JPH0378222A - Manufacture of solid tantalum capacitor - Google Patents

Manufacture of solid tantalum capacitor

Info

Publication number
JPH0378222A
JPH0378222A JP1214245A JP21424589A JPH0378222A JP H0378222 A JPH0378222 A JP H0378222A JP 1214245 A JP1214245 A JP 1214245A JP 21424589 A JP21424589 A JP 21424589A JP H0378222 A JPH0378222 A JP H0378222A
Authority
JP
Japan
Prior art keywords
film
conductive polymer
heat
polymer film
resistant insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1214245A
Other languages
Japanese (ja)
Other versions
JP2640864B2 (en
Inventor
Minoru Fukuda
実 福田
Kumiko Motohashi
本橋 久美子
Hideo Yamamoto
秀雄 山本
Isao Isa
伊佐 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Japan Carlit Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP1214245A priority Critical patent/JP2640864B2/en
Publication of JPH0378222A publication Critical patent/JPH0378222A/en
Application granted granted Critical
Publication of JP2640864B2 publication Critical patent/JP2640864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To improve capacitor properties and to reduce development of shortcircuit defects greatly by covering an anode lead with hydrophilic heat resistant insulator by making a surface thereof conductive and by carrying out required electrolytic polymerization. CONSTITUTION:An anode lead 7 which is connected to a sintered tantalum element 1 is covered with a dielectric oxide film 2. A part of the lead 7 is further covered with a hydrophilic heat resistant insulator 3. The insulator 3 and the film 2 are made conductive by a conductive polymer film 4 which is formed by chemical oxidative polymerization. Furthermore, a conductive high polymer film 5 is formed by electrolytic polymerization between an external cathode and an anode of a conductor 8 which is in contact with a part of the film 4, and a solid tantalum capacitor is manufactured. According to this constitution, it is possible to realize a small leak current and a large tangent of a loss angle without damaging the film 2, to produce the film 4 uniformly by the insulator 3, thereby making production of the film 5 uniform, to improve capacitor properties and to remarkably reduce development rate of shortcircuit defects.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、導電性高分子膜を固体電解質としたタンタル
固体電解コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a tantalum solid electrolytic capacitor using a conductive polymer membrane as a solid electrolyte.

(従来の技術) 誘電体酸化皮膜を形成したタンタル焼結体の表面に、順
次、化学重合によって形成した導電性高分子膜、電解重
合によって形成した導電性高分子膜を有し、該電解重合
による導電性高分子膜上にカーボン層および導電性塗膜
を形成せしめた構造の固体電解コンデンサが提案されて
いる。このコンデンサは従来の固体電解コンデンサに比
べ、静電容量が大きく温度特性、周波数特性が良いなど
の特徴を有するが、漏れ電流が大きい、あるいは損失角
の正接(tanδ)が大きいなどの改良すべき点が残さ
れており、更に電解重合時に導電体(給電電極)の接触
により、誘電体酸化皮膜を損傷することがあるなどの問
題点があった。
(Prior art) A conductive polymer film formed by chemical polymerization and a conductive polymer film formed by electrolytic polymerization are sequentially formed on the surface of a tantalum sintered body on which a dielectric oxide film is formed. A solid electrolytic capacitor having a structure in which a carbon layer and a conductive coating film are formed on a conductive polymer film has been proposed. Compared to conventional solid electrolytic capacitors, this capacitor has features such as a large capacitance and good temperature and frequency characteristics, but there are some issues that require improvement, such as a large leakage current or a large tangent of the loss angle (tanδ). In addition, there were other problems such as damage to the dielectric oxide film due to contact with the conductor (power supply electrode) during electrolytic polymerization.

