JPH038760B2 - - Google Patents

Info

Publication number
JPH038760B2
JPH038760B2 JP59160916A JP16091684A JPH038760B2 JP H038760 B2 JPH038760 B2 JP H038760B2 JP 59160916 A JP59160916 A JP 59160916A JP 16091684 A JP16091684 A JP 16091684A JP H038760 B2 JPH038760 B2 JP H038760B2
Authority
JP
Japan
Prior art keywords
reaction
ribavirin
microorganisms
enzyme
triazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59160916A
Other languages
Japanese (ja)
Other versions
JPS60133896A (en
Inventor
Tetsuro Fujishima
Yoshiomi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Shoyu KK
Original Assignee
Yamasa Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Shoyu KK filed Critical Yamasa Shoyu KK
Priority to JP16091684A priority Critical patent/JPS60133896A/en
Publication of JPS60133896A publication Critical patent/JPS60133896A/en
Publication of JPH038760B2 publication Critical patent/JPH038760B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 発明の背景 技術分野 本発明は、リバビリン(Ribavirin)の酵素的
な製造法に関するものである。 リバビリンの化学名は1−β−D−リボフラノ
シル−1,2,4−トリアゾール−3−カルボキ
サミドであり、バイラゾール(Virazole)とも
称され、DNAおよびRNAウイルスに対して広範
囲で強力な抗ウイルス作用を示す化合物として知
られている(アナルズ・オブ・ザ・ニユーヨー
ク・アカデミー・オブ・サイエンシズ(Ann.
New York Acad.Sci.)284,272〜292(1977))。 従来技術 従来知られているリバビリンの製造法としては
合成法、発酵法および酸素法がある。 合成法の代表的な方法としては、3−メトキシ
カルボニル−1,2,4−トリアゾールと1−O
−アセチル−2,3,5−トリ−O−アシル−β
−D−リボフラノースを反応させ(溶融法)、得
られた1−(2′,3′−5′−トリ−O−アシル−β−
D−リボフラノシル)−3−メトキシカルボニル
−1,2,4−トリアゾールをアンモニアで処理
し、アミド化と脱保護を行う方法(特開昭48−
4469号、特開昭49−80070号、特開昭49−80071号
各公報参照)、前記と同様の方法においてトリア
ゾールの3位の置換基としてアラルキルオキシ基
を用いる方法(特開昭55−160793号公報参照)、
3−メトキシカルボニル−1,2,4−トリアゾ
ールをトリメチルシリル化し、2,3,5−トリ
−O−ベンゾイル−β−D−リボフラノシドのハ
ロゲン化物と反応させた(シリル化法)後、アン
モニアで処理する方法(特開昭48−4469号、特開
昭49−86372号各公報参照)などが知られている。
このような合成法は、いずれも反応前に原料化合
物の活性基を保護する必要があり、また反応に際
してはリボースの活性化が必要であつたり、高温
に加熱する必要がある場合もあり、さらに、反応
後に脱保護およびアミド化が必要であるなど反応
操作が煩雑であるなどの問題がある。また、縮合
反応の位置選択性はいずれも高くない。 発酵法としては、ブレビバクテリウム属、コリ
ネバクテリウム属、アースロバクター属、ミクロ
コツカス属またはバチルス属に属する微生物を培
養して増殖させる際に、使用微生物の培養のため
に必要な炭素源、窒素源、無機物、その他の栄養
物を含有する培地に、培養開始前または培養中、
一時にまたは間歇的に1,2,4−トリアゾール
−3−カルボキサミドを添加し、培養開始後2〜
8日間という長期間にわたつて培養し、培地中に
リバビリンを生成蓄積せしめる方法が知られてい
る(特公昭54−17830号公報、日本農芸化学会誌、
50(9)、423〜430(1976)参照)。この方法は、しか
しながら、次のような欠点を有するものと思われ
る。すなわち、リバビリンの製造は微生物の増
殖中に栄養培地中で行われるので、まず微生物を
増殖させるために各種の栄養源を含有る培地を調
製しなければならず、種菌を植菌する前にこれら
の培地を殺菌しなければならないなど前処理が煩
雑である。リバビリンの蓄積を目的とする、微
生物の増殖を伴う培養は、通常20〜40℃の常温で
行われるので、常に雑菌汚染への配慮が必要であ
るばかりではなく、このような条件下ではリバビ
リン分解活性も存在しているので、生成したリバ
ビリンも分解され、目的物の収量が低下する。
培養を2〜8日間という長期間にわたつて行わな
ければならない。各種のヌクレオシド、リバビ
リンのりん酸化物、その他の代謝産物が副生し、
培養液からリバビリンを回収するためには、原料
化合物だけでなく、各種の副生物とも分離しなか
ればならず単離精製が煩雑である。微生物をリ
バビリンの製造の度に培養しなければならない。 また、酵素的な製造法としては1,2,4−ト
リアゾール−3−カルボキサミドとリボース−1
−りん酸とをPH5〜9、温度0〜50℃の条件下で
ヌクレオシドホスホリラーゼの存在下において反
応させる方法が知られている(特開昭50−29720
号公報参照)。この方法も、リボース供与体と
して用いられるリボース−1−りん酸が不安定で
ある上に、入手が容易でない酵素として精製酵
素が用いられており、酵素の調製が容易でないな
どの欠点を有するものと思われる。 発明の概要 要 旨 本発明者らは、微生物の培養物、菌体または菌
体処理物を酵素源とし、微生物の非増殖条件下に
酵素反応によつてリバビリンを生成させることが
できることを初めて知見し、この知見に基づいて
本発明を完成した。 すなわち本発明は、1,2,4−トリアゾール
−3−カルボキサミドまたはその塩とリボース供
与体とをブレビバクテリウム・アセチリカムの酵
素作用下に該微生物の非増殖条件下において水性
媒体中で反応させてリバビリンを生成させること
を特徴とするリバビリンの製造法を提供するもの
である。 本発明で「酵素作用下」ということは、使用微
生物の培養物、菌体または菌体処理物の存在下に
ということを意味する。 本発明方法と、従来の発酵法とが最も相違する
点は、本発明においては微生物の培養物、菌体ま
たは菌体処理物を酵素剤とし、しかも微生物が増
殖しない、酵素反応に最適な条件下で反応基質で
ある1,2,4−トリアゾール−3−カルボキサ
ミドまたはその塩とリボース供与体とを反応させ
る点である。 効 果 本発明方法は、発酵法に比べて、微生物の非
増殖条件、たとえば高温条件下で反応を行う場合
には雑菌汚染がほとんどなく、リバビリンの分解
反応が抑制されるのでリバビリンの収率低下がな
い、酵素反応なので反応時間が短かく、副生物
の生成も少なく、リバビリンの単離精製が容易で
ある、酵素源の反復使用も、連続使用も、連続
使用も可能である、酵素源の保存が可能であ
り、酵素源の調製および使用を任意な時期に行う
ことができるなどの利点がある。また、酵素法に
比べて酵素源の調製が容易である、リボース
供与体をヌクレオシド、ヌクレオチドなどから広
く選択でき、リボース供与体の入手が容易である
などの利点がある。また、本発明方法の最適の酵
素源を選択すれば、従来のこれらの方法に比べて
はるかに高収率にリバビリンを製造することがで
きる。 発明の具体的説明 酵素源/使用微生物 本発明において使用される微生物は、その培養
物、菌体または菌体処理物が、1,2,4−トリ
アゾール−3−カルボキサミドとリボース供与体
との反応を触媒して、リバビリンを生成する酵素
系を含有するものであり、具体的にはブレビバク
テリウム・アセチリカム(Brevibacterium
acetylicum)に属する微生物である。 前記の酵素活性の強い代表的菌株の一つとし
て、兵庫県西宮市の甲子園球場の砂より分離され
たAT−6−7株を挙げることができる。この菌
株の菌学的性質を以下に記載する。 A 形態 (1) 細胞の形態および大きさ:短桿状、0.8〜1.0
×1.0〜1.2μm (2) 胞子の形成:なし (3) グラム染色性:陽性 B 各種培地における生育状態 (1) 肉汁寒天板培養(28℃、48時間) 集落の形状:円形(Circular) 集落表面の隆起:扁平状(Flat)、平滑
(Smooth) 大きさ:2〜4mm 色調:黄色ないし桃黄色 (2) 肉汁寒天斜面培養(28℃、48時間) 生育:良好 生育の形:疣状(Echinulate) (3) 肉汁液体培養(28℃、48時間) 生育:表面に菌環(Ring)を形成し、やや沈
渣(Sediment)を生じる。 (4) 肉汁ゼラチン穿刺培養(20℃、6日間):層
状(Straitiform)に液化する。 (5) リトマスミルク培地(28℃、4日間):わず
かに凝固し、ペプトン化も見られる。 C 生理的性質 (1) 硝酸塩の還元(28℃、5日間):還元性なし。 (2) 硫化水素の生成(28℃、5日間):生成しな
い。 (3) 殿粉の加水分解:分解性あり。 (4) カタラーゼ:陽性 (5) インドールの生成:生成しない。 (6) ペプトンおよびアルギニンからのアンモニア
の生成:陰性 (7) メチルレツドテスト:陰性 (8) V−Pテスト:陽性 (9) 酸素に対する態度:好気的 (10) O−Fテスト(Hugh Leifson法による):F
型(Fermention) (11) 糖類からの酸の生成 陽性:グルコース、マンノース、フラクトー
ス、マルトース、サツカロース、トレハロ
ース 陰性:アラビノース、キシロース、ガラクトー
ス、ラクトース、ソルビツト、イノシツ
ト、グリセリン 生育PH範囲:PH6.0〜9.0 (13) 生育最適温度:25〜37℃ 以上の菌学的性質を、バージエーズ・マニユア
ル・オフ・デイタミネーテイブ・バクテリオロジ
ー(Berey′s Manual of Determinative
Bacteriology)第7版(1957年)の分類基準に
より検索した。その結果、AT−6−7株はほと
んど球菌に近い短桿菌で、グラム陽性であり、フ
イラメントを形成せず、炭水化物より酸を生成す
ることよりブレビバクテリウム
(Brevibacterium)属に属する菌株と固定し、ブ
レビバクテリウム・アセチリカム
(Brevibacterium acetylicum)AT−6−7と命
名した。 なお、AT−6−7株の同定帰属はバージエー
ズ・マニユアル・オフ・デイタミネーテイブ・バ
クテリオロジー第7版によるものであり、分類基
準の変更などにより、異なる分類基準によつてこ
の菌株の同定帰属が行われた場合には、他種ある
いは他属に属することもあり得るが、本発明にお
いて上記のごとく命名された微生物は、寄託機関
への寄託および前記の菌学的性質に基づいて、一
義的に特定され得るものである。 この菌株について、昭和56年通商産業省告示第
178号に従つて工業技術院微生物工業技術研究所
に対して寄託申請を行い、昭和57年1月13日付け
で受託され、受託番号として微工研菌寄第6305号
(FERM P−6305)が付与されている。 また、前記の菌株から、紫外線、X線、γ線の
照射などの物理的処理もしくはニトロソグアニジ
ンなどによる薬剤処理など、一般的変異誘導法に
よる誘発突然変異または自然の原因に起因する自
然突然変異によつて誘導された変異株も、本発明
の目的とするリバビリン製造に関与する酵素活性
を失なわない限り、本発明に使用される。 さらに、以上のような本発明に好適に使用され
る菌株から得られた本発明の目的とするリバビリ
ン製造に関与する酵素系の遺伝子がブレビバクテ
リウム属、コリネバクテリウム属、アースロバク
ター属、ミクロコツカス属またはバチルス属以外
の微生物に取り込まれてそのような形質が発現す
るに至つた場合、このような微生物の培養物、培
養菌体またはその処理物を本発明の目的に使用す
る方法は、本発明に包含される。 酵素源の調製/培養 本発明に使用する酵素源を調製するために、こ
れらの微生物を培養するに際しては、使用される
培地および培養法は、これらの微生物が生育する
限り、特に限定されない。 培地としてはこれらの微生物が資化可能な炭素
源および窒素源を適当量含有し、必要に応じて無
機塩、微量発育促進物質、消泡剤などを添加した
ものが使用される。具体的には、炭素源として
は、グルコース、フラクトース、マルトース、ガ
ラクトース、リボース、サツカロース、殿粉、殿
粉加水分解物、糖密、廃糖密などの糖類もしくは
その脂肪酸エステルなどの誘導体、麦、〓、米な
どの天然炭水化物、グリセロール、マンニトー
ル、メタノール、エタノールなどのアルコール
類、グルコン酸、ピルビン酸、酢酸、クエン酸な
どの脂肪酸類、ノルマルパラフイン、ケロシンな
どの炭化水素類、グリシン、グルタミン酸、グル
タミン、アラニン、アスパラギンなどのアミノ酸
類など、一般的な炭素源より使用する微生物の資
化性を考慮して一種または二種以上を適宜に選択
して使用すればよい。窒素源としては、肉エキ
ス、ペプトン、酵母エキス、乾燥酵母、大豆加水
分解物、大豆粉、ミルクカゼイン、カザミノ酸、
各種アミノ酸、コーンステイープリカー、コツト
ンシードミールないしその加水分解物、フイツシ
ユミールないしその加水分解物、その他の動物、
植物、微生物の加水分解物などの有機窒素化合
物、アンモニア、硝酸アンモニウム、硫酸アンモ
ニウム、塩化アンモニウム、りん酸アンモニウ
ム、炭酸アンモニウム、酢酸アンモニウムなどの
アンモニウム塩、硝酸ナトリウムなどの硝酸塩、
尿素などの無機窒素化合物より使用微生物の資化
性を考慮し、一種または二種以上を適宜に選択し
て使用する。さらに、無機塩として微量のマグネ
シウム、マンガン、鉄、亜鉛、銅、ナトリウム、
カルシウム、カリウムなどのりん酸塩、塩酸塩、
硫酸塩、炭酸塩、硝酸塩、酢酸塩などの一種また
は二種以上を適宜添加し、必要に応じて植物油、
界面活性剤などの消泡剤、ビタミンB1,B2、ニ
コチン酸、パントテン酸、ビオチン、p−アミノ
安息香酸などの微量発育促進物質を添加してもよ
い。また、栄養要求を同時に示す微生物を使用す
る場合、当然その生育を満足させる物質を培地に
添加しなかればならない。 培養は、前記培地成分を含有する液体培地中で
振盪培養、通気撹拌培養、静置培養、連続培養な
どの通常の培養法より使用微生物に適した培養法
を選択して行う。 培養条件は、使用微生物および培地の種類によ
り適宜選択すればよいが、通常は培養開始のPHを
約6〜8に調整し、約25〜35℃の温度条件下で培
養を行う。培養期間は使用微生物の生育に十分な
時間であればよく、通常1〜3日間である。 酵素源の態様 本発明方法において使用される酵素源は、1,
2,4−トリアゾール−3−カルボキサミドとリ
ボース供与体とからリバビリンを生成する反応を
触媒する酵素系を含有するものである。 本発明方法における酵素反応の主たる必須酵素
はヌクレオシドホスホリラーゼであり、本発明に
使用する酵素源としては本酵素活性をすることが
必須である。さらにリボース供与体として本酵素
の直接の基質とならないものを使用する態様にお
いては、リボース供与体から基質に導く酵素系の
活性を含有するものであることが好ましい。 以上のように微生物を培養した後、得られた培
養物、培養物から遠心分離、沈降分離、凝集分離
などの通常の方法によつて集菌した生菌体、また
は生菌体に適宜な処理を施して得られる菌体処理
物を本発明における酵素源として使用できる。こ
こで、培養物とは培養後の培地と培養菌体が未分
離の状態のものをいう。また、菌体処理物とは、
乾燥菌体、細胞膜および/または壁変性菌体、破
砕菌体、固定化菌体、菌体抽出物、本発明の目的
とするリバビリンの製造に関与する酵素活性を有
する菌体抽出物の蛋白質画分もしくはその精製
物、蛋白質画分もしくはその精製物の固定化物な
どを指称する。 菌体処理物を得るための方法を以下に例示す
る。すなわち、生菌体に対し、たとえば凍結融
解処理、凍結乾燥処理、通風乾燥処理、アセトン
乾燥処理、酸性ないしアルカリ性下における加温
処理、磨砕処理、超音波処理、浸透圧差処理など
の物理的処理手段、もしくはたとえば、リゾチー
ム、細胞壁溶解酵素などの酵素処理、トルエン、
キシレン、ブチルアルコール(ブタノール)など
の溶媒もしくは界面活性剤との接触処理などの化
学的ないし生物化学的処理を単独もしくは組み合
せて施すことにより、また、菌体抽出物に対
し、たとえば塩析処理、等電点沈殿処理、有機溶
媒沈殿処理、各種クロマトグラフ処理、透析処理
などの酵素分離精製手段を単独もしくは組み合せ
て施すことにより、さらに、生菌体、菌体抽出
物もしくはその精製物に包括処理、架橋処理、担
体への吸着処理などの酵素固定化手段を施すこと
により菌体処理物を得ることができる。 反応基質 本発明の酵素反応における反応基質は1,2,
4−トリアゾール−3−カルボキサミドおよびリ
ボース供与体である。 1,2,4−トリアゾール−3−カルボキサミ
ドは遊離型またはナトリウム塩などの塩のいずれ
も使用できる。 リボース供与体としてはリボヌクレオシドもし
くはD−リボースまたはこれらの各種りん酸エス
テルのいずれでもよい。すなわち、リボヌクレオ
シドはその塩基部分がプリン系またはピリジン系
のいかなる塩基であつてもよく、天然物由来であ
れ化学合成によるものであれ使用することができ
る。また、リボヌクレオシドもしくはD−リボー
スの糖部水酸基は非置換のものであつてもあるい
は2位、3位もしくは5位水酸基のいずれか一個
所、二個所もしくは全てにモノりん酸エステル残
基、ジりん酸エステル残基、トリりん酸エステル
残基を有するものであつてもよい。また、これら
のりん酸エステルは遊離型であつてもよく、また
ナトリウム、カリウム、カルシウム、マグネシウ
ム、アンモニウム、トリエチルアンモニウムなど
の一般的なアルカリ塩であつてもよい。リボース
供与体の具体例としてはイノシン、アデノシン、
グアノシン、キサントシン、ウリジン、シチジン
などのリボヌクレオシド、5′−イノシン酸、5′−
アデニル酸、5′−グアニル酸、5′−キサンチル
酸、5′−ウリジン酸、5′−シチジル酸、2′(3′)−
イノシン酸、2′(3′)−アデニル酸、2′(3′)−グ

