JPH0393612A - Water-resistant aluminum nitride and production thereof - Google Patents

Water-resistant aluminum nitride and production thereof

Info

Publication number
JPH0393612A
JPH0393612A JP1227583A JP22758389A JPH0393612A JP H0393612 A JPH0393612 A JP H0393612A JP 1227583 A JP1227583 A JP 1227583A JP 22758389 A JP22758389 A JP 22758389A JP H0393612 A JPH0393612 A JP H0393612A
Authority
JP
Japan
Prior art keywords
aluminum nitride
water
reaction
oxide film
few defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227583A
Other languages
Japanese (ja)
Inventor
Yoichi Takamiya
高宮 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1227583A priority Critical patent/JPH0393612A/en
Publication of JPH0393612A publication Critical patent/JPH0393612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the water-resistance of aluminum nitride by heating aluminum nitride particles in a steam-containing gas stream at a temperature within a specific range, thereby covering the surface with a thin oxide film having few defects. CONSTITUTION:The objective aluminum nitride particle has a thin oxide film having few defects on the surface of the particle. The oxide film can be formed by heating aluminum nitride particle in a steam-containing gas stream at 180-800 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐水性を向上させた、窒化アルミニウムに係わ
り、このことにより、窒化アルミニウム粉体の取扱を容
易にし、その戊形工程を改善するとともに、さらに、戊
形体の耐水性を高めることにより、窒化アルミニウムの
用途拡大に好適な窒化アルミニウムおよびその製造法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to aluminum nitride with improved water resistance, thereby facilitating the handling of aluminum nitride powder and improving the shaping process thereof. The present invention also relates to aluminum nitride and a method for producing the same, which is suitable for expanding the uses of aluminum nitride by increasing the water resistance of the rod-shaped body.

[従来の技術コ 窒化アルミニウムは高い熱伝導性、強い機械的強度、高
い電気絶縁性さらには圧電性をもった物質として知られ
ており、その実用化が進められている。
[Conventional Technology] Aluminum nitride is known as a material with high thermal conductivity, strong mechanical strength, high electrical insulation, and piezoelectricity, and its practical use is progressing.

窒化アルミニウムは比較的新しく導入された材質である
ため、材料として実用化するためにはまだ多くの解決す
べきことが残されている。その一つで大きな問題とみら
れているものに、窒化アルミニウムが室温でも水と反応
して水酸化アルミニウムとアンモニアに分解する性質が
上げられている。この問題を解決するため窒化アルミニ
ウムを1000℃前後の比較的高い温度で空気中で焼或
し、窒化アルミニウム粒子の表面に酸化被膜を形或する
方法や窒化アルミニウムの表面を芳香族系の物質でコー
ティングするなどの方法が取られている。
Since aluminum nitride is a relatively newly introduced material, there are still many issues to be solved before it can be put to practical use as a material. One of the major problems is that aluminum nitride reacts with water even at room temperature and decomposes into aluminum hydroxide and ammonia. To solve this problem, aluminum nitride is baked in air at a relatively high temperature of around 1000°C to form an oxide film on the surface of aluminum nitride particles, and the surface of aluminum nitride is coated with an aromatic substance. Methods such as coating are used.

[本発明の目的:解決すべき問題点] 以上の如く、窒化アルミニウムは非常に優れた特性をも
った材質であるものの室温で水あるいは水蒸気と反応す
るという大きな欠点がある。この水和反応があるため、
窒化アルミニウムの保存性は悪く、さらに、戊形のバイ
ンダーとして、水の使用が難しい。これに加えて、水和
反応で生威するアンモニアは極く微量でも刺激性の臭い
を発するなど、人体への有害性も指摘されている。
[Objective of the present invention: Problems to be solved] As described above, although aluminum nitride is a material with very excellent properties, it has a major drawback in that it reacts with water or water vapor at room temperature. Due to this hydration reaction,
Aluminum nitride has poor storage stability, and furthermore, it is difficult to use water as a binder for the shape. In addition, it has been pointed out that ammonia, which is produced in the hydration reaction, can be harmful to the human body, emitting a pungent odor even in very small amounts.

