)の振動
方向(y)に関して対称位置に第1および第2の応力検
出部材(2,3)があるので、音叉部材(1)の振動に
よる応力を第1および第2の応力検出部材(2゜3)が
同時に同相で検出する。また、音叉部材(1)の振動方
向と平行な方向(y)に加速度が作用すると、第1およ
び第2の応力検出部材(2,3)の両者が共に加速度に
対応する同極性の実質上同一レベルの応力検出信号を発
生する。したがって第1および第2の応力検出部材(2
,3)の検出信号の差をとると、それは音叉部材(1)
の振動および振動方向(y)の加速度の影響を受けず零
レベルとなる。ところで音叉部材(1)が例えば中心軸
(z)を中心に回転すると、これにより前記振動方向に
垂直なコリオリカが発生し、これにより第1および第2
の応力検出部材(2,3)の一方は正の応力を他方は負
の応力を検出する。したがって第1および第2の応力検
出部材(2,3)の検出信号の差はコリオリカに対応し
た値を示すものとなる。すなわち1つの応力検出部材で
検出する信号レベルの2倍のレベルでコリオリカを検出
する。このコリオリカは回転角速度に比例するので、第
1および第2の応力検出部材(2,3)の検出信号の差
は角速度を示すものとなる。このように、第1および第
2の応力検出部材(2,3)の検出信号の差を得ること
により、音叉部材(1)の振動および該振動の方向に加
わる加速度に実質上無関係な角速度信号が得られる。(Function) According to the angular velocity detector of the present invention, since the first and second stress detection members (2, 3) are located at symmetrical positions with respect to the vibration direction (y) of the tuning fork member (1), the tuning fork member (1) ) The first and second stress detecting members (2°3) simultaneously detect the stress caused by the vibrations in the same phase. Further, when acceleration acts in a direction (y) parallel to the vibration direction of the tuning fork member (1), both the first and second stress detection members (2, 3) are substantially of the same polarity corresponding to the acceleration. Generate stress detection signals of the same level. Therefore, the first and second stress detection members (2
, 3), it is the tuning fork member (1)
It becomes zero level without being affected by the vibration of and the acceleration in the vibration direction (y). By the way, when the tuning fork member (1) rotates, for example, around the central axis (z), Coriolis perpendicular to the vibration direction is generated.
One of the stress detection members (2, 3) detects positive stress and the other detects negative stress. Therefore, the difference between the detection signals of the first and second stress detection members (2, 3) indicates a value corresponding to Coriolis. That is, Coriolis is detected at twice the signal level detected by one stress detection member. Since this Coriolis is proportional to the rotational angular velocity, the difference between the detection signals of the first and second stress detection members (2, 3) indicates the angular velocity. In this way, by obtaining the difference between the detection signals of the first and second stress detection members (2, 3), an angular velocity signal that is substantially unrelated to the vibration of the tuning fork member (1) and the acceleration applied in the direction of the vibration can be obtained. is obtained.
この角速度検出器は、少くとも1個の音叉部材(1)、
少くとも1個の振動部材(実施例では4.5の2個)お
よび少くとも2個の応力検出部材(2,3)で機構部を
構成しうるので、素子数が非常に少く、前記第3点の問
題が自動的に大幅に改善される。このように素子数が少
い上に1つの音叉部材(1)に振動部材(4,5)およ
び応力検出部材(2,3)を上述の位置関係で組込むこ
とは、比較的に容易であり、前記第1点の問題も大幅に
改善される。特に、音叉部材(1)を後述の実施例のよ
うに4角柱にすることにより、この改善効果はより高く
なる。更には、1個のみの音叉部材(1)を用いるので
その振動自由端を削るだけで共振周波数を調整できるの
で共振周波数の調整が簡単であるし、第1および第2の
応力検出部材(2,3)が対称位置にあるので検出感度
差は小さい。すなわち前記第5点の問題も改善される。This angular velocity detector includes at least one tuning fork member (1),
Since the mechanism section can be constituted by at least one vibrating member (two of 4.5 in the embodiment) and at least two stress detecting members (2, 3), the number of elements is very small, and the number of elements is very small. Three problems will be automatically and significantly improved. In addition to the small number of elements, it is relatively easy to incorporate the vibration members (4, 5) and stress detection members (2, 3) into one tuning fork member (1) in the above-mentioned positional relationship. , the problem of the first point is also significantly improved. In particular, this improvement effect is further enhanced by forming the tuning fork member (1) into a square prism as in the embodiment described later. Furthermore, since only one tuning fork member (1) is used, the resonant frequency can be adjusted simply by cutting its vibrating free end, making it easy to adjust the resonant frequency. , 3) are at symmetrical positions, the difference in detection sensitivity is small. In other words, the fifth problem mentioned above is also improved.