ニル酸、2′(3′)−キサンチル酸、2′(3′)−ウリ

ル酸、2′(3′)−シチジル酸などのリボヌクレオチ
ド、D−リボース、D−リボース−1−りん酸な
どが例示される。 反応基質溶液 本発明の酵素反応に使用される基質溶液は、基
本的には前記の反応基質が水性媒体に溶解もしく
は懸濁した水性液である。 水性液中には前記の反応基質のほかに、必要に
応じてりん酸イオン供与体、有機溶媒、界面活性
剤、金属塩類補酵素類、酸、塩基、糖類など酵素
反応を促進する物質、反応基質の溶解性を向上さ
せる物質、酵素と反応基質の接触を向上させる物
質等を含有していてもよい。 水性媒体としては、水または酵素反応に好適な
各種緩衝液(りん酸緩衝液、イミダゾール−塩酸
緩衝液、ベロナール−塩酸緩衝液、トリス−塩酸
緩衝液など)を用いることができる。 本発明の酵素反応は主にヌクレオシドホスホリ
ラーゼの作用に基づくものであり、それ故反応系
にりん酸イオンの存在が必要である。酵素反応系
にりん酸イオンが存在しない場合は、りん酸イオ
ン供与体の添加が必要である。 りん酸イオン供与体としては、水性媒体中でり
ん酸イオンに解離しうるもののいずれを用いても
よく、たとえば遊離型りん酸そのもの、無機りん
酸塩、たとえばナトリウム、カリウムなどのアル
カリ金属、カルシウム、マグネシウムなどのアル
カリ土類金属、アンモニウムとの塩が好適に使用
される。また、りん酸イオン供与体としては、酵
素反応液中でりん酸イオンを遊離しうる系、たと
えばリボース供与体のリボヌクレオチドとホスフ
アターゼの組み合せ、同じくヌクレオチドとヌク
レオチターゼの組み合せなどを利用することがで
きる。このような系における反応に関与する酵素
は、本発明に使用される酵素源に混在するもので
あつてもよく、別途添加された酵素、またはその
酵素活性を有する菌体もしくは菌体処理物等であ
つてもよい。以上のようなりん酸供与系は、酸素
反応に際して系外から添加されたものでも、酵素
源がその成分として含有しているものであつても
よい。すなわち、酵素反応に利用しうる形態であ
る限り、上記の物質の単独もしくは二種以上を組
合せた系を、または上記の物質を含有する微生物
菌体もしくはその菌体処理物を、本発明の酵素反
応に際して反応液に別途添加してもよく、あるい
は使用微生物が菌体成分として含有しているこれ
らの物質をそのまま利用してもよい。 有機溶媒としては、たとえばメタノール、エタ
ノール、プロパノール、ブタノール、ペンタノー
ル、アセトン、メチルエチルケトン、酢酸エチ
ル、トルエン、トテラヒドロフラン、ジオキサ
ン、ジメチルスルホキシド、ジメチルアセトアミ
ド、ジメチルホルムアミド、2−メトキシエタノ
ール、2−エトキシエタノール、1,2−ジメト
キシエタンなどが例示される。 接触方法 本発明の反応は、前記の酵素源と反応基質とを
水性媒体中で微生物の非増殖条件下において接触
させることにより達成される。 接触方法は、酵素源の形態に応じて適宜に選択
すればよいが、通常、酵素源を反応基質溶液に懸
濁もしくは溶解し、好ましくは加温しながら撹拌
もしくは振盪するバツチ方式、または酵素源を必
要に応じて適当な担体、助剤、吸着剤と混和し、
もしくはこれらに担持させてカラムに充填し、反
応基質溶液を通液するカラム方式などが適用され
る。 反応基質および酵素源源の濃度もしくは添加量 反応に際し、反応液の基質濃度は特に制限され
るものではなく、反応温度における使用水性媒体
に対する基質の飽和濃度以下の基質濃度が通常採
用されるが、反応基質溶液に添加された前記の有
機溶媒、界面活性剤などにより基質濃度を増大さ
せることもできる。また、反応液中に飽和濃度以
上の基質を懸濁状態で存在させ、反応の進行に従
つて各基質を溶解させることもできる。また、基
質を反応中に逐次添加して、その濃度を適当レベ
ルに保つこともできる。基質を溶解させる場合、
基質濃度は1,2,4−トリアゾール−3−カル
ボキサミドまたはその塩については通常5〜
200mM程度、好ましくは10〜100mM程度であ
る。リボース供与体については、これを別途添加
する場合は通常5〜300mM程度、好ましくは10
〜150mM程度である。 酵素源の使用量は微生物の種類、その使用形
態、反応効率、経済性などを考慮し、当業質が予
備実験等によつて容易に決定できるものである
が、通常バツチ方式の場合、たとえば生(湿)菌
体であれば10〜150mg/ml基質溶液程度、乾燥菌
体であれば2〜30mg/ml基質溶液程度であればよ
く、カラム方式においてはバツチ方式に準じて適
当な量を設定することができる。 反応条件 本発明の反応の条件は、菌体等を非増殖条件
下、すなわち休止もしくは死滅菌体の状態で反応
に供すること以外は特に限定されない。 微生物の非増殖条件下で反応に供する方法とし
ては、酵素反応温度を使用微生物が増殖できない
温度範囲(ただし、本発明の反応に関与する酵素
が失活しない温度範囲である。)に設定する方法、
使用微生物菌体をあらかじめ前記のとおり物理
的、化学的ないし生物化学的に処理することによ
つて微生物を増殖できない状態にした後、反応に
供する方法、反応に際して、たとえばトルエンな
どの使用微生物の増殖を阻害する物質を反応基質
溶液に添加する方法などを単独にあるいは組も合
せて採用すればよいが、特に反応温度を操作する
方法が最も効果的で簡便である。 本発明の反応において反応温度は上記のとおり
重要な条件であり、本発明を特徴づけるものであ
る。反応は37〜80℃の範囲において進行するが、
実用性を考慮すれば40〜70℃の範囲が好ましい。
なお、最適の温度条件は反応基質の種類によつて
異るが、当業者であれば予備実験などにより容易
に決定することができる。 40℃以上の温度範囲で酵素反応を行うことによ
り使用微生物の生育は大部分抑制される。たとえ
ば、後記実施例1と同一の微生物の生菌体を使用
し、28〜60℃の各所定温度でそれぞれ実施例1と
同様に反応させたときの1,2,4−トリアゾー
ル−3−カルボキサミドからのリバビリンの生成
率(%)と反応後の使用微生物の生存率(%)と
の関係を示すと下記第1表のとおりである。な
お、微生物の生存率は反応開始前の微生物の生菌
数/mlに対する反応後の生菌数/mlの百分率であ
る。 【表】 以上のとおり、本反応は使用微生物の非増殖条
件下、すなわち、大部分の微生物が休止もしくは
死滅する条件下で行われなければならない。 さらに、本発明において反応温度を前記の範囲
に設定することにより、酵素反応速度を増大させ
るだけでなく、生成したリバビリンの分解反応を
抑制することが実験により確認された。一例とし
て、実施例1と同一の微生物の生菌体の懸濁液1
mlを20mMリバビリン溶液1mlに加えて28〜60℃
の各所定温度で20時間インキユベートしたときの
リバビリンの残存率(%)を第2表に示す。 【表】 以上の結果からも37℃以上の反応温度が好適で
あることが確認できる。 反応基質溶液の液性は、通常PH4〜10、好まし
くはPH6〜8の範囲に保たれればよく、反応中に
PHが変動するときは、塩酸、硫酸、りん酸などの
酸または水酸ナトリウム、水酸化カリウム、アン
モニア水、アンモニアガスなどのアルカリを用い
て好ましいPH範囲に補正すればよい。 反応時間は、反応基質の目的物への変換率を確
認しながら決定すれべよいが、通常バツチ方式で
は2〜45時間程度、好ましくは24〜36時間程度反
応させればよく、カラム方式ではバツチ方式に準
じて適当な条件を設定して反応させればよい。 分離精製 反応後、必要に応じて菌体等を過、遠心分離
または凝集分離などの常法によつて分離除去し、
リバビリンの分離精製工程に供する。 リバビリンの分離精製は、公知の方法またはこ
れを応用して行えばよく、たとえばイオン交換ク
ロマトグラフイー、吸着クロマトグラフイー、分
配クロマトグラフイー、ゲル過法など各種のク
ロマトグラフイー、向流分配、向流抽出など二液
相間の分配を利用する方法、濃縮、冷却、有機溶
媒添加など溶解度の差を利用する方法などの一般
的な分離精製法を単独で、あるいは適宜に組み合
せて行えばよい。 分 析 本発明の実施例等においてリバビリンおよび
1,2,4−トリアゾール−3−カルボキサミド
の分析は高速液体クロマトグラフイーによつて行
つた。以下に示す装置および条件で分析すると、
リバビリンは保持時間3.50分付近に、1,2,4
−トリアゾール−3−カルボキサミドは保持時間
2.65分付近に溶出され、検量線よりそれぞれの量
を算出できる。 装置:島津高速液体クロマトグラフLC−3A型
((株)島津製作所製) カラム:マイクロ・ボンダパツク
(μBONDAPAK)C18、4.6mm×250mm (日本ウオーターズリミテツド社製) 溶出剤:2%アセトニトリルを含む20mMトリ
ス−塩酸緩衝液(PH7.5) 流速:1ml/分 測定波長:225nm カラム操作温度:室温 実験例 以下、実験例をもつて本発明をより具体的に説
明するが、これらはいずれも実施の一態様を示す
ものであつて、本発明の範囲を制限するものでは
ない。 実施例 1 ブレビバクテリウム・アセチリカムAT−6−
7を粉末ブイヨン(極東製薬工業(株)製)2%水溶
液5リツトルに植菌し、28℃、24時間振盪培養し
た。 培養終了後、遠心分離によつて集菌し、洗滌
後、殺菌水を加えて250mlの菌体懸濁液を得た。
66.7mM1,2,4−トリアゾール−3−カルボ
キサミド、66.7mMイノシンおよび100mMりん
酸−カリウムを含む水溶液(PH7.0)750mlに前記
菌体懸濁液250mlを加え、60℃で24時間反応させ
た(リバビリン生成率74.88%)。 反応液を遠心分離して菌体を除去した後、カチ
オン交換樹脂(H+型)を通過させ、この通過水
洗液を活性炭に吸着させた。活性炭カラムよりエ
タノール−アンモニア溶液でリバビリンを溶出
し、溶出後のエタノールを除去した後、アニオン
交換樹脂を通過させ、通過水洗液を減圧濃縮して
50mlとし、冷却した。冷却後、析出した結晶を分
離し、乾燥してリバビリンの結晶6.5gを得た。 比較例 実施例1と同一の菌株を使用し、特公昭54−
17830号公報の実施例1と同様の方法で微生物の
増殖中に原料トリアゾール化合物を添加してリバ
ビリンの製造を試みた。すなわち、前記菌株をグ
ルコース130g、りん酸−カリウム1g、りん酸
二カリウム3g、硫酸マグネシウム1g、塩化カ
ルシウム0.1g、硫酸鉄10mg、硫酸亜鉛5mg、硫
酸マンガン10mg、ビタミンB15mg、パントテン酸
カルシウム10mg、シスチン20mg、ビオチン30μ
g、肉エキス10g、硫酸アンモニウム2gおよび
尿素2g(別殺菌)を1リツトル中に含有する組
成で、PH7.6に調整した培地10mlに植菌し、12時
間毎にアンモニア水でPH7.2に調整しつつ28℃で
振盪培養した。培養開始24時間後に1,2,4−
トリアゾール−3−カルボキサミドを2mg/ml濃
度で添加し、さらに4日間培養した。培養液を遠
心分離した後、上澄液を分析したが、リバビリン
の生成は全く認められなかつた。 実施例 2 実施例1と同一の菌株を実施例1と同様に培養
し(ただし、培養液は各10mlとした。)、培養後、
遠心分離によつて集菌し、各1mlの殺菌水を加え
て菌体懸濁液を得た。 この菌体懸濁液に20mM1,2,4−トリアゾ
ール−3−カルボキサミド、20mMの第3表に示
す各種リボース供与体および25mMりん酸一カリ
ウムを含む水溶液(PH7.0)各1mlを添加し、60
℃で24時間反応させた。反応終了後、遠心分離に
よつて除菌し、上澄液を分析したところ、リバビ
リンの生成率は第3表に示すとおりであつた。 なお、リバビリン生成率とは、1,2,4−ト
リアゾール−3−カルボキサミドからリバビリン
への転換率(%)をいう。 【表】 実施例 3 2%粉末ブイヨン培地各100mlに実施例1と同
一の菌株を植菌し、28℃、22時間振盪培養し、培
養菌体を得、次いで以下の処理を行つて、菌体処
理物懸濁液を得た。 1 アセトン乾燥菌体:生菌体に50mlのアセトン
を加え、15分間放置し、遠心分離して得た菌体
にさらに50mlのアセトンを加え、同様の処理を
行つた後、真空乾燥して乾燥菌体を得た。これ
に水を加えて菌体処理物懸濁液10mlを得た。 2 凍結融解菌体:生菌体を−80℃で1晩凍結
後、解凍し、水を加えて菌体処理物懸陳液10ml
を得た。 3 浸透圧差処理菌体:生菌体に100mlの飽和食
塩水を加え、一晩氷冷後、遠心分離によつて上
澄液を捨て、分離菌体に水を加えて菌体処理物
懸濁液10mlを得た。 4 超音波処理菌体:生菌体に水を加えて10mlと
し、出力電圧1.6KVで20分間超音波処理を行つ
た。 以上の菌体処理物懸濁液各10mlおよび実施例1
と同様にして得た無処理菌体懸濁液10mlに
20mM1,2,4−トリアゾール−3−カルボキ
サミド、20mMイノシンおよび25mMりん酸−カ
リウムを含む反応基質溶液(PH7.0)各10mlを加
え、60℃、24時間反応後、リバビリンの生成率を
分析したところ第4表に示すとおりであつた。 【表】 実施例 4 2%ブイヨン培地25mlに実施例1と同一の菌株
を植菌し、28℃、24時間振盪培養し、培養後、集
菌し、水を加えて各2.5mlの菌体懸濁液を調製し
た。これに実施例3と同じ反応基質溶液各2.5ml
を加え、28〜70℃の各温度(第5表)で20時間反
応後、リバビリンの生成率を分析したところ第5
表に示すとおりであつた。 【表】 実施例 5 実施例1と同一の菌株を使用し、実施例4と同
様に調製した菌体懸濁液各2.5mlに以下の反応基
質溶液(A)または(B)各2.5mlを加え、60℃、20時間
反応後、リバビリンの生成率を分析したところ第
6表に示すとおりであつた。 反応基質溶液(A):20mM1,2,4−トリアゾ
ール−3−カルボキサミドおよび20mMイノシン 反応基質溶液(B):上記反応基質溶液(A)と同量の
各基質に25mMりん酸一カリウムを加える。 【表】 実施例 6 実施例5と同じ菌体懸濁液2.5mlに実施例5の
反応基質溶液(B)2.5mlを加え、60℃で20時間反応
後、菌体を分離した。この分離菌体に水10mlを加
えて次回の反応に使用し、上記と同様の反応を10
回繰り返した。第1回のリバビリン生成率を100
としたときの各回の反応の相対生成率を第7表に
示す。 【表】 実施例 7 2%ブイヨン培地1リツトルに実施例1と同一
の菌株を植菌し、30℃、22時間振盪培養した後、
遠心分離によつて生菌体を得た。 この生菌体にA液〔1N−塩酸24ml、トリス
3.425g、TEMED(N,N,N′,N′−テトラメ
チレンジアミン)0.23mlを溶解して水で100mlに
希釈した水溶液〕20ml、B液〔アクリルアミド30
g、BIS(N,N−メチレンビス(アクリルアミ
ド))0.8gを水に溶解して100mlとした水溶液〕
20mlおよびC液〔過硫酸アンモニウム0.3gを水
に溶解して200mlとした水溶液〕40mlを加えて放
置し、菌体を固定化した。固定化後ホモジナイザ
ーで細片化し、180mlの固定化菌体を得た。 この固定化菌体10mlに20mM1,2,4−トリ
アゾール−3−カルボキサミド、20mlイノシンお
よび25mMりん酸一カリウムを含む基質溶液20ml
(PH7.0)を加え、60℃、24時間反応し、反応液を
分析したところ62.89%のリバビリンが生成して
いた。なお、生菌体を使用して同一条件で反応を
行つたところリバビリンの生成率は65.44%であ
つた。 実施例 8 ブレビバクテリウム・アセチリカムAT−6−
7と公知の菌株であるブレビバクテリウム・アン
モニアゲネス(B.ammoniagenes)ATCC 6871
株を同一条件で培養し、同一条件で酵素反応に供
して、リバビリンの生成量(生成率)を比較し
た。 すなわち、1.5%酵母エキス培地(PH7.0)各9
mlに両菌株を植菌し、28℃で1日振盪培養した。 40mM1,2,4−トリアゾール−3−カルボ
キサミド、60mM5′−ウリジル酸二ナトリウムお
よび8mMりん酸一カリウムを含有する溶液10ml
に前記培養液より遠心分離によつて集菌した菌体
を加え、45℃で20時間反応させた。 反応後、遠心分離によつて菌体を除去し、反応
液を高速液体クロマトグラフイーによつて分析し
たところ、結果は第8表に示す通りであつた。 【表】 実施例 9 AT−6−7株とATCC 6871株とを実施例8
と同様に各100ml培養し、遠心分離によつて集菌
して、菌体を得た。 この菌体を、40mM1,2,4−トリアゾール
−3−カルボキサミド、60mMウリジンおよび
50mMりん酸一カリウムを含有する溶液100mlに
加えて、45℃で20時間反応させた。 反応後、リバビリンの生成率を測定したとこ
ろ、AT−6−7株の場合は86.04%であり、
ATCC 6871株の場合は2.30%であつた。 実施例 10 実施例8と同様の方法で得たAT−6−7株お
よびATCC 6871株のそれぞれの菌体(培養液20
ml分)を、4mM1,2,4−トリアゾール−3−
カルボキサミド、4mMウリジンおよび5mMりん
酸一カリウムを含有する溶液(基質溶液A)なら
びに4mM1,2,4−トリアゾール−3−カルボ
キサミド、4mM5′−ウリジン酸二ナトリウムお
よび1mMりん酸一カリウムを含有する溶液(基
質溶液B)のそれぞれに加えて、24時間反応させ
た。なお、反応はAT−6−7菌の場合は45℃
で、ATCC 6871株の場合は60℃で、行なつた。 反応後、リバビリンの生成率を測定したとこ
ろ、第9表に示すとおりであつた。 【表】 実施例 11 実施例8と同様の方法でAT−6−7株と
ATCC 6871株を培養して得た菌体(培養液5ml
分)に水を加えて菌体懸濁液0.5mlを得た。 17.8mM1,2,4−トリアゾール−3−カル
ボキサミド、81.9mMウリジンおよび58.8mMり
ん酸一カリウムを含む溶液(PH7.0)0.5mlに上記
菌体懸濁液0.5mlを加えて、60℃で10時間反応さ
せた。 反応後、反応液中のリバビリンの生成量を測定
し、リバビリンの生成率を算出したところ、第10
表に示す通りであつた。 【表】 実施例 12 第11表に示すブレビバクテリウム・アセチリカ
ムの各種菌株を実施例8と同様の方法で培養し、
培養液を遠心分離して、菌体(各培養液4ml分)
を得た。 40mM1,2,4−トリアゾール−3−カルボ
キサミド、60mM5′−ウリジン酸二ナトリウムお
よび10mMりん酸一カリウムを含有する溶液4ml
に上記各菌体を加え、45℃で22時間反応させ、反
応後、リバビリンの生成率を測定したところ、第
11表に示す通りであつた。 【表】 実施例 13 リボース供与体として60mMのイノシンを使用
し、反応温度を60℃とするほかは実施例12と同一
の操作を行つて、第12表の結果を得た。 【表】 参考例 AT−6−7株およびATCC 6871株のホスフ
アターゼ活性を比較するために、各菌株の菌体懸
濁液を5′−ウリジル酸二ナトリウム溶液に加えて
反応させ、ウリジンへの転換率を測定した。な
お、菌体懸濁液は実施例8と同様に培養して得た
菌体(培養液9ml分)を水1mlに懸濁させて調製
し、基質溶液としては6mM5′−ウリジル酸二ナ
トリウムを含有する水溶液9mlを使用した。反応
は45℃で行ない、0.5〜24時間の各時間において
転換率を測定した。転換率の測定は、高速液体ク
ロマトグラフイーによつて行なつた。結果は、第
13表に示す通りであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION TECHNICAL FIELD The present invention relates to an enzymatic process for the production of Ribavirin. The chemical name of ribavirin is 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide, also known as Virazole, which has a broad range of potent antiviral effects against DNA and RNA viruses. (Annals of the New York Academy of Sciences (Ann.
New York Acad. Sci.) 284, 272-292 (1977)). Prior Art Conventionally known methods for producing ribavirin include a synthesis method, a fermentation method, and an oxygen method. A typical synthesis method is to use 3-methoxycarbonyl-1,2,4-triazole and 1-O
-acetyl-2,3,5-tri-O-acyl-β
-D-ribofuranose (melting method) and the obtained 1-(2',3'-5'-tri-O-acyl-β-
D-ribofuranosyl)-3-methoxycarbonyl-1,2,4-triazole is treated with ammonia to amidate and deprotect
4469, JP-A-49-80070, and JP-A-49-80071), a method using an aralkyloxy group as a substituent at the 3-position of the triazole in the same method as above (JP-A-55-160793) (see publication),
3-Methoxycarbonyl-1,2,4-triazole was trimethylsilylated and reacted with a halide of 2,3,5-tri-O-benzoyl-β-D-ribofuranoside (silylation method), and then treated with ammonia. There are known methods to do this (see Japanese Patent Laid-Open Nos. 48-4469 and 86372-1987).