(発明が解決しようとする課題) 本願出願人は、誘電体酸化皮膜の損傷を防止する目的で
、導電体を接触せしめる部分に耐熱性絶縁体を設けるこ
とを提案したが、耐熱性絶縁体は一般に親水性に乏しい
ため、化学酸化重合膜の生成が不均一になることがあり
、このため電解酸化重合膜の生成が不均一になる問題点
があった。
(Problem to be Solved by the Invention) The applicant proposed providing a heat-resistant insulator in the part where the conductor comes into contact in order to prevent damage to the dielectric oxide film, but the heat-resistant insulator is Generally, due to poor hydrophilicity, the formation of a chemically oxidized polymer film may be uneven, and this has caused a problem in that the formation of an electrolytically oxidized polymer film is uneven.

本発明は前記問題点を解決するためになされたもので、
誘電体酸化皮膜を形成したタンタル焼結体の表面に固体
電解質として導電性高分子膜を形成せしめた構造の固体
電解コンデンサにおいて、漏れ電流が小さく、かつ、損
失角の正接の小さい、優れたコンデンサ特性を持つタン
タル固体電解コンデンサの製造方法を提供することを目
的とする。
The present invention has been made to solve the above problems,
An excellent solid electrolytic capacitor with a structure in which a conductive polymer film is formed as a solid electrolyte on the surface of a tantalum sintered body on which a dielectric oxide film is formed, with low leakage current and a small loss angle tangent. The purpose of the present invention is to provide a method for manufacturing tantalum solid electrolytic capacitors with specific characteristics.

[発明の構成] (問題を解決するための手段) 本発明者らは鋭意研究の結果、上記目的を達成しうるタ
ンタル固体電解コンデンサの製造方法を発明するに至っ
た。
[Structure of the Invention] (Means for Solving the Problem) As a result of intensive research, the present inventors have come to invent a method for manufacturing a tantalum solid electrolytic capacitor that can achieve the above object.

すなわち陽極リードを接続したタンタル焼結体素子の表
面に誘電体酸化皮膜を形成し、陽極リードの一部を親水
性の耐熱性絶縁体で被覆し、該耐熱性絶縁体の表面およ
び誘電体酸化皮膜上に化学酸化重合による導電性高分子
膜を形成し、耐熱性絶縁体の表面上に形成した化学酸化
重合による導電性高分子膜の1部に接触させた導電体を
陽極として外部陰極との間で電解重合し、化学酸化重合
による導電性高分子膜上に電解重合による導電性高分子
膜を形成することを特徴とするタンタル固体電解コンデ
ンサの製造方法である。
That is, a dielectric oxide film is formed on the surface of the tantalum sintered element to which the anode lead is connected, a part of the anode lead is covered with a hydrophilic heat-resistant insulator, and the surface of the heat-resistant insulator and the dielectric oxide are coated. A conductive polymer film formed by chemical oxidation polymerization is formed on the film, and a conductor in contact with a part of the conductive polymer film formed by chemical oxidation polymerization formed on the surface of the heat-resistant insulator is used as an anode and an external cathode. This is a method for manufacturing a tantalum solid electrolytic capacitor, characterized in that a conductive polymer film is formed by electrolytic polymerization on a conductive polymer film by chemical oxidative polymerization.

導電性高分子としてはポリピロール、ポリチオフェン、
ポリフラン、ポリアニリンを用い、導電性高分子の安定
性の面からポリピロールが好ましい。
Conductive polymers include polypyrrole, polythiophene,
Polyfuran and polyaniline are used, and polypyrrole is preferred from the viewpoint of stability of the conductive polymer.

次に本発明の具体例を図面により更に詳しく説明する。Next, specific examples of the present invention will be explained in more detail with reference to the drawings.