窒化アルミニウムの水和によってもたらされる影響は材
料としての窒化アルミニウムの実用化を考える場合、現
在のところほとんどマイナスの要素とみられている。例
えば、原料粉としての保存性の悪いことは原料の経時変
化があることでありこのような原料を用いて常に安定し
た製品を作ることは極めて難しい。さらに、バインダー
に水を使えないことは、威形品の焼戒に際して、脱脂な
どの複雑な工程を必要とする。
The effects caused by hydration of aluminum nitride are currently seen as mostly negative factors when considering the practical use of aluminum nitride as a material. For example, the poor shelf life as a raw material powder is due to the fact that the raw material changes over time, and it is extremely difficult to always produce stable products using such raw materials. Furthermore, the inability to use water in the binder requires complicated processes such as degreasing when burning dignified items.

窒化アルミニウムの水和反応を防止することは現在の技
術をもってすれば不可能ではない。しかし、これらの防
止策は必然的にコストの増大をもたらし、結果として、
材料としての窒化アルミニウムの発展を妨げることにな
る。
It is not impossible with current technology to prevent the hydration reaction of aluminum nitride. However, these preventive measures inevitably result in increased costs;
This would hinder the development of aluminum nitride as a material.

このため、窒化アルミニウムの特性を多少そこなっても
安価で効果的な水和防止策が求められている。本発明は
効果的な酸化物の被膜を簡単な方法で形威し、窒化アル
ミニウムの安価な水和防止の方法を提案するものである
Therefore, there is a need for an inexpensive and effective hydration prevention measure even if the properties of aluminum nitride are somewhat impaired. The present invention provides an inexpensive method for preventing hydration of aluminum nitride by forming an effective oxide coating in a simple manner.

[本発明の構或:問題点の解決手段] 本発明は窒化アルミニウム粒子の表面に欠陥の少ない酸
化物の薄い被膜を生戒させることにより窒化アルミニウ
ムの耐水性を向上させるとともに窒化アルミニウムを水
蒸気を含む気流中で180℃以上800℃以下の温度で
加熱することにより、そのような被膜を形或できること
を見いだしたものである。
[Structure of the present invention: Means for solving problems] The present invention improves the water resistance of aluminum nitride by forming a thin film of oxide with few defects on the surface of aluminum nitride particles, and also improves the water vapor resistance of aluminum nitride. It has been discovered that such a film can be formed by heating at a temperature of 180° C. or more and 800° C. or less in an air flow containing the material.

窒化アルミニウムの表面に生或した被膜の欠陥の有無を
調べるには窒化アルミニウムを温水に漬け、温水のpH
を調べることによって確かめられる。欠陥のある場合に
はpHは14程度まで比較的速やかに上昇するとともに
アンモニア臭が認められる。一方、本発明の欠陥の少な
い被膜の場合にはpHは8程度に上昇するもののそれ以
上の上昇はなくアンモニア臭も検出されない。
To check for defects in the film formed on the surface of aluminum nitride, soak the aluminum nitride in hot water and check the pH of the hot water.
This can be confirmed by examining. If there is a defect, the pH will rise relatively quickly to about 14 and an ammonia odor will be observed. On the other hand, in the case of the coating of the present invention with few defects, although the pH increases to about 8, it does not increase any further and no ammonia odor is detected.

市販の芳香族物質で被覆した窒化アルミニウムの場合、
大気中での水和はある程度抑えられるが温水中ではpH
が速やかに上昇し、同時にアンモニア臭も検出され、被
膜に欠陥の多いことが推定される。
For commercially available aromatic coated aluminum nitride,
Hydration in the atmosphere can be suppressed to some extent, but in warm water the pH
The temperature rose rapidly, and an ammonia odor was also detected at the same time, indicating that there were many defects in the coating.

本発明の被膜の場合、被膜形威に要する酸素の量は微粒
の原料を用いた場合でも0. 3−0.5%程度あり、
これを粒子の表面積に割り振ってみると粒子表面に2−
3オングストロームの酸化物の被膜が形威されているも
のと推定される。
In the case of the film of the present invention, the amount of oxygen required to maintain the film shape is 0.00% even when using fine raw materials. There is about 3-0.5%,
When we allocate this to the surface area of the particle, we find that the surface area of the particle has 2-
It is estimated that an oxide film of 3 angstroms is formed.

このように欠陥の少ない酸化物の被膜は窒化アルミニウ
ム粒子を水蒸気を含む気流中で180℃以上800℃以
下の温度で加熱することにより簡単に得られる。
Such an oxide film with few defects can be easily obtained by heating aluminum nitride particles at a temperature of 180° C. or more and 800° C. or less in an air stream containing water vapor.