In all of these synthetic methods, it is necessary to protect the active groups of the raw material compounds before the reaction, and during the reaction, it may be necessary to activate ribose, or it may be necessary to heat to high temperatures. However, there are problems such as complicated reaction operations such as the need for deprotection and amidation after the reaction. Furthermore, the regioselectivity of the condensation reaction is not high. The fermentation method involves culturing and propagating microorganisms belonging to the genus Brevibacterium, Corynebacterium, Arthrobacter, Micrococcus or Bacillus, using carbon sources and nitrogen that are necessary for culturing the microorganisms. before or during cultivation,
Add 1,2,4-triazole-3-carboxamide all at once or intermittently, and add 1,2,4-triazole-3-carboxamide at once or intermittently, and
A method is known in which ribavirin is produced and accumulated in the medium by culturing for a long period of 8 days (Special Publication No. 17830/1983, Journal of the Japanese Society of Agricultural Chemistry,
50(9), 423-430 (1976)). However, this method seems to have the following drawbacks. That is, since the production of ribavirin is carried out in a nutrient medium during the growth of microorganisms, it is first necessary to prepare a medium containing various nutrient sources in order to grow the microorganisms, and these must be added before inoculating the inoculum. Pretreatment is complicated, as the culture medium must be sterilized. Cultivation involving the growth of microorganisms for the purpose of accumulating ribavirin is usually carried out at room temperature between 20 and 40°C, so not only must consideration be given to bacterial contamination, but also under these conditions ribavirin decomposes. Since activity is also present, the produced ribavirin is also degraded, reducing the yield of the target product.
Cultivation must be carried out over a long period of 2 to 8 days. Various nucleosides, phosphoric oxides of ribavirin, and other metabolites are produced as by-products.
In order to recover ribavirin from a culture solution, it is necessary to separate not only the raw material compound but also various by-products, making isolation and purification complicated. Microorganisms must be cultured each time ribavirin is manufactured. In addition, as an enzymatic production method, 1,2,4-triazole-3-carboxamide and ribose-1
A method is known in which phosphoric acid is reacted with phosphoric acid in the presence of nucleoside phosphorylase at a pH of 5 to 9 and a temperature of 0 to 50°C.
(see publication). This method also has drawbacks such as the ribose-1-phosphate used as the ribose donor is unstable, and the enzyme is not easy to prepare because it uses a purified enzyme that is not easy to obtain. I think that the. SUMMARY OF THE INVENTION The present inventors have discovered for the first time that ribavirin can be produced by an enzymatic reaction under conditions in which microorganisms do not proliferate, using a microbial culture, bacterial cells, or treated bacterial cells as an enzyme source. Based on this knowledge, the present invention was completed. That is, the present invention provides a method in which 1,2,4-triazole-3-carboxamide or a salt thereof and a ribose donor are reacted in an aqueous medium under the enzyme action of Brevibacterium acetylicum under conditions in which the microorganism does not grow. The present invention provides a method for producing ribavirin, which is characterized by producing ribavirin. In the present invention, "under the action of an enzyme" means in the presence of a culture, bacterial cells, or treated microbial cells of the microorganism used. The biggest difference between the method of the present invention and conventional fermentation methods is that in the present invention, microorganism cultures, microbial cells, or processed microbial cells are used as the enzyme agent, and the conditions are optimal for the enzymatic reaction so that microorganisms do not grow. Below, 1,2,4-triazole-3-carboxamide or a salt thereof, which is a reaction substrate, is reacted with a ribose donor. Effects Compared to the fermentation method, the method of the present invention has almost no bacterial contamination when the reaction is carried out under conditions where microorganisms do not grow, such as high temperature conditions, and the decomposition reaction of ribavirin is suppressed, resulting in a decrease in the yield of ribavirin. Since it is an enzymatic reaction, the reaction time is short, there are few by-products produced, and it is easy to isolate and purify ribavirin.The enzyme source can be used repeatedly, continuously, or continuously. It has the advantage that it can be stored and the enzyme source can be prepared and used at any time. Furthermore, compared to the enzymatic method, it has advantages such as easier preparation of the enzyme source, wider selection of ribose donors from nucleosides, nucleotides, etc., and easy availability of ribose donors. Furthermore, by selecting the most suitable enzyme source for the method of the present invention, ribavirin can be produced in a much higher yield than in these conventional methods. Detailed Description of the Invention Enzyme Source/Used Microorganisms The microorganisms used in the present invention have a culture, microbial cells, or processed microbial cells that react with 1,2,4-triazole-3-carboxamide and a ribose donor. It contains an enzyme system that catalyzes the production of ribavirin, specifically Brevibacterium acetylicum.
acetylicum). One of the representative strains with strong enzyme activity is the AT-6-7 strain, which was isolated from the sand of Koshien Stadium in Nishinomiya City, Hyogo Prefecture. The mycological properties of this strain are described below. A Morphology (1) Cell morphology and size: short rod-like, 0.8-1.0
×1.0-1.2μm (2) Spore formation: None (3) Gram staining: Positive B Growth status in various media (1) Culture on broth agar plate (28℃, 48 hours) Colony shape: Circular Colony Surface ridges: Flat, Smooth Size: 2-4 mm Color: Yellow to pink-yellow (2) Broth agar slant culture (28℃, 48 hours) Growth: Good Growth shape: Warty ( (3) Broth liquid culture (28℃, 48 hours) Growth: Forms a bacterial ring on the surface and produces a slight sediment. (4) Meat juice gelatin puncture culture (20°C, 6 days): Liquefies into a Straitiform. (5) Litmus milk medium (28°C, 4 days): Slight coagulation and peptonization is also observed. C Physiological properties (1) Reduction of nitrate (28°C, 5 days): No reducibility. (2) Hydrogen sulfide generation (28℃, 5 days): Not generated. (3) Hydrolysis of starch: Degradable. (4) Catalase: Positive (5) Indole production: Not produced. (6) Formation of ammonia from peptone and arginine: negative (7) Methylred test: negative (8) V-P test: positive (9) Attitude towards oxygen: aerobic (10) O-F test (Hugh (based on Leifson method): F
Fermention (11) Acid production from sugars Positive: glucose, mannose, fructose, maltose, sutucarose, trehalose Negative: arabinose, xylose, galactose, lactose, sorbitol, inosit, glycerin Growth PH range: PH6.0-9.0 (13) Optimum growth temperature: 25 to 37°C.
The search was conducted using the classification criteria of Bacteriology, 7th edition (1957). As a result, the AT-6-7 strain is a short bacillus that is almost like a coccus, is Gram-positive, does not form filaments, and produces acid rather than carbohydrates, so it is closely linked to strains belonging to the genus Brevibacterium. , and named Brevibacterium acetylicum AT-6-7. The identification and attribution of the AT-6-7 strain is based on Virgies Manual of Determinative Bacteriology, 7th edition, and due to changes in the classification criteria, the identification of this strain may have been based on different classification criteria. If attribution is made, the microorganisms named above may belong to other species or genera, but based on the deposit with the depository institution and the above-mentioned mycological properties, It can be uniquely identified. Regarding this strain, the 1981 Ministry of International Trade and Industry Notification No.
In accordance with No. 178, we filed an application for deposit with the Institute of Microbial Technology, Agency of Industrial Science and Technology, and the deposit was made on January 13, 1981, with the deposit number being FERM P-6305. has been granted. In addition, the above-mentioned strains may undergo induced mutations by general mutagenesis methods such as physical treatments such as irradiation with ultraviolet rays, The mutant strain thus derived can also be used in the present invention, as long as it does not lose the enzymatic activity involved in ribavirin production, which is the object of the present invention. Furthermore, the genes of the enzyme system involved in the production of ribavirin, which is the object of the present invention, obtained from the strains preferably used in the present invention as described above are of the genus Brevibacterium, Corynebacterium, Arthrobacter, When such a trait is expressed by being taken up by a microorganism other than the genus Micrococcus or Bacillus, the method of using the culture, cultured cells, or processed product of such a microorganism for the purpose of the present invention is as follows: Included in the present invention. Preparation/Culture of Enzyme Source When culturing these microorganisms to prepare the enzyme source used in the present invention, the medium and culture method used are not particularly limited as long as these microorganisms grow. The medium used contains appropriate amounts of carbon sources and nitrogen sources that can be assimilated by these microorganisms, and if necessary, inorganic salts, trace growth-promoting substances, antifoaming agents, etc. are added. Specifically, carbon sources include sugars such as glucose, fructose, maltose, galactose, ribose, sutucarose, starch, starch hydrolyzate, molasses, and waste molasses, or derivatives thereof such as fatty acid esters, wheat, 〓, natural carbohydrates such as rice, alcohols such as glycerol, mannitol, methanol, ethanol, fatty acids such as gluconic acid, pyruvic acid, acetic acid, citric acid, hydrocarbons such as normal paraffin, kerosene, glycine, glutamic acid, glutamine , alanine, asparagine, and other general carbon sources, one or more of them may be appropriately selected and used in consideration of the assimilation ability of the microorganisms used. Nitrogen sources include meat extract, peptone, yeast extract, dried yeast, soybean hydrolyzate, soybean flour, milk casein, casamino acids,