本発明の加速度検出器によれば、音叉部材(1)の振動
方向と平行な方向(y)に加速度が作用すると、第1お
よび第2の応力検出部材(2,3)の両者が共に加速度
に対応する同極性の実質上同一レベルの応力検出信号を
発生する。これに加えて振動対応の応力検出信号も発生
しこれらも実質上同極性の同一レベルである。そこで第
1および第2の応力検出部材(2,3)の検出信号の和
をとると、この和のレベルは、前述のように回転によっ
て生ずるコリオリカによる信号レベルは相殺されて零と
なり、振動方向(y)に加わる加速度に対応しかつ振動
に対応したレベルとなる。振動成分は、励振部材(45
)を振動付勢する電気信号レベルに相対応するのでその
分を前記和より差し引くことにより、すなわち、第1お
よび第2の応力検出部材(2,3)の検出信号の和と励
振電気信号レベルとの差をとることにより、得られた差
は、回転によるコリオリカに実質上無関係な、振動方向
(y)に加わる加速度に対応したものとなる。このよう
に回転によるコリオリカに影響されない加速度信号を得
ることかできる。According to the acceleration detector of the present invention, when acceleration acts in the direction (y) parallel to the vibration direction of the tuning fork member (1), both the first and second stress detection members (2, 3) detect acceleration. generate stress detection signals of the same polarity and substantially the same level corresponding to the stress detection signals. In addition to this, stress detection signals corresponding to vibrations are also generated, and these signals are of substantially the same polarity and the same level. Therefore, when the detection signals of the first and second stress detection members (2, 3) are summed, the level of this sum becomes zero as the signal level due to Coriolis caused by rotation is canceled out, and the vibration direction The level corresponds to the acceleration applied to (y) and corresponds to the vibration. The vibration component is generated by the excitation member (45
) corresponds to the electric signal level that excites vibration, so by subtracting that amount from the sum, that is, the sum of the detection signals of the first and second stress detection members (2, 3) and the excitation electric signal level. The difference obtained corresponds to the acceleration applied in the vibration direction (y), which is substantially independent of Coriolis due to rotation. In this way, it is possible to obtain an acceleration signal that is not affected by Coriolis caused by rotation.
この加速度検出器は、少くとも1個の音叉部材(1)、
少くとも1個の振動部材(実施例では4,5の2個)お
よび少くとも2個の応力検出部材(2,3)で機構部を
構成しうるので、素子数が非常に少く、前記第3点の問
題が自動的に大幅に改善される。このように素子数が少
い上に1つの音叉部材(1)に振動部材(4,5)およ
び応力検出部材(2,3)を上述の位置関係で組込むこ
とは、比較的に容易であり、前記第1点の問題も大幅に
改善される。特に、音叉部材(1)を後述の実施例のよ
うに4角柱にすることにより、この改善効果はより高く
なる。更には、1個の音叉部材(1)のみを用いるので
その振動自由端を削ることにより共振周波数を調整でき
共振周波数の調整が簡単であるし、第1および第2の応
力検出部材(2,3)が対称位置にあるので検出感度差
は小さい。すなわち前記第5点の問題も改善される。This acceleration detector includes at least one tuning fork member (1),
Since the mechanism section can be constituted by at least one vibrating member (two vibrating members 4 and 5 in the embodiment) and at least two stress detecting members (2, 3), the number of elements is very small, and the number of elements is very small. Three problems will be automatically and significantly improved. In addition to the small number of elements, it is relatively easy to incorporate the vibration members (4, 5) and stress detection members (2, 3) into one tuning fork member (1) in the above-mentioned positional relationship. , the problem of the first point is also significantly improved. In particular, this improvement effect is further enhanced by forming the tuning fork member (1) into a square prism as in the embodiment described later. Furthermore, since only one tuning fork member (1) is used, the resonance frequency can be easily adjusted by cutting the vibration free end of the tuning fork member (1), and the resonance frequency can be easily adjusted. 3) are in symmetrical positions, so the difference in detection sensitivity is small. In other words, the fifth problem mentioned above is also improved.
なお、上述のように本発明の角速度検出器と加速度検出
器は、機構要素は全く同じであり、1組の機構要素で上
述のように、振動方向(y)の加速度に影響されない角
速度信号を得ることができると共に、回転によるコリオ
リカに影響されない振動方向(y)の加速度信号を得る
ことができ。As described above, the angular velocity detector and the acceleration detector of the present invention have exactly the same mechanical elements, and as described above, one set of mechanical elements can generate an angular velocity signal that is not affected by acceleration in the vibration direction (y). At the same time, it is possible to obtain an acceleration signal in the vibration direction (y) that is not affected by Coriolis caused by rotation.
1組の検出機構で角速度検出と加速度検出を同時に行な
いうる。Angular velocity detection and acceleration detection can be performed simultaneously with one set of detection mechanisms.
本願発明の他の目的および特徴は図面を参照した以下の
実施例の説明より明らかになろう。Other objects and features of the present invention will become clear from the following description of embodiments with reference to the drawings.
(実施例)
第1図に本発明の一実施例の機構部の外観を示し、第2
図に機構要素に結合された電気回路の構成を示す。(Example) Fig. 1 shows the external appearance of a mechanical part of an embodiment of the present invention, and Fig.