水蒸気を含む気流とは水蒸気を含む気体のことで、水蒸
気以外の気体には窒化アルミニウムと直接反応しない気
体ならよく、例えば、窒素、炭酸ガス、酸素、空気など
が用いられる。
The air flow containing water vapor is a gas containing water vapor, and the gas other than water vapor may be any gas that does not directly react with aluminum nitride, such as nitrogen, carbon dioxide, oxygen, or air.

水蒸気の分圧は反応速度に重要な要因となるので、なる
べく高いことが望ましい。すなわち、水蒸気の分圧は1
/500以上が望ましく、通常の反応は、1/100か
ら1/5の範囲内で行われる。
Since the partial pressure of water vapor is an important factor in the reaction rate, it is desirable that it be as high as possible. In other words, the partial pressure of water vapor is 1
A ratio of 1/500 or more is desirable, and a normal reaction is carried out within a range of 1/100 to 1/5.

窒化アルミニウムのような微粒子との反応を円滑に行う
には微粒子が集合して作られる2次粒子内部への水蒸気
の拡散を促進する気体の流れ気流も大きな要因となる。
In order to smoothly react with fine particles such as aluminum nitride, the flow of gas that promotes the diffusion of water vapor into the interior of secondary particles formed by aggregation of fine particles is also a major factor.

水蒸気と窒化アルミニウムの反応は反応が進めば反応が
起こった表面ではそれ以上の反応が行われず未反応部分
のみがさらに反応する。したがって、この反応は反応が
進めば自動的に停止する性質をもっている。
In the reaction between water vapor and aluminum nitride, as the reaction progresses, no further reaction occurs on the surface where the reaction occurred, and only the unreacted portion reacts further. Therefore, this reaction has the property of automatically stopping once the reaction progresses.

反応を行わせる温度は反応速度と密接な関係にある。反
応は180℃から800℃の間で起こるが、250℃か
ら700℃の間が望ましく、350℃から500℃の範
囲で反応を行うことが効率的な反応を行う上でとくに望
ましい。
The temperature at which the reaction is carried out is closely related to the reaction rate. The reaction occurs between 180°C and 800°C, preferably between 250°C and 700°C, and particularly preferably between 350°C and 500°C for efficient reaction.

戒形体の耐水性処理を行う場合には水蒸気を含む気流中
で処理するだけで十分であるが、微粒子の原料の場合、
気流との接触をより効率的に行うため、原料を撹拌する
とか転動させるなど原料粒子そのものを動かすこともよ
り効率的な反応を行わせるのに必要な方法である。
In the case of water-resistant treatment of pre-shaped bodies, it is sufficient to treat them in an air stream containing water vapor, but in the case of fine particle raw materials,
In order to make contact with the air flow more efficient, moving the raw material particles themselves, such as by stirring or rolling the raw material, is also a necessary method for more efficient reaction.

[作用] 水蒸気を用いた酸化はたんに酸素を含む気体による酸化
よりより反応速度が遠いことが認められた。酸素による
直接酸化を行おうとすれば、1000℃程度以上の温度
が必要であった。粉体を1000℃で処理しなければな
らないか、500℃で済むかは反応に要する費用、装置
ともに格段の差があり、粉体を処理するためのコストも
低温処理の方がはるかに安く納めることができる。
[Effect] It was found that the reaction rate of oxidation using water vapor was slower than that of oxidation using simply oxygen-containing gas. Direct oxidation with oxygen requires a temperature of about 1000° C. or higher. Whether the powder must be processed at 1000°C or 500°C depends on the cost and equipment required for the reaction, and the cost of processing the powder is much lower with low-temperature processing. be able to.

[実施例] (実施例一l) 金属アルミニウム粉を窒化して窒化アルミニウム微粉を
製造した。微粉の平均粒子径1.6ミクロン、比表面積
2.1m”/g、酸素の含有率は0.8%であった。こ
のものを空気中に放置したところアンモニア臭が感じら
れた。
[Example] (Example 1l) Metal aluminum powder was nitrided to produce aluminum nitride fine powder. The fine powder had an average particle diameter of 1.6 microns, a specific surface area of 2.1 m''/g, and an oxygen content of 0.8%. When this powder was left in the air, an ammonia odor was felt.