第1図はタンタル焼結体素子の中心部よりタンタル線に
より陽極リードを取り出したコンデンサの概略断面図で
ある。タンタルよりなる焼結体素子(1)とタンタル線
よりなる陽極リード(7)の一部に、陽極酸化により誘
電体酸化皮膜(2)を形成せしめる。次に、陽極リード
(7)の一部を親水性の耐熱性絶縁体(3)で被覆する
FIG. 1 is a schematic sectional view of a capacitor in which an anode lead is taken out by a tantalum wire from the center of a tantalum sintered element. A dielectric oxide film (2) is formed on a part of the sintered element (1) made of tantalum and the anode lead (7) made of tantalum wire by anodic oxidation. Next, a portion of the anode lead (7) is covered with a hydrophilic heat-resistant insulator (3).

被覆する範囲は陽極リードの一部であり、好ましくは陽
極リードの素子に接する一部である。
The covered area is a part of the anode lead, preferably a part of the anode lead that is in contact with the element.

次に、該耐熱性絶縁体(3)および誘電体酸化皮膜(2
)を酸化剤または酸化剤を含む溶液に浸漬し、更に導電
性高分子単量体または該単量体を含む溶液に浸漬し、耐
熱性絶縁体(3)表面および誘電体酸化皮膜(2)上に
化学酸化重合による導電性高分子膜(4)を形成せしめ
る。
Next, the heat-resistant insulator (3) and the dielectric oxide film (2)
) is immersed in an oxidizing agent or a solution containing an oxidizing agent, and further immersed in a conductive polymer monomer or a solution containing the monomer to form a heat-resistant insulator (3) surface and a dielectric oxide film (2). A conductive polymer film (4) is formed thereon by chemical oxidative polymerization.

耐熱性絶縁体(3)上に形成した化学酸化重合導電性高
分子膜(4)の一部に導電体(8)を接触させ、支持電
解質および導電性高分子単量体を含む電解液に導電体(
6)の一部が没するように浸漬し、導電体(6)を陽極
とし外部陰極との間で電解重合することにより、化学酸
化重合による導電性高分子膜上に電解酸化重合によ−る
導電性高分子膜(5)を形成させる。この電解酸化重合
において、耐熱性絶縁体(3)が無いと導電体(6)の
接触により誘電体酸化皮膜(2)が損傷することがあり
、損傷の結果、できあがったコンデンサの漏れ電流が大
きくなり、また損失角の正接も大きくなる。
A conductor (8) is brought into contact with a part of the chemical oxidation polymerized conductive polymer film (4) formed on the heat-resistant insulator (3), and an electrolytic solution containing a supporting electrolyte and a conductive polymer monomer is applied. conductor(
6) is immersed so that a portion of the conductor (6) is submerged, and electrolytic polymerization is performed between the conductor (6) as an anode and an external cathode. A conductive polymer film (5) is formed. In this electrolytic oxidation polymerization, if the heat-resistant insulator (3) is not present, the dielectric oxide film (2) may be damaged due to contact with the conductor (6), and as a result of the damage, the leakage current of the completed capacitor becomes large. and the tangent of the loss angle also increases.

本発明に用いる親水性の耐熱性絶縁体は、シリコーン樹
脂、エポキシ樹脂、ポリイミド、フッ素樹脂、ポリフェ
ニレンスルフィド樹脂などノ耐熱性高分子と、硫酸カル
シウム、炭酸マグネシウム、シリカ、アルミナなど鉱物
性無機物との混合物を使用することができ、陽極リード
の一部にそのまま塗布硬化したり適当な溶媒に溶解塗布
後乾燥硬化して被覆する。エポキシ樹脂とシリカ微粉な
どを混練したものは撥水性が小さく化学酸化重合膜の付
着が良いので好ましい。
The hydrophilic heat-resistant insulator used in the present invention is a combination of heat-resistant polymers such as silicone resin, epoxy resin, polyimide, fluororesin, and polyphenylene sulfide resin, and mineral inorganic substances such as calcium sulfate, magnesium carbonate, silica, and alumina. A mixture can be used, and the mixture can be coated directly on a part of the anode lead and cured, or by dissolving it in a suitable solvent, coating it, drying and curing it. A mixture of epoxy resin and fine silica powder is preferable because it has low water repellency and good adhesion of the chemical oxidation polymer film.