The figure shows the configuration of an electrical circuit connected to the mechanical element.
まず第1図を参照すると、音叉部材1の4側面のそれぞ
れには、圧電素子2〜5のそれぞれが接合されている。First, referring to FIG. 1, piezoelectric elements 2 to 5 are bonded to each of the four side surfaces of the tuning fork member 1, respectively.
音叉部材1の下底には振動吸収材6が固着されており、
この振動吸収材6がセンサベース7に固着されている。A vibration absorbing material 6 is fixed to the bottom of the tuning fork member 1.
This vibration absorbing material 6 is fixed to the sensor base 7.
センサベース7は、センサケーシング8の内底に固着さ
れている。なお、第1図では、センサケーシング8は2
個面壁の全体および上面壁の一部を破断して示している
。The sensor base 7 is fixed to the inner bottom of the sensor casing 8. In addition, in FIG. 1, the sensor casing 8 is
The entire individual wall and a part of the upper wall are shown broken.
音叉部材1は、その水平横断面が正方形の4角柱である
。圧電素子2〜5は、実質上同一の形状および構造であ
ってしかも実質上同一の振動特性および応力検出特性を
有するもの、すなわち互に均等なものであり、音叉部材
lの中心軸(z−z)に関して対称位置にある。The tuning fork member 1 is a quadrangular prism with a square horizontal cross section. The piezoelectric elements 2 to 5 have substantially the same shape and structure, and have substantially the same vibration characteristics and stress detection characteristics, that is, are mutually equivalent, and are aligned with the central axis (z- z).
この実施例では、隣り合う2個の圧電素子4と5を音叉
部材1の励振用に割り当てている。圧電素子4.5を同
一周期、同一位相および同一振幅で振動付勢すると、音
叉部材1が、圧電素子4゜5が接合された2つの側面が
交わる稜(辺)、この稜に対向するもう1つの稜(圧電
素子2.3が接合された2つの側面が交わる稜)および
中心軸(z−z)を含む面に沿う方向(y−y)に振動
(Fi)する。In this embodiment, two adjacent piezoelectric elements 4 and 5 are assigned to excite the tuning fork member 1. When the piezoelectric element 4.5 is energized to vibrate at the same period, the same phase, and the same amplitude, the tuning fork member 1 vibrates at the edge (side) where the two side surfaces to which the piezoelectric elements 4.5 are joined intersect, and at the other side opposite to this edge. It vibrates (Fi) in the direction (y-y) along a plane including one edge (the edge where the two side surfaces to which the piezoelectric element 2.3 are joined intersect) and the central axis (zz).
応力検出用の圧電素子2および3は、該面に関して対称
位置にあるので、この振動(Fi)に対応して、実質上
同一レベルおよび同一位相の応力検出電圧を発生する。Since the piezoelectric elements 2 and 3 for stress detection are located at symmetrical positions with respect to the plane, they generate stress detection voltages of substantially the same level and phase in response to this vibration (Fi).
したがって圧電素子2.3の応力検出電圧の差をとると
、音叉部材1が前記面に沿う方向(y−y)に振動して
も差電圧は実質上零である。Therefore, when the difference in the stress detection voltages of the piezoelectric elements 2.3 is taken, the difference voltage is substantially zero even if the tuning fork member 1 vibrates in the direction (y-y) along the plane.
ところで音叉部材1が、前記振動(Fl)をしていると
きに例えば中心軸(z−z)を中心に回転すると、この
回転と前記振動により振動の方向(y−y)および中心
軸が延びる方向(z−z)に垂直な方向(x)のコリオ
リカFcが発生する。By the way, if the tuning fork member 1 rotates, for example, around the central axis (z-z) while vibrating (Fl), the direction of vibration (y-y) and the central axis will extend due to this rotation and the vibration. Coriolis Fc is generated in the direction (x) perpendicular to the direction (zz).
このコリオリカFcは、圧電素子2.3が接合された側
面の1つには引張り応力をもう1つには圧縮応力をもた
らすので、圧電素子2,3の応力検出電圧は逆極性の、
レベル(の絶対値)が実質上等しいものとなる。したが
って圧電素子2,3の応力検出電圧の差をとると、差電
圧は、コリオリカに対応する1つの圧電素子の応力検出
電圧の2倍のレベルのものとなる。This Coriolis Fc produces a tensile stress on one side surface to which the piezoelectric element 2.3 is joined and a compressive stress on the other side, so that the stress detection voltages of the piezoelectric elements 2 and 3 are of opposite polarity.
The levels (absolute values) become substantially equal. Therefore, when taking the difference between the stress detection voltages of the piezoelectric elements 2 and 3, the difference voltage is twice the level of the stress detection voltage of one piezoelectric element corresponding to Coriolis.
ところで、音叉部材1に、振動方向(y−y)に加速度
が加わると、圧電素子2,3が同極性の、レベルが実質
上等しい応力検出電圧を発生する。By the way, when acceleration is applied to the tuning fork member 1 in the vibration direction (y-y), the piezoelectric elements 2 and 3 generate stress detection voltages having the same polarity and substantially equal levels.