この窒化アルミニウム粉を磁製のボートにとり水蒸気分
圧56mmHHの窒素ガスを常圧で流通させ、400℃
のオーブンの中で2時間酸化反応させた結果、酸素の含
有率は0.3%昇した。
This aluminum nitride powder was placed in a porcelain boat, nitrogen gas with a water vapor partial pressure of 56 mmHH was passed through it at normal pressure, and the temperature was heated to 400°C.
As a result of the oxidation reaction in an oven for 2 hours, the oxygen content increased by 0.3%.

原料の窒化アルミニウムと酸化処理した窒化アルミニウ
ムとをそれぞれ1gづつとり、40℃の温水にそれぞれ
浸漬し、温水のpHの変化を測定した。その結果、原料
のpHは5分後に13を越えたが、酸化処理したものを
浸漬した温水のp}Iは60分後でも9に達しなかった
1 g each of raw material aluminum nitride and oxidized aluminum nitride were taken and immersed in 40° C. hot water, and the change in pH of the hot water was measured. As a result, the pH of the raw material exceeded 13 after 5 minutes, but the p}I of the hot water in which the oxidized material was immersed did not reach 9 even after 60 minutes.

(実施例−2) アルミナ微粉を炭素の共存下で窒化して窒化アルミニウ
ム微粉を製造した。微粉の平均粒子径0.7ミクロン、
比表面積1.9m”/g、酸素の含有率は 1.  2
%であった。このものを空気中に放置したところアンモ
ニア臭が感じられた。
(Example 2) Fine aluminum nitride powder was produced by nitriding fine alumina powder in the presence of carbon. Average particle size of fine powder: 0.7 microns,
Specific surface area 1.9m”/g, oxygen content 1.2
%Met. When this product was left in the air, an ammonia odor was felt.

この窒化アルミニウム粉をアルミナ製のチューブに容積
の15%になるように充填し、両端をシリコンゴムで封
じ、ローラの上に横置しゆっくりと回転させた。この装
置の外側を発熱体で被い、アルミナチューブの温度を3
50℃に保った。シリコンゴムに開けた穴から水蒸気分
圧125mmHgの空気を常圧で流通させ、この状態で
1時間酸化反応させた結果、酸素の量は0.3%上昇し
た。
This aluminum nitride powder was filled into an alumina tube to make up 15% of the volume, both ends of which were sealed with silicone rubber, placed horizontally on a roller, and slowly rotated. The outside of this device is covered with a heating element, and the temperature of the alumina tube is raised to 3
It was kept at 50°C. Air with a water vapor partial pressure of 125 mmHg was passed through a hole in the silicone rubber at normal pressure, and an oxidation reaction was carried out in this state for 1 hour, resulting in an increase in the amount of oxygen by 0.3%.

原料の窒化アルミニウムと酸化処理した窒化アルミニウ
ムとをそれぞれ1gづつとり、40℃の温水にそれぞれ
浸漬し、温水のpHの変化を測定した。その結果、原科
のpHは5分後に13を越えたが、酸化処理したものを
浸漬した温水のpHは60分後でも9に達しなかった。
1 g each of raw material aluminum nitride and oxidized aluminum nitride were taken and immersed in 40° C. hot water, and the change in pH of the hot water was measured. As a result, the pH of the raw material exceeded 13 after 5 minutes, but the pH of the hot water in which the oxidized product was immersed did not reach 9 even after 60 minutes.

[発明の効果] 本発明によれば窒化アルミニウムに簡単に水和を防ぐ欠
陥の少ない酸化物の被覆を付けることができるので、窒
化アルミニウムの材質としての特性をほとんど損ねるこ
となく耐水性を高めることができるばかりでなく、戒形
に際して水を使うことができるという大きな効果がある
[Effects of the Invention] According to the present invention, it is possible to easily coat aluminum nitride with an oxide coating with few defects that prevents hydration, thereby increasing water resistance without substantially impairing the properties of aluminum nitride as a material. Not only can this be done, but it also has the great effect of allowing you to use water during the precept.

さらに、この被膜は窒化アルミニウムの表面に形威する
ことができるので、焼或前の窒化アルミニウムの戊形体
の保存や、研摩した焼結体の耐水処理などへの展開が期
待される。
Furthermore, since this film can be formed on the surface of aluminum nitride, it is expected to be useful in preserving aluminum nitride hollow bodies before firing and in water-resistant treatment of polished sintered bodies.

Claims (3)

【特許請求の範囲】[Claims] (1)表面に欠陥の少ない酸化物の薄い被膜を有するこ
とを特徴とする窒化アルミニウム粒子。
(1) Aluminum nitride particles characterized by having a thin oxide film with few defects on the surface.
(2)表面に露出した窒化アルミニウム粒子が欠陥の少
ない酸化物の薄い被膜で被われていることを特徴とする
窒化アルミニウム成形体。
(2) An aluminum nitride molded article characterized in that aluminum nitride particles exposed on the surface are covered with a thin film of oxide with few defects.
(3)水蒸気を含む気流中で180℃以上800℃以下
の温度で加熱することを特徴とする窒化アルミニウム粒
子表面に欠陥の少ない薄い酸化被膜を形成する方法。
(3) A method for forming a thin oxide film with few defects on the surface of aluminum nitride particles, which comprises heating at a temperature of 180° C. or more and 800° C. or less in an air flow containing water vapor.
JP1227583A 1989-09-04 1989-09-04 Water-resistant aluminum nitride and production thereof Pending JPH0393612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227583A JPH0393612A (en) 1989-09-04 1989-09-04 Water-resistant aluminum nitride and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227583A JPH0393612A (en) 1989-09-04 1989-09-04 Water-resistant aluminum nitride and production thereof

Publications (1)

Publication Number Publication Date
JPH0393612A true JPH0393612A (en) 1991-04-18

Family

ID=16863190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227583A Pending JPH0393612A (en) 1989-09-04 1989-09-04 Water-resistant aluminum nitride and production thereof

Country Status (1)

Country Link
JP (1) JPH0393612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131492A (en) * 2004-10-07 2006-05-25 Toyo Aluminium Kk Aluminum nitride powder and its production method
US10497832B2 (en) 2013-03-29 2019-12-03 Asahi Kasei Kabushiki Kaisha Semiconductor light-emitting element having an aluminum nitride substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131492A (en) * 2004-10-07 2006-05-25 Toyo Aluminium Kk Aluminum nitride powder and its production method
US10497832B2 (en) 2013-03-29 2019-12-03 Asahi Kasei Kabushiki Kaisha Semiconductor light-emitting element having an aluminum nitride substrate

Similar Documents

Publication Publication Date Title
Salonen et al. Thermal carbonization of porous silicon surface by acetylene
Yoshimura et al. Oxidation of SiC powder by high-temperature, high-pressure H2O
Rešček et al. Active bilayer PE/PCL films for food packaging modified with zinc oxide and casein
Pagnier et al. In SituCoupled Raman and Impedance Measurements of the Reactivity of Nanocrystalline SnO2versus H2S
Ando et al. H 2 S-sensitive thin film fabricated from hydrothermally synthesized SnO 2 sol
JPS6121717A (en) Separation of oxygen
JPH0393612A (en) Water-resistant aluminum nitride and production thereof
US6451130B1 (en) Method for forming Cr2O3 film on stainless steel surface
JP2014534337A (en) Antibacterial metal nanofoam and related methods
CN108676360B (en) Flexible hydrophobic aerogel composite heat insulation film and preparation method thereof
CN107673629B (en) Titanium oxide composite membrane with antibacterial performance and preparation method thereof
JP2001089229A (en) Electrically conductive ceramic and its production
Inoue et al. Silver nanoparticles stabilized with a silicon nanocrystal shell and their antimicrobial activity
JPS6090882A (en) Treatment of porous carbon article
JPH0571534B2 (en)
NO128401B (en)
US2897102A (en) Oxidation resistant graphite and method for making the same
JPH10139532A (en) Alumina ceramics for low temperature process and its production
JPS62103378A (en) Manufacture of vacuum chamber in cvd apparatus and dry etching apparatus
US1553394A (en) Shaped oxides and method of producing the same
Swanson et al. Effect of Gaseous Pretreatment on Oxidation of Iron
JPH02315B2 (en)
CN115650221A (en) Antioxidant elastic graphene aerogel and preparation method thereof
JPH0526752B2 (en)
JPH04187556A (en) Sintered tantalum oxide, its production and use