化学酸化重合の方法は、焼結体素子表面に導電性モノマ
ーを少なくとも0.01 mol/l含む溶液を均一に
分散させた後、酸化剤を0.001 mol/l〜10
mol/l含む溶液と接触させるか、または逆に酸化剤
を均一に分散させた後、導電性高分子モノマー溶液と接
触させる方法により化学酸化重合した導電性高分子膜(
4)を形成し表面を導電化する。
The method of chemical oxidative polymerization involves uniformly dispersing a solution containing at least 0.01 mol/l of a conductive monomer on the surface of a sintered element, and then adding an oxidizing agent of 0.001 mol/l to 10 mol/l.
Conductive polymer film (
4) to make the surface conductive.

化学酸化重合に用いられる酸化剤は、ヨウ素、臭素、ヨ
ウ化臭素などのハロゲン、五フッ化ヒ素、五フッ化アン
チモン、四フッ化ケイ素、五塩化リン、五フフ化リン、
塩化アルミニウム、塩化モリブデンなどの金属ハロゲン
化物、硫酸、硝酸、フルオロ硫酸、トリフルオロメタン
硫酸、クロロ硫酸などのプロトン酸、三酸化イオウ、二
酸化窒素などの含酸素化合物、過硫酸す) IJウム、
過硫酸アンモニウムなどの過硫酸塩、過酸化水素、過酢
酸などの過酸化物などである。
Oxidizing agents used in chemical oxidative polymerization include halogens such as iodine, bromine, and bromine iodide, arsenic pentafluoride, antimony pentafluoride, silicon tetrafluoride, phosphorus pentachloride, phosphorus pentafluoride,
Metal halides such as aluminum chloride and molybdenum chloride, protonic acids such as sulfuric acid, nitric acid, fluorosulfuric acid, trifluoromethanesulfuric acid, and chlorosulfuric acid, oxygen-containing compounds such as sulfur trioxide and nitrogen dioxide, persulfuric acid,
These include persulfates such as ammonium persulfate, peroxides such as hydrogen peroxide, and peracetic acid.

電解重合は、支持電解質0 、01 mol/1〜2 
mol/Iおよび導電性高分子モノマー0.01 mo
l/l〜5mol/Iを含む電解液中で行なう。
Electrolytic polymerization uses a supporting electrolyte of 0,01 mol/1 to 2
mol/I and conductive polymer monomer 0.01 mo
The test is carried out in an electrolytic solution containing 1/1 to 5 mol/I.

本発明の電解重合に用いられる支持電解質は、陰イオン
がヘキサフロロリン、ヘキサフロロリン、テトラフロロ
ホウ素などのハロゲン化物アニオン、ヨウ素、臭素、塩
素などのハロゲンアニオン、過塩素酸アニオン、ベンゼ
ンスルホン酸、アルキルベンゼンスルホン酸などのスル
ホン酸アニオンであり、また、陽イオンがリチウム、カ
リウム、ナトリウムなどのアルカリ金属カチオン、アン
モニウム、テトラアルキルアンモニウムなどの4級アン
モニウムカチオンである。化合物としてはLIPFe、
L IAsF e、L I C104、L I B F
 4、K I 、NaPF61NaC104、トルエン
スルホン酸ナトリウム、トルエンスルホン酸テトラブチ
ルアンモニウムなどが挙げられる。
The supporting electrolyte used in the electrolytic polymerization of the present invention includes anion such as a halide anion such as hexafluoroline, hexafluoroline, or tetrafluoroborine, a halogen anion such as iodine, bromine, or chlorine, a perchlorate anion, or a benzenesulfonic acid anion. , a sulfonic acid anion such as alkylbenzenesulfonic acid, and the cation is an alkali metal cation such as lithium, potassium, or sodium, or a quaternary ammonium cation such as ammonium or tetraalkylammonium. As a compound, LIPFe,
L IAs F e, L I C104, L I B F
4, K I , NaPF61NaC104, sodium toluenesulfonate, tetrabutylammonium toluenesulfonate, and the like.