したがって圧電素子2,3の応力検出電圧の差をとると
、差電圧は、振動方向<y−y>に加速度が加わっても
実質上零である。Therefore, when taking the difference between the stress detection voltages of the piezoelectric elements 2 and 3, the difference voltage is substantially zero even if acceleration is applied in the vibration direction <yy>.
以上の結果、圧電素子2.3の応力検出電圧の差をとる
ことにより、差電圧は、圧電素子4,5による音叉部材
1の振動(Fl)および振動の方向(y−y)に加わる
加速度の影響を実質上受けず、回転の角速度に対応する
レベルとなり、この差電圧により角速度を知ることがで
きる。As a result of the above, by taking the difference between the stress detection voltages of the piezoelectric elements 2.3, the difference voltage can be determined by the vibration (Fl) of the tuning fork member 1 caused by the piezoelectric elements 4 and 5 and the acceleration applied in the direction of vibration (y-y). The level corresponds to the angular velocity of rotation, and the angular velocity can be determined from this differential voltage.
一方、圧電素子2,3の応力検出電圧の和をとると和電
圧は、振動(Fl)により生ずる応力および振動方向(
y−y)に加わる加速度による応力に対応するが、コリ
オリカ(回転)による応力の影響が実質上ないものとな
る。この和電圧より振動(Fi)による影響分を減算す
ると、例えば圧電素子4,5付勢電圧(正確にはそれに
ある係数を乗算した値)を減算すると、得られる差電圧
は、回転による影響が実質上なくしかも振動(Fl)の
影響分が実質上消去された、振動方向(y−y)に加わ
る加速度を示すものとなる。On the other hand, when the stress detection voltages of the piezoelectric elements 2 and 3 are summed, the sum voltage is the stress caused by the vibration (Fl) and the vibration direction (
This corresponds to the stress due to acceleration applied to y-y), but there is substantially no effect of stress due to Coriolis (rotation). If you subtract the influence of vibration (Fi) from this sum voltage, for example, if you subtract the energizing voltage of piezoelectric elements 4 and 5 (more precisely, the value obtained by multiplying it by a certain coefficient), the resulting difference voltage will be calculated by subtracting the influence of vibration (Fi). It shows the acceleration applied in the vibration direction (y-y) which is substantially eliminated and the influence of vibration (Fl) is substantially eliminated.
第2図を参照すると、音叉部材1を励振する圧電素子4
および5には発振器9が励振電圧を印加する。応力検出
用の圧電素子2および3の応力検出電圧は電荷増幅器1
0および11のそれぞれで増幅される。電荷増幅器10
および11は位相調整回路を内蔵している。それらの位
相調整回路は、音叉部材1を静止系に置き圧電素子4.
5を振動付勢したとき同一位相の出力を発生するように
微調整される。また増幅ゲインは、同一レベルの出力を
生ずるように微調整される。Referring to FIG. 2, a piezoelectric element 4 that excites the tuning fork member 1
and 5, an oscillator 9 applies an excitation voltage. The stress detection voltage of the piezoelectric elements 2 and 3 for stress detection is determined by the charge amplifier 1.
0 and 11, respectively. Charge amplifier 10
and 11 have a built-in phase adjustment circuit. These phase adjustment circuits are constructed by placing the tuning fork member 1 in a stationary system and using piezoelectric elements 4.
5 is finely adjusted so that it generates outputs of the same phase when vibrated. The amplification gain is also finely adjusted to produce the same level of output.
電荷増幅器10.11の出力電圧は差動増幅器12およ
び加算器16に与えられる。The output voltage of charge amplifier 10.11 is applied to differential amplifier 12 and adder 16.
差動増幅器12は電荷増幅器10.11の出力電圧レベ
ルの差に対応する電圧を発生する。この差電圧は復調器
13を経て、更に信号処理回路14を経て角速度信号出
力端15に与えられる。Differential amplifier 12 generates a voltage corresponding to the difference in the output voltage levels of charge amplifiers 10.11. This differential voltage is applied to the angular velocity signal output terminal 15 via the demodulator 13 and further via the signal processing circuit 14.
復調器13は、圧電素子4.5の励振電圧に基づいて、
差電圧より、励振電圧に同期して変動する電圧成分を除
去する。これにより復調器13の出力電圧は、音叉部材
1の回転角速度に対応する信号すなわち角速度信号とな
る。信号処理回路14は、角速度信号のレベルを5、出
力端15に接続される信号読取機器(図示せず)が必要
とする範囲の電圧レベルに校正する。また出力インピー
ダンスを所要値に定める。Based on the excitation voltage of the piezoelectric element 4.5, the demodulator 13
A voltage component that fluctuates in synchronization with the excitation voltage is removed from the differential voltage. As a result, the output voltage of the demodulator 13 becomes a signal corresponding to the rotational angular velocity of the tuning fork member 1, that is, an angular velocity signal. The signal processing circuit 14 calibrates the level of the angular velocity signal to 5, a voltage level within the range required by a signal reading device (not shown) connected to the output terminal 15. Also, set the output impedance to the required value.