Various amino acids, cornstarch liquor, corn seed meal or its hydrolyzate, fruit meal or its hydrolyzate, other animals,
Organic nitrogen compounds such as hydrolysates of plants and microorganisms, ammonium salts such as ammonia, ammonium nitrate, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, ammonium acetate, nitrates such as sodium nitrate,
Among inorganic nitrogen compounds such as urea, one or more types are appropriately selected and used, taking into consideration the assimilation ability of the microorganisms used. In addition, trace amounts of magnesium, manganese, iron, zinc, copper, sodium,
phosphates and hydrochlorides such as calcium and potassium;
One or more of sulfates, carbonates, nitrates, acetates, etc. are added as appropriate, and vegetable oil,
Antifoaming agents such as surfactants, trace amounts of growth-promoting substances such as vitamins B 1 and B 2 , nicotinic acid, pantothenic acid, biotin, and p-aminobenzoic acid may be added. Furthermore, when using microorganisms that exhibit nutritional requirements, it is necessary to add to the medium a substance that satisfies the growth of the microorganisms. Cultivation is carried out in a liquid medium containing the above-mentioned medium components by selecting a culture method suitable for the microorganism used from among ordinary culture methods such as shaking culture, aerated agitation culture, static culture, and continuous culture. Culture conditions may be appropriately selected depending on the type of microorganism and medium used, but the pH at the start of culture is usually adjusted to about 6 to 8, and culture is carried out at a temperature of about 25 to 35°C. The culture period may be a period sufficient for the growth of the microorganism used, and is usually 1 to 3 days. Embodiments of enzyme source The enzyme source used in the method of the present invention includes: 1.
It contains an enzyme system that catalyzes the reaction of producing ribavirin from 2,4-triazole-3-carboxamide and a ribose donor. The main essential enzyme for the enzymatic reaction in the method of the present invention is nucleoside phosphorylase, and it is essential that the enzyme source used in the present invention has this enzyme activity. Furthermore, in embodiments in which a ribose donor that does not serve as a direct substrate for the present enzyme is used, it is preferable that the ribose donor contains enzyme system activity that leads from the ribose donor to the substrate. After culturing the microorganisms as described above, the obtained culture, viable bacterial bodies collected from the culture by conventional methods such as centrifugation, sedimentation, and flocculation, or appropriate treatment of viable bacterial bodies. A treated bacterial cell product obtained by subjecting the enzyme can be used as an enzyme source in the present invention. Here, the term "culture" refers to a state in which the culture medium and cultured bacterial cells are unseparated after cultivation. In addition, the bacterial cell treatment product is
Dried bacterial cells, cell membrane and/or wall-denatured bacterial cells, crushed bacterial cells, immobilized bacterial cells, bacterial cell extracts, protein fractions of bacterial cell extracts having enzyme activity involved in the production of ribavirin, which is the object of the present invention protein fraction or its purified product, protein fraction or its purified product, etc. The method for obtaining the treated bacterial cell product is illustrated below. That is, physical treatments such as freeze-thaw treatment, freeze-drying treatment, ventilation drying treatment, acetone drying treatment, heating treatment under acidic or alkaline conditions, grinding treatment, ultrasonic treatment, osmotic pressure difference treatment, etc. means or enzyme treatments such as lysozyme, cell wall lytic enzymes, toluene,
By subjecting the bacterial extract to chemical or biochemical treatments such as contact treatment with a solvent such as xylene or butyl alcohol (butanol) or a surfactant, alone or in combination, for example, salting out treatment, By applying enzymatic separation and purification methods such as isoelectric focusing treatment, organic solvent precipitation treatment, various chromatographic treatments, and dialysis treatment alone or in combination, live bacterial cells, bacterial cell extracts, or purified products thereof can be subjected to comprehensive treatment. A bacterial cell-treated product can be obtained by applying enzyme immobilization means such as crosslinking treatment, adsorption treatment to a carrier, etc. Reaction substrate The reaction substrate in the enzyme reaction of the present invention is 1, 2,
4-triazole-3-carboxamide and ribose donor. 1,2,4-triazole-3-carboxamide can be used in either a free form or a salt such as a sodium salt. The ribose donor may be ribonucleoside or D-ribose, or any of their various phosphoric acid esters. That is, the base portion of the ribonucleoside may be any purine-based or pyridine-based base, and can be used regardless of whether it is derived from a natural product or chemically synthesized. In addition, even if the hydroxyl group of the sugar moiety of ribonucleoside or D-ribose is unsubstituted, monophosphoric acid ester residues, di- It may have a phosphate ester residue or a triphosphate residue. Further, these phosphoric acid esters may be in a free form, or may be common alkali salts such as sodium, potassium, calcium, magnesium, ammonium, and triethylammonium. Specific examples of ribose donors include inosine, adenosine,
Ribonucleosides such as guanosine, xanthosine, uridine, cytidine, 5'-inosinic acid, 5'-
Adenylic acid, 5'-guanylic acid, 5'-xanthylic acid, 5'-uridic acid, 5'-cytidylic acid, 2'(3')-
Inosinic acid, 2'(3')-adenylic acid, 2'(3')-guanylic acid, 2'(3')-xanthylic acid, 2'(3')-uridylic acid, 2'(3')- Examples include ribonucleotides such as cytidylic acid, D-ribose, and D-ribose-1-phosphate. Reaction Substrate Solution The substrate solution used in the enzyme reaction of the present invention is basically an aqueous liquid in which the above-mentioned reaction substrate is dissolved or suspended in an aqueous medium. In addition to the above-mentioned reaction substrates, the aqueous liquid contains substances that promote enzyme reactions, such as phosphate ion donors, organic solvents, surfactants, metal salts, coenzymes, acids, bases, and sugars, as necessary. It may contain a substance that improves the solubility of the substrate, a substance that improves the contact between the enzyme and the reaction substrate, and the like. As the aqueous medium, water or various buffers suitable for enzyme reactions (phosphate buffer, imidazole-hydrochloric acid buffer, veronal-hydrochloric acid buffer, Tris-hydrochloric acid buffer, etc.) can be used. The enzyme reaction of the present invention is mainly based on the action of nucleoside phosphorylase, and therefore requires the presence of phosphate ions in the reaction system. If phosphate ions are not present in the enzyme reaction system, it is necessary to add a phosphate ion donor. As the phosphate ion donor, any substance that can be dissociated into phosphate ions in an aqueous medium may be used, such as free phosphoric acid itself, inorganic phosphates, alkali metals such as sodium and potassium, calcium, Salts with alkaline earth metals such as magnesium and ammonium are preferably used. Furthermore, as a phosphate ion donor, a system capable of releasing phosphate ions in the enzyme reaction solution, such as a combination of a ribose donor ribonucleotide and a phosphatase, or a combination of a nucleotide and a nucleotidase, etc. can be used. . The enzymes involved in the reaction in such a system may be mixed in the enzyme source used in the present invention, such as separately added enzymes, or bacterial cells or bacterial cell-treated products having the enzymatic activity. It may be. The above-mentioned phosphoric acid donor system may be added from outside the system during the oxygen reaction, or may be contained as a component in the enzyme source. That is, as long as it is in a form that can be used for enzymatic reactions, the above-mentioned substances alone or a combination of two or more of them, or microorganisms containing the above-mentioned substances or a processed product thereof, can be used as the enzyme of the present invention. These substances may be added separately to the reaction solution during the reaction, or these substances contained as bacterial cell components in the microorganism used may be used as they are. Examples of organic solvents include methanol, ethanol, propanol, butanol, pentanol, acetone, methyl ethyl ketone, ethyl acetate, toluene, toterahydrofuran, dioxane, dimethyl sulfoxide, dimethyl acetamide, dimethyl formamide, 2-methoxyethanol, 2-ethoxy ethanol. , 1,2-dimethoxyethane and the like. Contact Method The reaction of the present invention is achieved by contacting the enzyme source and the reaction substrate in an aqueous medium under conditions in which microorganisms do not grow. The contact method may be selected as appropriate depending on the form of the enzyme source, but it is usually a batch method in which the enzyme source is suspended or dissolved in a reaction substrate solution and preferably stirred or shaken while heating, or a contact method is used. Mix with appropriate carriers, auxiliaries, and adsorbents as necessary,
Alternatively, a column method may be applied in which the reaction substrate solution is passed through the reaction substrate by supporting it in a column. Concentrations or Added Amounts of Reaction Substrates and Enzyme Sources During the reaction, the substrate concentration of the reaction solution is not particularly limited, and a substrate concentration below the saturation concentration of the substrate in the aqueous medium used at the reaction temperature is usually adopted; The substrate concentration can also be increased by adding the aforementioned organic solvents, surfactants, etc. to the substrate solution. Alternatively, the substrates can be present in a suspended state at a saturation concentration or higher in the reaction solution, and each substrate can be dissolved as the reaction progresses. Alternatively, the substrate can be added sequentially during the reaction to maintain its concentration at an appropriate level. When dissolving the substrate,
The substrate concentration is usually 5 to 5 for 1,2,4-triazole-3-carboxamide or its salts.
The amount is about 200mM, preferably about 10-100mM. Regarding the ribose donor, if it is added separately, it is usually about 5 to 300mM, preferably 10mM.
~150mM. The amount of the enzyme source to be used can be easily determined by those skilled in the art through preliminary experiments, taking into account the type of microorganism, its mode of use, reaction efficiency, economics, etc.; For fresh (wet) bacterial cells, a 10-150 mg/ml substrate solution is sufficient; for dry bacterial cells, a 2-30 mg/ml substrate solution is sufficient; for column methods, use an appropriate amount according to the batch method. Can be set. Reaction Conditions The conditions for the reaction of the present invention are not particularly limited, except that the bacterial cells are subjected to the reaction under non-proliferation conditions, that is, in the state of resting or dead sterilized cells. As a method for conducting the reaction under conditions where microorganisms do not grow, the enzyme reaction temperature is set within a temperature range in which the microorganisms used do not grow (however, the temperature range does not inactivate the enzymes involved in the reaction of the present invention). ,
A method of subjecting the microorganisms to a state in which they cannot grow by physically, chemically or biochemically treating them as described above, and then subjecting them to a reaction; The method of adding a substance that inhibits the reaction to the reaction substrate solution may be used alone or in combination, but the method of manipulating the reaction temperature is particularly effective and simple. In the reaction of the present invention, the reaction temperature is an important condition as described above, and is a characteristic of the present invention. The reaction proceeds in the range of 37-80℃,
Considering practicality, the temperature range is preferably 40 to 70°C.
Note that optimal temperature conditions vary depending on the type of reaction substrate, but can be easily determined by those skilled in the art through preliminary experiments. By carrying out the enzymatic reaction at a temperature range of 40°C or higher, the growth of the microorganisms used is largely suppressed. For example, 1,2,4-triazole-3-carboxamide was obtained by using the same viable cells of the same microorganism as in Example 1 described later and reacting at each predetermined temperature of 28 to 60°C in the same manner as in Example 1. Table 1 below shows the relationship between the production rate (%) of ribavirin from and the survival rate (%) of the microorganisms used after the reaction. The survival rate of microorganisms is the percentage of the number of viable microorganisms/ml after the reaction to the number of viable microorganisms/ml before the start of the reaction. [Table] As mentioned above, this reaction must be carried out under conditions where the microorganisms used do not grow, that is, under conditions where most of the microorganisms are dormant or die. Furthermore, it has been experimentally confirmed that in the present invention, setting the reaction temperature within the above range not only increases the enzyme reaction rate but also suppresses the decomposition reaction of the produced ribavirin. As an example, suspension 1 of the same microorganism as in Example 1
Add ml to 1 ml of 20mM ribavirin solution and heat at 28-60°C.
Table 2 shows the residual rate (%) of ribavirin after incubation at each predetermined temperature for 20 hours. [Table] From the above results, it can be confirmed that a reaction temperature of 37°C or higher is suitable. The liquid properties of the reaction substrate solution should be generally maintained within the range of PH4 to 10, preferably PH6 to 8.
When the pH fluctuates, it may be corrected to a preferred pH range using an acid such as hydrochloric acid, sulfuric acid, or phosphoric acid, or an alkali such as sodium hydroxide, potassium hydroxide, aqueous ammonia, or ammonia gas. The reaction time should be determined while checking the conversion rate of the reaction substrate to the target product, but in the case of a batch method, it is usually sufficient to react for about 2 to 45 hours, preferably 24 to 36 hours. The reaction may be carried out by setting appropriate conditions according to the method. Separation and purification After the reaction, if necessary, isolate and remove the bacterial cells using conventional methods such as filtration, centrifugation, or aggregation.
Subjected to ribavirin separation and purification process. Separation and purification of ribavirin may be carried out using known methods or applications thereof, such as various chromatography methods such as ion exchange chromatography, adsorption chromatography, partition chromatography, and gel permeation methods, countercurrent distribution, General separation and purification methods such as methods that utilize distribution between two liquid phases such as countercurrent extraction, and methods that utilize differences in solubility such as concentration, cooling, and addition of organic solvents may be used alone or in appropriate combinations. . Analysis In Examples of the present invention, ribavirin and 1,2,4-triazole-3-carboxamide were analyzed by high performance liquid chromatography. When analyzed using the equipment and conditions shown below,
Ribavirin has a retention time of 1, 2, 4 around 3.50 minutes.
-triazole-3-carboxamide retention time
It is eluted around 2.65 minutes, and the amount of each can be calculated from the calibration curve. Equipment: Shimadzu high performance liquid chromatograph LC-3A model (manufactured by Shimadzu Corporation) Column: Micro Bondapak C 18 , 4.6 mm x 250 mm (manufactured by Nippon Waters Limited) Eluent: Contains 2% acetonitrile 20mM Tris-HCl buffer (PH7.5) Flow rate: 1ml/min Measurement wavelength: 225nm Column operating temperature: room temperature Experimental Examples The present invention will be explained in more detail with experimental examples below, but none of these were carried out. This is one embodiment of the present invention, and is not intended to limit the scope of the present invention. Example 1 Brevibacterium acetylicum AT-6-
7 was inoculated into 5 liters of a 2% aqueous solution of powdered bouillon (manufactured by Kyokuto Pharmaceutical Industries, Ltd.) and cultured with shaking at 28°C for 24 hours. After culturing, the cells were collected by centrifugation, washed, and sterilized water was added to obtain 250 ml of cell suspension.
250 ml of the above bacterial cell suspension was added to 750 ml of an aqueous solution (PH 7.0) containing 66.7 mM 1,2,4-triazole-3-carboxamide, 66.7 mM inosine, and 100 mM potassium phosphate, and reacted at 60°C for 24 hours. (Ribavirin production rate 74.88%). After the reaction solution was centrifuged to remove bacterial cells, it was passed through a cation exchange resin (H + type), and the passed water washing solution was adsorbed on activated carbon. Ribavirin was eluted from the activated carbon column with an ethanol-ammonia solution, and after removing the ethanol after elution, it was passed through an anion exchange resin, and the washed water solution was concentrated under reduced pressure.
The volume was adjusted to 50 ml and cooled. After cooling, the precipitated crystals were separated and dried to obtain 6.5 g of ribavirin crystals. Comparative Example Using the same strain as in Example 1,
An attempt was made to produce ribavirin by adding a raw material triazole compound during the growth of microorganisms in the same manner as in Example 1 of Publication No. 17830. That is, the above strain was mixed with 130 g of glucose, 1 g of potassium phosphate, 3 g of dipotassium phosphate, 1 g of magnesium sulfate, 0.1 g of calcium chloride, 10 mg of iron sulfate, 5 mg of zinc sulfate, 10 mg of manganese sulfate, 5 mg of vitamin B1 , and 10 mg of calcium pantothenate. , cystine 20mg, biotin 30μ
With a composition containing 10 g of meat extract, 2 g of ammonium sulfate, and 2 g of urea (separately sterilized) per liter, inoculate 10 ml of a medium adjusted to pH 7.6, and adjust the pH to 7.2 with aqueous ammonia every 12 hours. The cells were cultured with shaking at 28°C. 1,2,4- 24 hours after the start of culture
Triazole-3-carboxamide was added at a concentration of 2 mg/ml and cultured for an additional 4 days. After centrifuging the culture solution, the supernatant was analyzed, but no ribavirin production was observed. Example 2 The same bacterial strain as in Example 1 was cultured in the same manner as in Example 1 (however, each culture solution was 10 ml), and after culturing,
Bacteria were collected by centrifugation, and 1 ml of sterilized water was added to each to obtain a bacterial cell suspension. To this cell suspension, 1 ml each of an aqueous solution (PH7.0) containing 20 mM 1,2,4-triazole-3-carboxamide, 20 mM of various ribose donors shown in Table 3, and 25 mM monopotassium phosphate was added. 60
The reaction was allowed to take place at ℃ for 24 hours. After the reaction was completed, bacteria were removed by centrifugation, and the supernatant was analyzed, and the production rate of ribavirin was as shown in Table 3. Note that the ribavirin production rate refers to the conversion rate (%) of 1,2,4-triazole-3-carboxamide to ribavirin. [Table] Example 3 The same bacterial strain as in Example 1 was inoculated into each 100 ml of 2% powdered bouillon medium and cultured with shaking at 28°C for 22 hours to obtain cultured bacterial cells. A suspension of the processed material was obtained. 1 Acetone-dried bacterial cells: Add 50 ml of acetone to live bacterial cells, let stand for 15 minutes, centrifuge, add another 50 ml of acetone to the obtained bacterial cells, perform the same treatment, and then vacuum dry. Bacterial cells were obtained. Water was added to this to obtain 10 ml of a suspension of treated bacterial cells. 2. Freeze and thaw bacterial cells: Freeze live bacterial cells at -80°C overnight, thaw, and add water to make 10 ml of bacterial cell suspension.
I got it. 3 Osmotic pressure differential treatment of bacterial cells: Add 100 ml of saturated saline to live bacterial cells, cool on ice overnight, centrifuge to discard the supernatant, add water to isolated bacterial cells, and suspend the treated bacterial cells. 10 ml of liquid was obtained. 4. Ultrasonicated bacterial cells: Water was added to the live bacterial cells to make a total volume of 10 ml, and ultrasonication was performed for 20 minutes at an output voltage of 1.6 KV. 10 ml each of the above bacterial cell suspensions and Example 1
Add 10 ml of untreated bacterial cell suspension obtained in the same manner as
10 ml each of a reaction substrate solution (PH7.0) containing 20 mM 1,2,4-triazole-3-carboxamide, 20 mM inosine, and 25 mM potassium phosphate was added, and after reaction at 60°C for 24 hours, the production rate of ribavirin was analyzed. However, the results were as shown in Table 4. [Table] Example 4 The same bacterial strain as in Example 1 was inoculated into 25 ml of 2% bouillon medium, cultured with shaking at 28°C for 24 hours, and after culturing, the bacteria were collected, and water was added to each 2.5 ml of bacterial cells. A suspension was prepared. Add to this 2.5 ml each of the same reaction substrate solution as in Example 3.
was added and reacted for 20 hours at various temperatures from 28 to 70°C (Table 5), and the production rate of ribavirin was analyzed.
It was as shown in the table. [Table] Example 5 Using the same strain as in Example 1, add 2.5 ml each of the following reaction substrate solutions (A) or (B) to 2.5 ml each of the bacterial cell suspension prepared in the same manner as in Example 4. In addition, after reaction at 60° C. for 20 hours, the production rate of ribavirin was analyzed and was as shown in Table 6. Reaction substrate solution (A): 20mM 1,2,4-triazole-3-carboxamide and 20mM inosine Reaction substrate solution (B): Add 25mM monopotassium phosphate to the same amount of each substrate as in the above reaction substrate solution (A). [Table] Example 6 2.5 ml of the reaction substrate solution (B) of Example 5 was added to 2.5 ml of the same bacterial cell suspension as in Example 5, and after reaction at 60°C for 20 hours, the bacterial cells were separated. Add 10ml of water to this isolated bacterial body and use it for the next reaction, and repeat the same reaction as above for 10 minutes.
Repeated times. The first ribavirin production rate is 100
Table 7 shows the relative production rate of each reaction when [Table] Example 7 The same strain as in Example 1 was inoculated into 1 liter of 2% bouillon medium, and after culturing with shaking at 30°C for 22 hours,
Viable cells were obtained by centrifugation. Add solution A [24 ml of 1N hydrochloric acid, Tris
3.425g, aqueous solution prepared by dissolving 0.23ml of TEMED (N,N,N',N'-tetramethylenediamine) and diluting it to 100ml with water] 20ml, Solution B [acrylamide 30
g, BIS (N,N-methylenebis(acrylamide)) 0.8g dissolved in water to make 100ml]
20 ml and 40 ml of Solution C [an aqueous solution in which 0.3 g of ammonium persulfate was dissolved in water to make 200 ml] were added and allowed to stand to immobilize the bacterial cells. After immobilization, the cells were cut into small pieces using a homogenizer to obtain 180 ml of immobilized bacterial cells. 20ml of a substrate solution containing 20mM 1,2,4-triazole-3-carboxamide, 20ml inosine, and 25mM monopotassium phosphate to 10ml of these immobilized bacterial cells.
(PH7.0) and reacted at 60°C for 24 hours. Analysis of the reaction solution revealed that 62.89% ribavirin had been produced. In addition, when the reaction was carried out under the same conditions using viable cells, the production rate of ribavirin was 65.44%. Example 8 Brevibacterium acetylicum AT-6-
7 and the known strain Brevibacterium ammoniagenes (B.ammoniagenes) ATCC 6871
The strains were cultured under the same conditions and subjected to enzyme reaction under the same conditions, and the amount of ribavirin produced (production rate) was compared. That is, 1.5% yeast extract medium (PH7.0) each 9
Both strains were inoculated into ml and cultured with shaking at 28°C for 1 day. 10ml of a solution containing 40mM 1,2,4-triazole-3-carboxamide, 60mM disodium 5'-uridylate and 8mM monopotassium phosphate
Bacterial cells collected from the culture medium by centrifugation were added to the mixture, and the mixture was allowed to react at 45°C for 20 hours. After the reaction, the bacterial cells were removed by centrifugation, and the reaction solution was analyzed by high performance liquid chromatography. The results were as shown in Table 8. [Table] Example 9 Example 8 Using AT-6-7 strain and ATCC 6871 strain
100 ml of each culture was carried out in the same manner as above, and the cells were collected by centrifugation to obtain bacterial cells. The cells were treated with 40mM 1,2,4-triazole-3-carboxamide, 60mM uridine and
It was added to 100 ml of a solution containing 50 mM monopotassium phosphate, and reacted at 45°C for 20 hours. After the reaction, the production rate of ribavirin was measured and found to be 86.04% for the AT-6-7 strain.
In the case of ATCC 6871 stock, it was 2.30%. Example 10 Each bacterial cell of AT-6-7 strain and ATCC 6871 strain obtained by the same method as Example 8 (culture solution 20
ml min), 4mM 1,2,4-triazole-3-
A solution containing carboxamide, 4mM uridine and 5mM monopotassium phosphate (substrate solution A) and a solution containing 4mM 1,2,4-triazole-3-carboxamide, 4mM disodium 5'-uridate and 1mM monopotassium phosphate (substrate solution A). It was added to each of the substrate solutions B) and allowed to react for 24 hours. In addition, the reaction is performed at 45℃ in the case of AT-6-7 bacteria.
In the case of ATCC 6871 strain, it was carried out at 60°C. After the reaction, the production rate of ribavirin was measured and was as shown in Table 9. [Table] Example 11 Using the same method as in Example 8, strain AT-6-7 and
Bacterial cells obtained by culturing ATCC 6871 strain (5 ml of culture solution)
water was added to obtain 0.5 ml of bacterial cell suspension. Add 0.5 ml of the above cell suspension to 0.5 ml of a solution (PH7.0) containing 17.8 mM 1,2,4-triazole-3-carboxamide, 81.9 mM uridine, and 58.8 mM monopotassium phosphate, and incubate at 60°C for 10 Allowed time to react. After the reaction, the amount of ribavirin produced in the reaction solution was measured and the production rate of ribavirin was calculated.
It was as shown in the table. [Table] Example 12 Various strains of Brevibacterium acetylicum shown in Table 11 were cultured in the same manner as in Example 8,
Centrifuge the culture solution to remove bacterial cells (4 ml of each culture solution)
I got it. 4ml of a solution containing 40mM 1,2,4-triazole-3-carboxamide, 60mM disodium 5'-uridate and 10mM monopotassium phosphate
Each of the above bacterial cells was added to the solution and reacted at 45℃ for 22 hours. After the reaction, the production rate of ribavirin was measured.
It was as shown in Table 11. [Table] Example 13 The same operation as in Example 12 was performed except that 60 mM inosine was used as the ribose donor and the reaction temperature was 60° C., and the results shown in Table 12 were obtained. [Table] Reference Example In order to compare the phosphatase activities of the AT-6-7 strain and the ATCC 6871 strain, a cell suspension of each strain was added to a 5'-uridylate disodium solution and reacted. The conversion rate was measured. The bacterial cell suspension was prepared by suspending the bacterial cells (9 ml of culture solution) obtained by culturing in the same manner as in Example 8 in 1 ml of water, and 6 mM disodium 5'-uridylate was added as the substrate solution. 9 ml of the aqueous solution containing was used. The reaction was carried out at 45°C, and the conversion rate was measured at each time period from 0.5 to 24 hours. The conversion rate was measured by high performance liquid chromatography. The result is
It was as shown in Table 13. 【table】

Claims (1)

【特許請求の範囲】 1 1,2,4−トリアゾール−3−カルボキサ
ミドまたはその塩とリボース供与体とをブレビバ
クテリウム・アセチリカム(Brevibacterium
acetylicum)の酵素作用下に該微生物の非増殖
条件下において水性媒体中で反応させてリバビリ
ンを生成させることを特徴とする、リバビリンの
製造法。 2 ブレビバクテリウム・アセチリカムが、ブレ
ビバクテリウム・アセチリカムAT−6−7(微
工研菌寄第6305号)である、特許請求の範囲第1
項記載の方法。 3 酵素反応を微生物の非増殖条件下において行
う方法が、反応液を微生物の増殖できない温度条
件に保持して反応を行う方法、微生物菌体をあら
かじめ該微生物が休止もしくは死滅する方法によ
つて処理し、これを用いて反応を行う方法、およ
び反応液に微生物の増殖を阻害する物質を添加し
て反応を行う方法からなる群より選ばれた一種の
方法または二種以上の組み合せた方法である、特
許請求の範囲第1〜2項のいずれか1項に記載の
リバビリンの製造法。 4 微生物の非増殖条件が、37〜70℃の温度条件
である、特許請求の範囲第1〜3項のいずれか1
項に記載のリバビリンの製造法。
[Scope of Claims] 1 1,2,4-triazole-3-carboxamide or a salt thereof and a ribose donor are prepared from Brevibacterium acetylicum.
1. A method for producing ribavirin, which comprises producing ribavirin by reacting it in an aqueous medium under conditions in which the microorganism does not grow under the enzymatic action of M. acetylicum. 2. Claim 1, wherein Brevibacterium acetylicum is Brevibacterium acetylicum AT-6-7 (Feikoken Bibori No. 6305)
The method described in section. 3. A method in which the enzymatic reaction is carried out under conditions in which microorganisms do not grow, a method in which the reaction is carried out while the reaction solution is maintained at a temperature condition in which microorganisms cannot grow, and a method in which the microorganism cells are treated in advance by a method in which the microorganisms are suspended or killed. It is one type of method selected from the group consisting of a method of carrying out a reaction using this, and a method of carrying out a reaction by adding a substance that inhibits the growth of microorganisms to the reaction solution, or a method that is a combination of two or more types. , a method for producing ribavirin according to any one of claims 1 to 2. 4. Any one of claims 1 to 3, wherein the non-growth condition for microorganisms is a temperature condition of 37 to 70°C.
The method for producing ribavirin as described in section.
JP16091684A 1984-07-31 1984-07-31 Production of ribavirin Granted JPS60133896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16091684A JPS60133896A (en) 1984-07-31 1984-07-31 Production of ribavirin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16091684A JPS60133896A (en) 1984-07-31 1984-07-31 Production of ribavirin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7389582A Division JPS6025119B2 (en) 1982-04-30 1982-04-30 Ribavirin manufacturing method

Publications (2)

Publication Number Publication Date
JPS60133896A JPS60133896A (en) 1985-07-17
JPH038760B2 true JPH038760B2 (en) 1991-02-06

Family

ID=15725079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16091684A Granted JPS60133896A (en) 1984-07-31 1984-07-31 Production of ribavirin

Country Status (1)

Country Link
JP (1) JPS60133896A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146593A (en) * 1981-03-09 1982-09-10 Ajinomoto Co Inc Preparation of ribofuranosyltriazole derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146593A (en) * 1981-03-09 1982-09-10 Ajinomoto Co Inc Preparation of ribofuranosyltriazole derivative

Also Published As

Publication number Publication date
JPS60133896A (en) 1985-07-17

Similar Documents

Publication Publication Date Title
KR870002167B1 (en) Process for preparing ribavirin
EP0411158B1 (en) Process for producing nucleosides by using phosphorylases obtainable from Bacillus stearothermophilus
US4767713A (en) Pure culture of Brevibacterium acetylicum AT-6-7, ATCC 39311
JP3928676B2 (en) Method for producing 2'-deoxyadenosine, 2'-deoxyguanosine
JPS6111598B2 (en)
JP3799784B2 (en) Process for producing 2,6-diaminopurine-2'-deoxyriboside and 2'-deoxyguanosine
EP0090417B1 (en) Process for producing 3'-deoxyguanosine
US4594320A (en) Process for producing 3-deoxyguanosine
JPS6150597B2 (en)
JPH038760B2 (en)
JPH0757198B2 (en) Method for producing dideoxyinosine
JPH0335915B2 (en)
JPS58190396A (en) Preparation of ribavirin
JP2800187B2 (en) Method for producing 5-methyluridine
JP4173815B2 (en) Method for producing 2'-deoxyguanosine
JPH0314439B2 (en)
JPH0337919B2 (en)
JP3992073B2 (en) Method for producing 2'-deoxyadenosine, 2'-deoxyguanosine
US3879260A (en) Process for production of ribosides of nucleic acid base derivatives and analogues thereof
JPS59143599A (en) Production of triazole nucleoside
JPH0231686A (en) Production of trifluorothymidine
JPH03198790A (en) Production of 5-ethynyl-1-beta-d-ribofuranosylimidazole-4-carboxamide
JPH0419838B2 (en)
JPH0365957B2 (en)
JPS5948997B2 (en) Method for producing 5'-purine ribonucleotide