このようにして導電性高分子を形成した素子を、コロイ
ダルカーボンに浸漬して表面にカーボン層を形成する。
The element on which the conductive polymer has been formed in this way is immersed in colloidal carbon to form a carbon layer on the surface.

更にその上に導電性ペーストにより導電性塗膜を形成し
、その一部に陰極引出し用のリード線が接続される。導
電性ペーストとしては銀バー。スト、銅ペースト、アル
ミペーストなどが使用できる。以上のように構成された
コンデンサ素子は、樹脂モールドまたは樹脂ケース、金
属ケースに密封するなどの外装を施すことにより、固体
電解コンデンサを得る。
Furthermore, a conductive coating film is formed using a conductive paste on top of the coating film, and a lead wire for drawing out the cathode is connected to a part of the coating film. Silver bar as a conductive paste. Paste, copper paste, aluminum paste, etc. can be used. A solid electrolytic capacitor is obtained by applying an exterior covering to the capacitor element configured as described above, such as by sealing it in a resin mold, a resin case, or a metal case.

(作   用) 本発明のソ俵により製造した導電性高分子を固体電解質
とイコンデンサは、従来知られている方法により製造し
た固体電解コンデンサに比べ、電気特性が優れている。
(Function) The capacitor using the conductive polymer as a solid electrolyte and produced by the saw-bag of the present invention has superior electrical properties as compared to the solid electrolytic capacitor produced by a conventionally known method.

これは電解重合時に導電体が酸化皮膜を損傷しないため
であり、漏れ電流が著しく小さく、かつ損失角の正接(
tanδ)の小さいコンデンサが得られる。
This is because the conductor does not damage the oxide film during electrolytic polymerization, the leakage current is extremely small, and the tangent of the loss angle (
A capacitor with a small tan δ) can be obtained.

また、親水性の耐熱性絶縁体を使用しているので高温時
に絶縁体が溶融してコンデンサ特性を損なうことなく、
化学酸化重合膜の付着が良く、量産時の良品率が高い。
In addition, since a hydrophilic heat-resistant insulator is used, the insulator will not melt at high temperatures and impair capacitor characteristics.
The chemical oxidation polymer film adheres well, and the yield rate during mass production is high.

(実 施 例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 陽極リードを取り出したタンタル焼結体素子を150■
で陽極酸化し誘電体酸化皮膜を形成した。
Example 1 A tantalum sintered element with an anode lead taken out was heated to 150 cm.
A dielectric oxide film was formed by anodic oxidation.

陽極リードの一部に第1図に示すようにエポキシ樹脂(
住友ベークライト製スミマック9060)とンリカ微粉
(試薬特級 二酸化ケイ素)を1=1に混合した親水性
のある耐熱性絶縁体を塗布し150、−、;(、で10
分間加熱硬化し被覆した。該素子を過酸化水素10vt
%および硫酸2wt%を含む水溶液に親水性の耐熱性絶
縁体が中程まで没するように室温で10分間浸漬した。
As shown in Figure 1, a part of the anode lead is coated with epoxy resin (
A hydrophilic heat-resistant insulator made of a 1=1 mixture of SUMIMAC 9060 (manufactured by Sumitomo Bakelite) and Nlica fine powder (reagent grade silicon dioxide) is coated.
It was cured and coated by heating for a minute. The element was heated with 10vt of hydrogen peroxide.
% and 2 wt % of sulfuric acid at room temperature for 10 minutes so that the hydrophilic heat-resistant insulator was submerged halfway.