加算器16は演算増幅器を主体とする加算増幅器であり
、電荷増幅器10.11の出力電圧レベルの和に対応す
る電圧を発生する。この和電圧は復調器20を経て、更
に信号処理回路21を経て加速度信号出力端22に与え
られる。復調器20は、圧電素子4.5の励振電圧に基
づいて、励振電圧のみに対応する加算器16の出力電圧
相当の振動電圧を生成し、これを和電圧より減算する。Adder 16 is a summing amplifier mainly composed of operational amplifiers, and generates a voltage corresponding to the sum of the output voltage levels of charge amplifiers 10.11. This sum voltage is applied to an acceleration signal output terminal 22 via a demodulator 20 and a signal processing circuit 21. Based on the excitation voltage of the piezoelectric element 4.5, the demodulator 20 generates an oscillating voltage equivalent to the output voltage of the adder 16, which corresponds only to the excitation voltage, and subtracts this from the sum voltage.
これにより復調器20の出力電圧は、振動方向(y−y
)に加わる加速度に対応する信号すなわち加速度信号と
なる。信号処理回路21は、加速度信号のレベルを、出
力端22に接続される信号読取機器(図示せず)が必要
とする範囲の電圧レベルに校正する。また出力インピー
ダンスを所要値に定める。As a result, the output voltage of the demodulator 20 changes in the vibration direction (y-y
), that is, an acceleration signal. The signal processing circuit 21 calibrates the level of the acceleration signal to a voltage level within a range required by a signal reading device (not shown) connected to the output terminal 22. Also, set the output impedance to the required value.
発振器9は、この実施例では音叉部材1の振動Fiを自
動的にその共振周波数に定める自励発振回路であり、増
幅器(ピエゾドライバ)19.自動利得調整回路(AG
C)17および自動移相回路(APC)18を備える。In this embodiment, the oscillator 9 is a self-excited oscillation circuit that automatically sets the vibration Fi of the tuning fork member 1 to its resonance frequency, and the amplifier (piezo driver) 19. Automatic gain adjustment circuit (AG
C) 17 and an automatic phase shift circuit (APC) 18.
APC18は、電源が投入されるとその内部のCR時定
数回路への充電を開始する。これによりCR時定数回路
の電圧(APC18の出力電圧)が漸増する。この出力
電圧に対応する励振電圧(CR時定数回路の電圧が上ピ
ーク電圧のとき正ピークでCR時定数回路の電圧が基底
電圧のとき負ピーク)を増幅器19が発生して圧電素子
4.5に印加するので、圧電素子4.5が次第に外反り
になり音叉部材1が第1図で左側に到れるように曲る。When the APC 18 is powered on, it starts charging its internal CR time constant circuit. As a result, the voltage of the CR time constant circuit (the output voltage of the APC 18) gradually increases. The amplifier 19 generates an excitation voltage corresponding to this output voltage (positive peak when the voltage of the CR time constant circuit is the upper peak voltage, negative peak when the voltage of the CR time constant circuit is the base voltage), and the piezoelectric element 4.5 As a result, the piezoelectric element 4.5 gradually warps outward, and the tuning fork member 1 bends to the left in FIG.
これに伴って加算器16の出力が漸増する。励振電圧に
対して加算器16の出力電圧はある位相遅れがあるので
、APC18の出力電圧が上ピークに達した後に加算器
16の出力電圧が正ピークに達する。APC18は、加
算器16の出力電圧が正ピークに達する(増幅器19の
出力電圧と加算器16の出力電圧が等しくなる)とそこ
でCR時定数回路の放電を開始する。これによりAPC
18の出力電圧が漸減する。これにより圧電素子4.5
が次第に中立姿勢に戻り次いで内反りになり音叉部材1
が第1図で右側に到れるように曲る。これに伴って加算
器16の出力が漸減しそして負極性に転換する。Along with this, the output of the adder 16 gradually increases. Since the output voltage of the adder 16 has a certain phase lag with respect to the excitation voltage, the output voltage of the adder 16 reaches the positive peak after the output voltage of the APC 18 reaches the upper peak. When the output voltage of the adder 16 reaches a positive peak (the output voltage of the amplifier 19 and the output voltage of the adder 16 become equal), the APC 18 starts discharging the CR time constant circuit. This allows APC
The output voltage of 18 gradually decreases. This makes the piezoelectric element 4.5
gradually returns to the neutral position and then becomes inwardly curved, and the tuning fork member 1
Turn so that it reaches the right side in Figure 1. Accordingly, the output of the adder 16 gradually decreases and changes to negative polarity.
APC18は、加算器16の出力電圧が下ピークに達す
る(加算器16の出力電圧が増幅器19の出力電圧と等
しくなる)とそこでCR時定数回路の充電を開始する。When the output voltage of the adder 16 reaches the lower peak (the output voltage of the adder 16 becomes equal to the output voltage of the amplifier 19), the APC 18 starts charging the CR time constant circuit.