次に該素子をすばやくビロールモノマー原液に浸漬し2
0分間保持反応させた。素子をピロールモノマーから取
り出し洗浄、乾燥ひ・たところ、陽極リード上の耐熱性
絶縁体表面の中程までと、誘電体酸化皮膜上に化学酸化
重合によるポリピロール層が生成した。
Next, the element was quickly immersed in the virol monomer stock solution.
The reaction was held for 0 minutes. When the device was removed from the pyrrole monomer, washed, and dried, a polypyrrole layer was formed by chemical oxidation polymerization halfway up the surface of the heat-resistant insulator on the anode lead and on the dielectric oxide film.

次に、親水性の耐熱性絶縁体表面上の化学酸化重合によ
るポリピロールの一部にステンレスワイヤーを接続して
陽極とし、テトラエチルアンモニウムパラトルエンスル
ホン酸0.2mol/11 ピロールモノマー〇、2m
ol/Iを含むアセトニトリル溶液の入ったステンレス
ビーカー中にステンレスワイヤーが没するように浸漬し
、ステンレスビーカーを陰極として1mAの定電流で電
解重合を30分行った。その結果、化学酸化重合による
ポリピロール膜の上に電解重合によるポリピロール膜が
形成した。
Next, a stainless steel wire was connected to a part of the polypyrrole produced by chemical oxidation polymerization on the surface of the hydrophilic heat-resistant insulator to serve as an anode.
The stainless steel wire was submerged in a stainless steel beaker containing an acetonitrile solution containing ol/I, and electrolytic polymerization was performed for 30 minutes at a constant current of 1 mA using the stainless steel beaker as a cathode. As a result, a polypyrrole film formed by electrolytic polymerization was formed on a polypyrrole film formed by chemical oxidative polymerization.

ステンレスワイヤーを取り除き、洗浄、乾燥後、該素子
をコロイダルカーボンおよび銀ペーストラ塗布し陽極リ
ードを取り付け、エポキシ樹脂でモールドして定格電圧
35V1公称静電容量1.5μFのタンタルコンデンサ
を得た。完成したコンデンサの静電容量、損失角の正接
(tanδ)、35■での罰れ電流値(LC)および短
絡不良発生率を第1表に示す。
After removing the stainless steel wire, washing and drying, the device was coated with colloidal carbon and silver paste, an anode lead was attached, and molded with epoxy resin to obtain a tantalum capacitor with a rated voltage of 35 V and a nominal capacitance of 1.5 μF. Table 1 shows the capacitance of the completed capacitor, the tangent of the loss angle (tan δ), the negative current value (LC) at 35 cm, and the short-circuit failure rate.

第1表 比較例1 エポキシ樹脂とシリカ微粉の1=1混合物のかわりにエ
ポキシ樹脂のみを塗布した以外は実施例1に準じてタン
タル固体電解コンデンサを完成した。完成したコンデン
サの静電容量、tanδ、漏れ電流(LC)および短絡
不良発生率を第1表に示す。
Table 1 Comparative Example 1 A tantalum solid electrolytic capacitor was completed according to Example 1 except that only epoxy resin was applied instead of the 1=1 mixture of epoxy resin and fine silica powder. Table 1 shows the capacitance, tan δ, leakage current (LC), and short-circuit failure rate of the completed capacitor.

エポキシ樹脂のみでは親水性に乏しいので化学酸化重合
時に過酸化水素10wt%および硫酸2wt%を含む水
溶液に浸漬してもエポキシ樹脂への付着が悪く、結果と
して化学酸化重合膜の生成が不均一である。このため電
解重合膜も不均一となり、tanδ、漏れ電流が増大し
短絡不良発生率も増加する。
Epoxy resin alone has poor hydrophilicity, so even when immersed in an aqueous solution containing 10 wt% hydrogen peroxide and 2 wt% sulfuric acid during chemical oxidative polymerization, it does not adhere well to the epoxy resin, resulting in uneven formation of a chemical oxidative polymer film. be. For this reason, the electrolytically polymerized film also becomes non-uniform, tan δ and leakage current increase, and the incidence of short circuit failures also increases.

[発明の効果コ 陽極リードの一部を親水性のある耐熱性絶縁体で被覆し
、この耐熱性絶縁体表面を導電化し、その表面に導電体
を接触させて電解重合を行うことにより誘電体酸化皮膜
を損傷することなく漏れ電流が著しく小さく、またta
nδの小さいタンタル固体電解コンデンサを得ることが
できた。また、親水性の耐熱性絶縁体で被覆しているの
で耐熱性絶縁体表面への化学酸化重合膜の生成が均一で
あり、結果として電解重合膜の生成が均一となり、コン
デンサ特性は向上し、短絡不良発生率が著しく減少する
[Effects of the Invention] A part of the anode lead is coated with a hydrophilic heat-resistant insulator, the surface of the heat-resistant insulator is made conductive, and a conductor is brought into contact with the surface and electrolytically polymerized to form a dielectric material. The leakage current is extremely small without damaging the oxide film, and the ta
A tantalum solid electrolytic capacitor with a small nδ could be obtained. In addition, since it is coated with a hydrophilic heat-resistant insulator, the chemical oxidation polymer film is uniformly formed on the surface of the heat-resistant insulator, and as a result, the electrolytic polymer film is uniformly formed, improving capacitor characteristics. The incidence of short circuit failures is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はタンタル焼結体素子の中心部よりタンタル線に
より陽極リードを取り出したコンデンサの概略断面図で
ある。 1・・タンタル焼結体素子 2・・誘電体酸化皮膜  
 3・・親水性の耐熱性絶縁体4・拳化学酸化重合によ
る導電性高分子膜5・中篭解重合による導電性高分子膜 6・・導電体   7・拳陽極リート
FIG. 1 is a schematic sectional view of a capacitor in which an anode lead is taken out by a tantalum wire from the center of a tantalum sintered element. 1. Tantalum sintered element 2. Dielectric oxide film
3. Hydrophilic heat-resistant insulator 4. Conductive polymer film by chemical oxidation polymerization 5. Conductive polymer film by nakago depolymerization 6. Conductor 7. Hand anode lead

Claims (3)

【特許請求の範囲】[Claims] 1.陽極リードを接続したタンタル焼結体素子の表面に
誘電体酸化皮膜を形成し、陽極リードの一部を親水性の
耐熱性絶縁体で被覆し、該耐熱性絶縁体の表面および誘
電体酸化皮膜上に化学酸化重合による導電性高分子膜を
形成し、耐熱性絶縁体の表面上に形成した化学酸化重合
による導電性高分子膜の一部に接触させた導電体を陽極
として外部陰極との間で電解重合し、化学酸化重合によ
る導電性高分子膜上に電解重合による導電性高分子膜を
形成することを特徴とするタンタル固体電解コンデンサ
の製造方法。
1. A dielectric oxide film is formed on the surface of the tantalum sintered element to which the anode lead is connected, a part of the anode lead is covered with a hydrophilic heat-resistant insulator, and the surface of the heat-resistant insulator and the dielectric oxide film are coated. A conductive polymer film formed by chemical oxidation polymerization is formed on the surface of the heat-resistant insulator, and a conductor that is in contact with a part of the conductive polymer film formed by chemical oxidation polymerization formed on the surface of the heat-resistant insulator is used as an anode and connected to an external cathode. 1. A method for manufacturing a tantalum solid electrolytic capacitor, the method comprising: electrolytically polymerizing a tantalum solid electrolytic capacitor, and forming a conductive polymer film by electrolytic polymerization on a conductive polymer film by chemical oxidative polymerization.
2.導電性高分子がポリピロールである請求項1記載の
タンタル固体電解コンデンサの製造方法。
2. 2. The method for manufacturing a tantalum solid electrolytic capacitor according to claim 1, wherein the conductive polymer is polypyrrole.
3.親水性の耐熱性絶縁体が耐熱性高分子と鉱物性無機
物の混合体である請求項1記載のタンタル固体電解コン
デンサの製造方法。
3. 2. The method for manufacturing a tantalum solid electrolytic capacitor according to claim 1, wherein the hydrophilic heat-resistant insulator is a mixture of a heat-resistant polymer and a mineral inorganic material.
JP1214245A 1989-08-22 1989-08-22 Manufacturing method of tantalum solid electrolytic capacitor Expired - Fee Related JP2640864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214245A JP2640864B2 (en) 1989-08-22 1989-08-22 Manufacturing method of tantalum solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214245A JP2640864B2 (en) 1989-08-22 1989-08-22 Manufacturing method of tantalum solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0378222A true JPH0378222A (en) 1991-04-03
JP2640864B2 JP2640864B2 (en) 1997-08-13