このようにして、増幅器19の励振電圧がサイン波状に
振動しこれに伴って音叉部材1が左右に振動(Fl)す
るが、音叉部材1の曲りをフィードバンクして励振電圧
を振るので、励振電圧の周波数は自動的に、音叉部材1
が最も振動し易い周波数すなわち共振周波数に定まる。In this way, the excitation voltage of the amplifier 19 vibrates in a sine wave shape, and the tuning fork member 1 vibrates from side to side (Fl) accordingly, but since the bending of the tuning fork member 1 is used as a feedbank to swing the excitation voltage, the excitation voltage The frequency of the voltage is automatically adjusted to the tuning fork member 1.
is determined by the frequency at which it is most likely to vibrate, that is, the resonance frequency.
AGC17は、加算器16の出力レベル(の時系列平均
値)を基準値と比較して、前者が後者よりも低いときに
は増幅器19のゲインを高く変更し逆のときには低く変
更する。これにより増幅器19のゲインは、加算器16
の出力レベル(圧電素子2.3の振動対応の電圧レベル
)が基準値になるように自動的に調整され、音叉部材1
の振幅が基準値となる。The AGC 17 compares the output level (time series average value) of the adder 16 with a reference value, and when the former is lower than the latter, changes the gain of the amplifier 19 to a higher value, and when the opposite occurs, changes the gain to a lower value. As a result, the gain of the amplifier 19 becomes equal to the gain of the adder 16.
The output level of the tuning fork member 1 (the voltage level corresponding to the vibration of the piezoelectric element 2.3) is automatically adjusted to the reference value.
The amplitude of is the reference value.
以上に説明した実施例は、角速度信号と加速度信号の両
者を同時に得る、y方向加速度検出器兼用の角速度検出
器であり、出力端15で角速度を表わす信号が、出力端
22でy方向加速度を表わす信号が、得られる。このよ
うな信号は、音叉部材1を四角柱状またはその倍数角柱
状とし、更に音叉部材1を対角線方向に振動させる二と
によって音叉部材1中に対称振動を発生することにより
得られる。The embodiment described above is an angular velocity detector that simultaneously obtains both an angular velocity signal and an acceleration signal, and is also used as a y-direction acceleration detector. A representative signal is obtained. Such a signal can be obtained by making the tuning fork member 1 into a rectangular prism shape or a quadrangular prism shape, and further by vibrating the tuning fork member 1 in a diagonal direction to generate symmetrical vibrations in the tuning fork member 1.
なお、上記実施例では、音叉部材1は4角柱形状である
が、他の形状にすることもできる。例えば、それを水平
横断面が2等辺3角形の3角柱として、2等辺部に実質
上同一形状および同一特性の応力検出用の圧電素子を装
着し、1個の圧電素子を2等辺に対向する底辺部に装着
してこの圧電素子を振動付勢するようにしてもよい。あ
るいは、第1図に示す音叉部材1を、圧電素子4,5が
接合された2個面の交わる稜と中心軸z−zの間(例え
ば中間点)でX方向と平行に縦方向に切断して5角柱と
し、圧電素子4.5は省略して新たに生じた側面に1つ
の圧電素子を接合してこれを励振付勢するようにしても
よい。更には、音叉部材1を5角柱、6角柱、・・・等
の角柱として、励振用の圧電素子は中心軸(z −z
)と1つの稜を含む面に沿う方向に振動を励起するよう
に装着し、二の面に関して対称な位置に応力検出用の圧
電素子を装着すればよい。あるいは音叉部材1を円柱と
して側周面の1部に中心軸に向けて励振用の圧電素子を
接合し、この圧電素子の中心と円柱の中心軸とを含む面
に関して対称な位置に応力検出用の圧電素子を装着して
もよい。In the above embodiment, the tuning fork member 1 has a quadrangular prism shape, but it can also have other shapes. For example, it is made into a triangular prism whose horizontal cross section is an isosceles triangle, and a piezoelectric element for stress detection having substantially the same shape and characteristics is attached to the isosceles part, and one piezoelectric element is placed opposite the isosceles. The piezoelectric element may be attached to the bottom portion to vibrate. Alternatively, the tuning fork member 1 shown in FIG. 1 is cut in the vertical direction parallel to the It is also possible to form a pentagonal prism, omit the piezoelectric element 4.5, and connect one piezoelectric element to the newly generated side surface to excite and energize it. Furthermore, the tuning fork member 1 is made of a prism such as a pentagonal prism, a hexagonal prism, etc., and the piezoelectric element for excitation is aligned with the central axis (z - z
) and one edge so as to excite vibrations in the direction along the plane, and a piezoelectric element for stress detection may be attached at a symmetrical position with respect to the second plane. Alternatively, the tuning fork member 1 is made into a cylinder, and a piezoelectric element for excitation is joined to a part of the side circumferential surface toward the central axis, and a stress detection element is placed at a symmetrical position with respect to a plane containing the center of this piezoelectric element and the central axis of the cylinder. A piezoelectric element may be attached.
また、励振用の圧電素子は必ずしも側面又は側周面に装
着する必要はない。例えば、第3図に示す従来例と同様
に、音叉部材1を圧電素子で支持し、この圧電素子を従
来と同様に励振付勢してもよい。Further, the piezoelectric element for excitation does not necessarily need to be mounted on the side surface or the side peripheral surface. For example, similar to the conventional example shown in FIG. 3, the tuning fork member 1 may be supported by a piezoelectric element, and this piezoelectric element may be excited and energized as in the conventional example.
以上の通り本発明の角速度検出器あるいは加速度検出器
は、少くとも1個の音叉部材(1)、少くとも1個の振
動部材(実施例では4,5の2個)および少くとも2個
の応力検出部材(2,3)で機構部を構成しうるので、
素子数が非常に少く、従来の第3点の問題が自動的に大
幅に改善される。このように素子数が少い上に1つの音
叉部材(1)に振動部材(4,5)および応力検出部材
(2,3)を上述の位置関係で組込むことは、比較的に
容易であり、従来の第1点の問題も大幅に改善される。As described above, the angular velocity detector or acceleration detector of the present invention includes at least one tuning fork member (1), at least one vibrating member (two vibrating members 4 and 5 in the embodiment), and at least two Since the stress detection members (2, 3) can constitute the mechanical part,
The number of elements is very small, and the third problem of the prior art is automatically and significantly improved. In addition to the small number of elements, it is relatively easy to incorporate the vibration members (4, 5) and stress detection members (2, 3) into one tuning fork member (1) in the above-mentioned positional relationship. , the conventional problem of point 1 is also significantly improved.
更には、1個のみの音叉部材(1)を用いるのでその振
動自由端を削るだけで共振周波数を調整できるので共振
周波数の調整が簡単であるし、第1および第2の応力検
出部材(2,3)が対称位置にあるので検出感度差は小
さい。すなわち従来の第を点の問題も改善される。Furthermore, since only one tuning fork member (1) is used, the resonant frequency can be adjusted simply by cutting its vibrating free end, making it easy to adjust the resonant frequency. , 3) are at symmetrical positions, the difference in detection sensitivity is small. In other words, the second problem of the prior art is also improved.
第1図は、本発明の一実施例の機構主要部の外観を示す
斜視図である。
第2図は、該実施例の電気回路部の構成を示すブロック
図である。
第3図は、従来の振動ジャイロの機構部の外観を示す斜
視図である。
1°音叉部材(音叉部材)
2.3圧電素子(第1および第2の応力検出部材)4.
5圧電素子(励振部材) 6振動吸収部材7センサ
ベース 8:センサケーシング 9部発振器10
.11電荷増幅器 12差動増幅器 13.20
復調器14.21信号処理回路15角速度信号出力端
16:加算器17自動利得調整回路I8自動移相調整回
路19増幅器第1図
完3
図FIG. 1 is a perspective view showing the appearance of the main parts of a mechanism according to an embodiment of the present invention. FIG. 2 is a block diagram showing the configuration of the electric circuit section of this embodiment. FIG. 3 is a perspective view showing the appearance of a mechanical section of a conventional vibrating gyroscope. 1° tuning fork member (tuning fork member) 2.3 piezoelectric element (first and second stress detection member) 4.
5 piezoelectric element (excitation member) 6 vibration absorption member 7 sensor base 8: sensor casing 9 parts oscillator 10
.. 11 Charge amplifier 12 Differential amplifier 13.20
Demodulator 14.21 Signal processing circuit 15 Angular velocity signal output terminal
16: Adder 17 Automatic gain adjustment circuit I8 Automatic phase shift adjustment circuit 19 Amplifier Fig. 1 Complete 3
Claims (1)
部材に励起する励振部材、および、該音叉部材に接合さ
れ、該音叉部材の、その中心軸を含み前記振動の方向に
延びる面に対して対称な位置に装着された第1および第
2の応力検出部材、を備える角速度検出器。(2)励振
部材は、音叉部材の、その中心軸を含む前記面に対して
対称な位置に装着された第1および第2の振動子でなる
、前記特許請求の範囲第(1)項記載の角速度検出器。 (3)励振部材および応力検出部材はそれぞれ圧電素子
であり、応力検出用圧電素子が発生する応力検出電圧を
移相した電圧を励振用圧電素子に印加する発振回路を備
える、前記特許請求の範囲第(1)項又は第(2)項記
載の角速度検出器。 (4)音叉部材、該音叉部材の中心軸を振る振動を音叉
部材に励起する励振部材、および、該音叉部材に接合さ
れ、該音叉部材の、その中心軸を含み前記振動の方向に
延びる面に対して対称な位置に装着された第1および第
2の応力検出部材、を備える加速度検出器。(5)励振
部材は、音叉部材の、その中心軸を含む前記面に対して
対称な位置に装着された第1および第2の振動子でなる
、前記特許請求の範囲第(4)項記載の加速度検出器。 (6)励振部材および応力検出部材はそれぞれ圧電素子
であり、応力検出用圧電素子が発生する応力検出電圧を
移相した電圧を励振用圧電素子に印加する発振回路を備
える、前記特許請求の範囲第(4)項又は第(5)項記
載の加速度検出器。[Scope of Claims] (1) a tuning fork member; an excitation member that excites vibrations in the tuning fork member that vibrates the central axis of the tuning fork member; An angular velocity detector comprising first and second stress detection members mounted at symmetrical positions with respect to a plane extending in the direction of vibration. (2) The excitation member is comprised of first and second vibrators mounted at symmetrical positions with respect to the plane of the tuning fork member that includes its central axis. angular velocity detector. (3) The excitation member and the stress detection member are each piezoelectric elements, and include an oscillation circuit that applies a phase-shifted voltage of the stress detection voltage generated by the stress detection piezoelectric element to the excitation piezoelectric element. The angular velocity detector according to item (1) or item (2). (4) a tuning fork member, an excitation member that excites vibrations in the tuning fork member that vibrates the central axis of the tuning fork member, and a surface that is joined to the tuning fork member and that includes the central axis of the tuning fork member and extends in the direction of the vibration. An acceleration detector comprising first and second stress detection members mounted at symmetrical positions with respect to the acceleration sensor. (5) The excitation member is comprised of first and second vibrators mounted at symmetrical positions with respect to the plane including the central axis of the tuning fork member, as described in claim (4) above. acceleration detector. (6) The excitation member and the stress detection member are each piezoelectric elements, and include an oscillation circuit that applies a phase-shifted voltage of the stress detection voltage generated by the stress detection piezoelectric element to the excitation piezoelectric element. The acceleration detector according to item (4) or item (5).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2239521A JPH04118515A (en) | 1990-09-10 | 1990-09-10 | Angular speed detector and acceleration detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2239521A JPH04118515A (en) | 1990-09-10 | 1990-09-10 | Angular speed detector and acceleration detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04118515A true JPH04118515A (en) | 1992-04-20 |
Family
ID=17046039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2239521A Pending JPH04118515A (en) | 1990-09-10 | 1990-09-10 | Angular speed detector and acceleration detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04118515A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994011706A1 (en) * | 1992-11-17 | 1994-05-26 | Citizen Watch Co., Ltd. | Angular velocity detector circuit |
JPH07167661A (en) * | 1993-12-14 | 1995-07-04 | Murata Mfg Co Ltd | Vibrating gyro |
USRE42916E1 (en) | 1993-04-27 | 2011-11-15 | Watson Industries, Inc. | Single bar type vibrating element angular rate sensor system |
-
1990
- 1990-09-10 JP JP2239521A patent/JPH04118515A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994011706A1 (en) * | 1992-11-17 | 1994-05-26 | Citizen Watch Co., Ltd. | Angular velocity detector circuit |
US5420548A (en) * | 1992-11-17 | 1995-05-30 | Citizen Watch Co., Ltd. | Quartz crystal oscillator angular velocity detector circuits |
USRE42916E1 (en) | 1993-04-27 | 2011-11-15 | Watson Industries, Inc. | Single bar type vibrating element angular rate sensor system |
JPH07167661A (en) * | 1993-12-14 | 1995-07-04 | Murata Mfg Co Ltd | Vibrating gyro |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5392650A (en) | Micromachined accelerometer gyroscope | |
JP3834397B2 (en) | Rate sensor | |
JP3973742B2 (en) | Vibrating gyroscope | |
JP3307906B2 (en) | Micro gyroscope | |
JP2006525514A (en) | Microfabricated multi-sensor for uniaxial acceleration detection and biaxial angular velocity detection | |
JPH05312579A (en) | Gyrocompass | |
JP4911690B2 (en) | Vibrating gyro vibrator | |
JP4112684B2 (en) | Vibrating gyro | |
JPH10160476A (en) | Rate gyroscope with mechanical resonant body | |
JPH11325917A (en) | Vibrator, vibration type gyroscope, linear accelerometer, and measuring method of rotation angular velocity | |
EP0964224B1 (en) | Biaxial vibrator for a vibrating gyroscope | |
JP2000074673A (en) | Compound movement sensor | |
JPH0743262B2 (en) | Vibrating gyro | |
EP0611949B1 (en) | Angular velocity sensor and its fabricating method | |
JPH04118515A (en) | Angular speed detector and acceleration detector | |
JP2003166828A (en) | Physical quantity measuring device and vibrator | |
JP3301403B2 (en) | Vibrating gyro | |
JP2000180466A (en) | Linear accelerometer | |
JP3671570B2 (en) | Vibrating gyro | |
JP4591787B2 (en) | Vibrator and angular velocity measuring device | |
JPH0251066A (en) | Vibration gyroscope | |
JPH09113279A (en) | Vibrational gyro | |
JP4514121B2 (en) | Angular velocity sensor | |
JPH0762617B2 (en) | Vibrating gyro | |
JPH09287956A (en) | Angular velocity sensor |