Family

ID=16652580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214245A Expired - Fee Related JP2640864B2 (en) 1989-08-22 1989-08-22 Manufacturing method of tantalum solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2640864B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426412A (en) * 1992-10-27 1995-06-20 Matsushita Electric Works, Ltd. Infrared detecting device and infrared detecting element for use in the device
US5752986A (en) * 1993-11-18 1998-05-19 Nec Corporation Method of manufacturing a solid electrolytic capacitor
EP1193727A1 (en) * 1999-04-30 2002-04-03 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method for producing the same
JP2015177088A (en) * 2014-03-17 2015-10-05 Necトーキン株式会社 Solid electrolytic capacitor device, method for manufacturing the same, and solid electrolytic capacitor
AT510246A3 (en) * 2009-08-07 2016-04-15 Frequentis Ag METHOD AND DEVICE FOR RECORDING THE USER INTERACTION

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426412A (en) * 1992-10-27 1995-06-20 Matsushita Electric Works, Ltd. Infrared detecting device and infrared detecting element for use in the device
US5752986A (en) * 1993-11-18 1998-05-19 Nec Corporation Method of manufacturing a solid electrolytic capacitor
EP1193727A1 (en) * 1999-04-30 2002-04-03 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method for producing the same
EP1193727A4 (en) * 1999-04-30 2007-12-12 Showa Denko Kk Solid electrolytic capacitor and method for producing the same
AT510246A3 (en) * 2009-08-07 2016-04-15 Frequentis Ag METHOD AND DEVICE FOR RECORDING THE USER INTERACTION
AT510246B1 (en) * 2009-08-07 2016-06-15 Frequentis Ag METHOD AND DEVICE FOR RECORDING THE USER INTERACTION
JP2015177088A (en) * 2014-03-17 2015-10-05 Necトーキン株式会社 Solid electrolytic capacitor device, method for manufacturing the same, and solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2640864B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
JP2828035B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0474853B2 (en)
JPH1197296A (en) Solid electrolytic capacitor and its manufacture
JPH0458165B2 (en)
JPH0378222A (en) Manufacture of solid tantalum capacitor
JP2700420B2 (en) Method for manufacturing aluminum sintered body solid electrolytic capacitor
JP2621093B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPH0362298B2 (en)
JPH0453115A (en) Manufacture of solid electrolytic capacitor
JP2002134363A (en) Solid capacitor and its manufacturing method
JPH02238613A (en) Solid electrolytic capacitor
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JP2621087B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH033220A (en) Tantalum solid-state electrolytic capacitor
JPH0318009A (en) Manufacture of solid tantalum electrolytic capacitor
JPH04111407A (en) Manufacture of solid electrolytic capacitor
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JPH06112094A (en) Manufacture of solid-state electrolytic capacitor
JP3175747B2 (en) Method for manufacturing solid electrolytic capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0448709A (en) Manufacture of solid electrolytic capacitor
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JPH0487312A (en) Manufacture of capacitor
JPH04239712A (en) Manufacture of capacitor
JP2005259807A (en) Solid electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees