JPH0377013A - Range-finding device - Google Patents
Range-finding deviceInfo
- Publication number
- JPH0377013A JPH0377013A JP21455989A JP21455989A JPH0377013A JP H0377013 A JPH0377013 A JP H0377013A JP 21455989 A JP21455989 A JP 21455989A JP 21455989 A JP21455989 A JP 21455989A JP H0377013 A JPH0377013 A JP H0377013A
- Authority
- JP
- Japan
- Prior art keywords
- light
- lens
- projection angle
- receiving element
- specific signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000004907 flux Effects 0.000 abstract 2
- 238000005259 measurement Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Measurement Of Optical Distance (AREA)
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、被写体までの距離を光電的手段によって測定
するカメラの測距装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance measuring device for a camera that measures the distance to a subject by photoelectric means.
近年では、光電的手段を用いて測距検出もしくは焦点検
出した信号により、撮影レンズの焦点調節を自動的に制
御するオートフォーカス装置を備えたカメラが開発され
ている。オートフォーカス装置は、被写体までの距離を
光電的手段によって測定する測距装置と、撮影レンズを
合焦位置に移動させる撮影レンズ駆動装置を有している
。測距!Ltには三角測量方式があり、この中にはパッ
シブ方式とアクティブ方式とがある。In recent years, cameras have been developed that are equipped with an autofocus device that automatically controls focus adjustment of a photographic lens based on a signal obtained by distance measurement or focus detection using photoelectric means. An autofocus device includes a distance measuring device that measures the distance to a subject using photoelectric means, and a photographic lens drive device that moves a photographic lens to a focusing position. Distance measurement! There are triangulation methods in Lt, including passive methods and active methods.
このような、アクティブ方式の測距v&置として例えば
第9図に示すようなものがある。同図において、投光素
子101から投光レンズ102を介して赤外光線を被写
体へ向けて投光し、投光素子101から所定基線長だけ
隔たった受光素子103で受光レンズ】04を介して受
光している。受光素子103の受光量Ql、Q2.Q3
は信号として制御手段に出力され、基線長日に基づいて
演算して被写体までの距離を測定している。An example of such an active distance measuring system is shown in FIG. 9. In the figure, infrared rays are emitted from a light emitting element 101 to a subject via a light emitting lens 102, and a light receiving element 103 separated from the light emitting element 101 by a predetermined baseline length passes through a light receiving lens 04. Light is being received. The amount of light received by the light receiving element 103 Ql, Q2. Q3
is output as a signal to the control means, and is calculated based on the baseline long day to measure the distance to the subject.
ここで、投光素子101から投光される赤外光線は投光
レンズ102によって集光させて光線束としている。こ
のため、被写体として2人の人物が並んでいた場合に、
2人の中間に前記光線束が投光されるとこの間を通り抜
けてしまい(いわゆる中ぬけ)、2人の間の遠景へ投光
されることがある。この場合には、この測距装置は遠景
までの距離を被写体距離として誤まって測定してしまう
ことになり、被写体である前記2人を撮影した画面はピ
ンボケとなってしまう。Here, the infrared rays projected from the light projecting element 101 are condensed by the light projecting lens 102 into a bundle of light rays. For this reason, when two people are lined up as subjects,
If the beam of light is projected between two people, it may pass through this space (so-called hollow) and may be projected onto a distant view between the two people. In this case, the distance measuring device will erroneously measure the distance to the distant view as the object distance, and the screen on which the two people, who are the objects, will be photographed will be out of focus.
そこで、第10図に示すような中ぬけを防止するための
測距ji If bl !!案されている(特開昭62
−223734号公報参照)、同図において複数の投光
素子111が並列に配置されており、複数の投光素子1
11から順次投光された赤外光線は被写体112によっ
て反射され、複数の投光素子113によって受光するよ
うにしている。このように投光素子111や受光素子1
13が複数あれば、投光素子111からの光線束の一つ
が中ぬけを起しても、他の投光素子111からの光線束
は確実に被写体に投光されて、被写体距離を正確に測定
することができる。Therefore, distance measurement ji If bl ! shown in FIG. ! proposed (Unexamined Japanese Patent Publication No. 1983)
-223734), in the figure, a plurality of light emitting elements 111 are arranged in parallel, and a plurality of light emitting elements 1
The infrared rays sequentially projected from 11 are reflected by a subject 112 and received by a plurality of light projecting elements 113. In this way, the light emitting element 111 and the light receiving element 1
13, even if one of the light beams from the light projecting element 111 falls through, the light beams from the other light projecting elements 111 will be reliably projected onto the subject, making it possible to accurately determine the distance to the subject. can be measured.
しかしながら、このような従来の測距装置にあっては、
中ぬけを防止するために投光素子111や受光素子11
3を複数個配設していた。ここで、これらの投光素子1
11や受光素子113はそれぞれが高価である。したが
って、これら複数の投光素子111や受光素子113を
用いた測距装置は、装置全体としてコスト高となってい
た。However, in such conventional distance measuring devices,
The light emitting element 111 and the light receiving element 11 are used to prevent the light from falling out.
Multiple 3 were installed. Here, these light emitting elements 1
11 and the light receiving element 113 are each expensive. Therefore, a distance measuring device using a plurality of these light emitting elements 111 and light receiving elements 113 has a high cost as a whole.
一方、投光素子111から投光された赤外光線の反射光
を受光素子113で受光させるためには、この投光素子
111、受光素子113を装置に取り付けるための取付
精度を高くしなければならないが、これらが複数個に増
加すればその分だけ取付精度は一層厳しくしなければな
らず、取り付けるための構成も複雑になり、取り付は後
の調整も困難となる。さらに% 複数の投光素子111
から順次投光するので、測距時間が長くなってしまうと
いう問題がある。On the other hand, in order for the light-receiving element 113 to receive the reflected infrared light emitted from the light-emitting element 111, the mounting precision for attaching the light-emitting element 111 and the light-receiving element 113 to the device must be increased. However, if the number of these components increases, the mounting accuracy must be made even stricter, the configuration for mounting becomes more complicated, and subsequent adjustment of the mounting becomes difficult. Furthermore, a plurality of light emitting elements 111
Since the light is emitted sequentially from the beginning, there is a problem in that the distance measurement time becomes long.
このような課題を解決するために、本発明にあっては、
被写体に光を投光する投光素子と、該投光素子から投光
される光を集光して光線束とする投光レンズと、前記投
光素子から基線長を隔てて配設され、被写体からの反射
光を受光レンズを介して受光する受光素子とを備え、前
記受光素子の出力に基づいて被写体までの距離を算出す
るようにした測距装置において、前記光線束の投光角を
調節する投光角変換手段と、前記受光素子の出力が前記
投光角変換手段の狭い投光角に対して得られず、広い投
光角に刻して得られたとき第1の特定信号を出力する特
定信号出力手段とを有する構成とし、また、前記受光素
子の出力が、前記投光角変換手段のいずれの投光角に対
しても得られないときには、第2の特定信号を出力する
特定信号出力手段である構成とするものである。In order to solve such problems, in the present invention,
a light projecting element that projects light onto a subject; a light projecting lens that collects the light projected from the light projecting element into a bundle of light rays; and a light projecting element that is arranged at a baseline length apart from the light projecting element, A distance measuring device includes a light receiving element that receives reflected light from a subject through a light receiving lens, and calculates a distance to the subject based on the output of the light receiving element. A first specific signal is generated when the output of the light projection angle converting means for adjusting and the light receiving element cannot be obtained for a narrow light projection angle of the light projection angle converting means, but is obtained at a wide light projection angle. and a specific signal output means for outputting a second specific signal when the output of the light receiving element is not obtained for any of the projection angles of the projection angle conversion means. This configuration is a specific signal output means.
投光角変換手段によって投光素子からの光線束の投光角
を広角にすると、中ぬけを防止することができる。この
ため、高価な投光素子や受光素子はそれぞれ1個で済む
、また、投光素子や受光素子は1個で済むので、複数個
設けていた従来に比べ取付精度はあまり厳しくならず、
取り付けるkめの構成も簡単になり、取り付は後の調整
も容易である。さらに、従来のように複数の投光素子か
ら順次投光する場合に比べ、 1個の投光素子から1回
投光すればよい。If the projection angle of the light beam from the light projection element is widened by the projection angle conversion means, it is possible to prevent the projection from falling through the lens. For this reason, only one expensive light emitting element and one light receiving element are required, and since only one light emitting element and one light receiving element are required, installation accuracy is not as strict as in the past, when multiple elements were installed.
The second configuration to be installed is also simplified, and subsequent adjustments to the installation are also easy. Furthermore, compared to the conventional case of sequentially emitting light from a plurality of light emitting elements, it is only necessary to emit light once from one light emitting element.
加えて、光線束の投光角を広角にした場合、特定信号出
力手段から第1の特定信号をレンズ駆動手段に出力して
撮影レンズをパンフォーカス位置へ移動させる。あるい
は、第2の特定信号を出力して撮影レンズを無限距離で
合焦する位置に移動させる。In addition, when the projection angle of the beam of light is set to a wide angle, the first specific signal is output from the specific signal output means to the lens driving means to move the photographing lens to the pan focus position. Alternatively, the second specific signal is output to move the photographing lens to a position where it is focused at an infinite distance.
以下、本発明を図面に基づいて説明する。第1図ないし
第6図は本発明に係る測距装置の第】実施例を示す図で
ある。Hereinafter, the present invention will be explained based on the drawings. 1 to 6 are diagrams showing a first embodiment of a distance measuring device according to the present invention.
まず、構成を説明する。First, the configuration will be explained.
第1図において、符号lはカメラの本体に設けられる投
光素子(例えば、赤外光線用発光ダイオード)であり、
この投光素子1から被写体2へ赤外光線を投光する。ま
た、投光素子】の前方には投光レンズ3が配設され、こ
の投光レンズ3は投光素子1から投光される赤外光線を
集光して光線束とするためのものである。In FIG. 1, the symbol l is a light emitting element (for example, an infrared light emitting diode) provided in the camera body,
This light projecting element 1 projects infrared light onto a subject 2. Further, a light projecting lens 3 is disposed in front of the light projecting element, and this light projecting lens 3 is for condensing the infrared rays projected from the light projecting element 1 into a bundle of light rays. be.
投光素子lから所定距離(基線長)だけ離れて受光素子
4(例えば、P S D: Po5ttionSen
sttive Diode)が配設され、被写体2から
の反射光を受光する。また、受光素子4の前方には受光
レンズ5が配設され、前記反射光を受光素子4に結像さ
せるものである。A light receiving element 4 (for example, PSD: Po5ttionSen
stive diode) is disposed to receive reflected light from the subject 2. Further, a light receiving lens 5 is disposed in front of the light receiving element 4 and focuses the reflected light onto the light receiving element 4.
ところで、投光素子1から投光される光線束の投光角は
投光レンズ3を投光方向に前後させることによって変換
することができる。そこで、この投光角変換手段17を
第21!Iに示すと、同図において投光レンズ3はレン
ズホルダ6に取付けられこのレンズホルダ6は台板7に
投光方向に向けて移動可能に載置されている。レンズホ
ルダ6には投光方向に一対のガイド118a、8bが形
成されており、このガイド溝8a、8bには台板7に植
設された一対のガイドビン9a、9bが嵌入されている
。また、レンズホルダ6には細長い!l!l連動溝が形
成され、この駆動溝10には円板11に偏心して植設さ
れた駆動ビン12が遊嵌されている。モータ13によっ
て円板11を回転させると、レンズホルダ6はガイドビ
ン9a、9bに案内されて投光方向に前後移動する。Incidentally, the projection angle of the beam of light projected from the light projection element 1 can be changed by moving the projection lens 3 back and forth in the projection direction. Therefore, this projection angle conversion means 17 is used as the 21st! As shown in FIG. 1, the light projecting lens 3 is attached to a lens holder 6, and the lens holder 6 is placed on a base plate 7 so as to be movable in the light projecting direction. A pair of guides 118a and 8b are formed in the lens holder 6 in the light projection direction, and a pair of guide bins 9a and 9b implanted in the base plate 7 are fitted into the guide grooves 8a and 8b. Also, the lens holder 6 is long and thin! l! A driving groove 10 is formed, and a driving pin 12 eccentrically implanted in a disc 11 is loosely fitted into this driving groove 10. When the disc 11 is rotated by the motor 13, the lens holder 6 is guided by the guide bins 9a and 9b and moves back and forth in the light projection direction.
第3図は、この測距装置に搭載される制御回路のブロッ
ク構成図である。投光素子1から狭い投光角の光線束が
被写体2へ向けて投光され、この被写体からの反射光を
受光素子4で受光すると、この受光素子4の出力信号に
基づいて距離演算回′1IJ14によって被写体2まで
の距離が算出される。次に被写体距離が信号として主制
御回路15からレンズ駆動手段16へ出力される。FIG. 3 is a block diagram of a control circuit installed in this distance measuring device. A beam of light with a narrow projection angle is projected from the light projecting element 1 toward the subject 2, and when the reflected light from the subject is received by the light receiving element 4, the distance calculation circuit ' The distance to the subject 2 is calculated by 1IJ14. Next, the object distance is outputted as a signal from the main control circuit 15 to the lens driving means 16.
受光素子4で反射光が受光されないときには、主制御回
路15から投光角変換手段17へ信号が出力され、この
投光角変換手段I7によって光線束の投光角を広角にす
る。この広角にされた光線束の反射光が受光素子4で受
光されると、特定信号出力手段18から第1の特定信号
がレンズ駆動手段16へ出力される。広角にされた光線
束も反射光として受光素子4で受光されないときには、
特定信号出力手段18から第2の特定信号がレンズ駆動
手段16に出力される。When the light receiving element 4 does not receive reflected light, a signal is output from the main control circuit 15 to the projection angle conversion means 17, and the projection angle of the beam is widened by the projection angle conversion means I7. When the reflected light of this wide-angle beam is received by the light receiving element 4, a first specific signal is outputted from the specific signal output means 18 to the lens driving means 16. When the wide-angle light beam is not received by the light receiving element 4 as reflected light,
A second specific signal is output from the specific signal output means 18 to the lens driving means 16.
次に、作用を説明する。第4ryJはこの測距11置の
作動手順を示すフローチャートであり、このフローチャ
ートを参照しながら説明する。Next, the effect will be explained. The fourth ryJ is a flowchart showing the operating procedure of this distance measuring 11 position, and will be explained with reference to this flowchart.
まず、投光素子1から赤外光線が被写体へ向けて投光さ
れるが、この光線束は投光レンズ3によって収束されて
(投光角は非常に狭くなっている)、投光された赤外光
線は被写体が遠景でなければ反射される(F(+))、
この反射光が受光素子4で受光されると通常測距が
行なわれる(F(2))。すなわち、この受光量は電気
信号に変換され、この電気信号は増幅されて距離演算回
路14によって被写体2までの距離が算出される、算出
された被写体距離が信号として主制御回路X5からレン
ズ駆動手段16へ出力され、撮影レンズを合焦位置へ移
動させる(F(3))。First, an infrared beam is projected from the light projection element 1 toward the subject, but this bundle of light rays is converged by the light projection lens 3 (the projection angle is very narrow), and then the light is projected. Infrared rays will be reflected if the subject is not a distant view (F(+)),
When this reflected light is received by the light receiving element 4, normal distance measurement is performed (F(2)). That is, this amount of received light is converted into an electrical signal, and this electrical signal is amplified and the distance to the subject 2 is calculated by the distance calculation circuit 14.The calculated subject distance is sent as a signal from the main control circuit X5 to the lens driving means. 16, and moves the photographing lens to the in-focus position (F(3)).
一方、被写体が遠景でなくとも2人の人物が並んでいた
場合には、第5図に示すように投光素子1から投光され
た赤外光線の光線束が2人の間を通り抜けてしまうこと
があり、このときには赤外光線は被写体から反射されな
い(F(1))、 そこで、主制御回wIJ15から
投光角変換手段17へ信号が出力され、モータ13が駆
動されて投光レンズ3を第6図に示すように投光素子I
mへ移動させ、光線束の投光角を広角にする(F(4)
)、 光線束の投光角が広角にされると、今度はこの
光線束は被写体が遠景でさえなければ、2人の間を通り
抜けずに被写体から反射される(F(5))、 反射
光が受光素子4によって受光されると、特定信号出力手
段18からレンズ駆動手段16へ第1の特定信号が出力
され、撮影レンズをパンフォーカス位置(常用焦点位置
ともいい、前景から遠景まで略ピントが合っている位置
)へ移動させる(F(6))。On the other hand, even if the subject is not a distant view, if two people are standing side by side, the bundle of infrared rays projected from the light projecting element 1 will pass between the two people, as shown in Figure 5. In this case, the infrared rays are not reflected from the subject (F(1)). Therefore, a signal is output from the main control circuit wIJ15 to the projection angle conversion means 17, and the motor 13 is driven to change the projection lens. 3 as shown in FIG.
m, and widen the projection angle of the ray bundle (F(4)
), When the projection angle of the ray bundle is set to a wide angle, this ray bundle will be reflected from the subject without passing between the two people, unless the subject is in the distance (F(5)), Reflection When the light is received by the light receiving element 4, a first specific signal is outputted from the specific signal output means 18 to the lens driving means 16, and the photographic lens is placed in a pan focus position (also called a common focus position, from the foreground to the distant background). (F(6)).
次に、光線束の投光角を広角にしても、被写体が遠景で
ある場合にはこの遠景からは反射光は返ってこない(F
(5))、 このため、受光素子4には反射光が受光
されず、特定信号出力手段18からレンズ駆動手段16
へ第2の特定信号が出力され、撮影レンズを無限距離で
合焦する位置へ移動させる(F(7))。Next, even if the projection angle of the ray bundle is wide-angle, if the subject is a distant view, no reflected light will return from this distant view (F
(5)) Therefore, the reflected light is not received by the light receiving element 4, and the specific signal output means 18 is transmitted to the lens driving means 16.
A second specific signal is output to , and the photographic lens is moved to a position where it is focused at an infinite distance (F(7)).
このように、中ぬけを防止するために、投光角変換手段
17によって投光素子1からの光線束の投光角を広角に
したので、高価な投光素子1や受光素子4はそれぞれ1
個で済む、また、投光素子1や受光素子4は1個で済む
ので、複数個設もすていた従来に比べ取付精度はあまり
厳しくならず、取り付けるための構成も簡単になり、取
り付は後の調整も容易である。さらに、従来のように複
数の投光素子から順次投光する場合に比べ、1個の投光
素子1から1回投光すればよいので測距時間は短くて済
む。In this way, in order to prevent the light from falling out, the projection angle of the light beam from the light projecting element 1 is widened by the light projecting angle converting means 17, so that the expensive light projecting element 1 and light receiving element 4 each have a
In addition, since only one light emitting element 1 and one light receiving element 4 are required, the installation accuracy is less strict than in the past, which did not require multiple installations, and the configuration for installation is simpler, making it easier to install. It is also easy to make later adjustments. Furthermore, compared to the conventional case in which light is emitted sequentially from a plurality of light emitting elements, since it is only necessary to emit light once from one light emitting element 1, the distance measurement time can be shortened.
加えて、光線束の投光角を広角にした場合、特定信号出
力手段18から第1の特定信号をレンズ駆動手段16に
出力して撮影レンズをパンフォーカス位置へ移動させる
か、あるいは第2の特定信号を出力して撮影レンズを無
限距離で合焦する位置に移動させるようにしたので、撮
影画面はピンボケにならず許容範囲に留まる。In addition, when the projection angle of the light beam is set to a wide angle, the first specific signal is output from the specific signal output means 18 to the lens driving means 16 to move the photographing lens to the pan focus position, or the second specific signal is outputted from the specific signal output means 18 to the lens driving means 16. Since a specific signal is output to move the photographing lens to a position where it can be focused at an infinite distance, the photographed screen does not become out of focus and remains within an acceptable range.
ところで、投光角が広角にされた光線束が被写体2によ
って反射されると、光線束の投光角が挟角であって被写
体が同じ位置にある場合に比べて、受光素子4で受光さ
れる反射光の受光量は少くなる。そこで、光線束の投光
角を広角にしたときには、受光量を補正する等して被写
体距離を算出してもよい。By the way, when a beam of light with a wide-angle projection angle is reflected by the subject 2, the light is received by the light-receiving element 4, compared to a case where the projection angle of the beam of light is a narrow angle and the subject is at the same position. The amount of reflected light received will decrease. Therefore, when the projection angle of the beam of light is set to a wide angle, the object distance may be calculated by correcting the amount of received light.
次に、本発明に係る測距装置の第2実施例を第7図およ
び第8図に示して説明する。この実施例は第7Q!It
(a)、 (b)に示すように、ホルダ21の中央
には光線束の投光角が狭い第1発光素子21(例えば、
赤外光線用発光ダイオード)が埋設され、この第1発光
素子23の外周には投光角が最初から広い第2発光素子
23(前記と同じ)カK il設されている。したがっ
て、第8図に示すように、通常測距時には第1発光素子
23を使用し、中ぬけが発生したときには第2発光素子
23を使用する。Next, a second embodiment of the distance measuring device according to the present invention will be described with reference to FIGS. 7 and 8. This example is the 7th Q! It
As shown in (a) and (b), in the center of the holder 21 there is a first light emitting element 21 (for example,
A second light emitting element 23 (same as above) whose light projection angle is wide from the beginning is provided on the outer periphery of the first light emitting element 23. Therefore, as shown in FIG. 8, the first light-emitting element 23 is used during normal distance measurement, and the second light-emitting element 23 is used when hollowing occurs.
なお、第一の実施例において、レンズ3を可動にしたが
、他の方法、たとえば第2レンズの追加または退避、レ
ンズの曲率の変更または投光素子の移動などによっても
、同等の効果が得られる。In the first embodiment, the lens 3 is made movable, but the same effect can be obtained by other methods, such as adding or retracting the second lens, changing the curvature of the lens, or moving the light projecting element. It will be done.
以上説明したように本発明によれば、光線束の投光角は
投光角変換手段によって調節するようにしたので、高価
な投光素子や受光素子はそれぞれ1個で済み、装置全体
としてコストの低減を図ることができる。また投光素子
や受光素子は1個で済むので、従来に比べ取付精度はあ
まり厳しくならず、取り付けるための構成も簡単になり
、取り付は後の調整も容易となる。さらに、1個の投光
素子から1回投光すればよいので、従来に比べ測距時間
は短くて済む。As explained above, according to the present invention, the projection angle of the beam bundle is adjusted by the projection angle conversion means, so only one expensive light projection element and one light receiving element are required, and the overall device cost is reduced. It is possible to reduce the Furthermore, since only one light emitting element and one light receiving element are required, the mounting accuracy is not so strict as compared to the conventional art, the structure for mounting is simpler, and the adjustment after mounting is also easier. Furthermore, since it is only necessary to project light once from one light projecting element, distance measurement time can be shortened compared to the conventional method.
加えて、特定信号出力手段から第1の特定信号あるいは
第2の特定信号を出力して撮影レンズを合焦位置へ移動
させるようにしたので、撮影画面はピンボケとならず許
容範囲に留まる。In addition, since the specific signal output means outputs the first specific signal or the second specific signal to move the photographing lens to the in-focus position, the photographic screen does not become out of focus and remains within an allowable range.
第11!Iないし第6図は本発明に係る測距装置の第1
実施例を示す図であり、第1図はこの装置の概略全体図
、第2図は投光角変換手段の斜視図、第3図はこの装置
に搭載される制御回路のブロック構成図、第4図はこの
装置の作動手順を示すフローチャート、第5図および第
6図はそれぞれこの装置の作動を示す図、第71!Iお
よび第81!Iは本発明に係る測距装置の第2実施例を
示す図であり、第7図(a)、 (b)はそれぞれこ
の装置の投光素子の平面図、側面図、第8図はこの装置
の作動を示す図である。第9図および第10図はそれぞ
れ従来の測距装置を示す概略全体図である。
I・・・・・・投光素子 3・・・・・・投光レン
ズ4・・・・・・受光素子 5・・・・・・受光レ
ンズ17・・・・・・投光角変換手段
18・・・・・・特定信号出力手段
以上11th! FIGS. 1 to 6 show the first distance measuring device according to the present invention.
1 is a schematic overall view of this device, FIG. 2 is a perspective view of a projection angle conversion means, FIG. 3 is a block diagram of a control circuit installed in this device, and FIG. 4 is a flowchart showing the operating procedure of this device, FIGS. 5 and 6 are diagrams showing the operation of this device, and 71! I and the 81st! 7(a) and 7(b) are respectively a plan view and a side view of a light emitting element of this device, and FIG. FIG. 3 is a diagram showing the operation of the device. FIGS. 9 and 10 are schematic overall views showing conventional distance measuring devices, respectively. I... Light projecting element 3... Light projecting lens 4... Light receiving element 5... Light receiving lens 17... Light projecting angle conversion means 18...Specific signal output means or higher
Claims (2)
ら投光される光を集光して光線束とする投光レンズと、
前記投光素子から基線長を隔てて配設され、被写体から
の反射光を受光レンズを介して受光する受光素子とを備
え、前記受光素子の出力に基づいて被写体までの距離を
算出するようにした測距装置において、前記光線束の投
光角を調節する投光角変換手段と、前記受光素子の出力
が前記投光角変換手段の狭い投光角に対して得られず、
広い投光角に対して得られたとき第1の特定信号を出力
する特定信号出力手段とを有することを特徴とする測距
装置。(1) A light projecting element that projects light onto a subject; a light projecting lens that collects the light projected from the light projecting element into a bundle of rays;
and a light-receiving element that is disposed apart from the light-emitting element by a baseline length and receives reflected light from the object through a light-receiving lens, and calculates the distance to the object based on the output of the light-receiving element. In the distance measuring device, the output of the light receiving element cannot be obtained for a narrow light projection angle of the light projection angle converting means;
A distance measuring device comprising specific signal output means for outputting a first specific signal when obtained over a wide projection angle.
ずれの投光角に対しても得られないときには、第2の特
定信号を出力する特定信号出力手段であることを特徴と
する請求項1記載の測距装置。(2) Specific signal output means that outputs a second specific signal when the output of the light receiving element cannot be obtained for any of the projection angles of the projection angle conversion means. The distance measuring device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21455989A JPH0377013A (en) | 1989-08-21 | 1989-08-21 | Range-finding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21455989A JPH0377013A (en) | 1989-08-21 | 1989-08-21 | Range-finding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0377013A true JPH0377013A (en) | 1991-04-02 |
Family
ID=16657730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21455989A Pending JPH0377013A (en) | 1989-08-21 | 1989-08-21 | Range-finding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0377013A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6214016A (en) * | 1985-07-12 | 1987-01-22 | Canon Inc | Ranging instrument |
JPS6310137A (en) * | 1986-07-02 | 1988-01-16 | Fuji Photo Film Co Ltd | Measuring instrument for distance to object to be photographed by camera |
JPS63309810A (en) * | 1987-06-11 | 1988-12-16 | Asahi Optical Co Ltd | Range finder |
-
1989
- 1989-08-21 JP JP21455989A patent/JPH0377013A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6214016A (en) * | 1985-07-12 | 1987-01-22 | Canon Inc | Ranging instrument |
JPS6310137A (en) * | 1986-07-02 | 1988-01-16 | Fuji Photo Film Co Ltd | Measuring instrument for distance to object to be photographed by camera |
JPS63309810A (en) * | 1987-06-11 | 1988-12-16 | Asahi Optical Co Ltd | Range finder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6480266B2 (en) | Autofocus distance-measuring optical system | |
JP2772028B2 (en) | Multi-point ranging autofocus camera | |
JPH0380290B2 (en) | ||
US6112029A (en) | Camera, exchangeable lens, and camera system | |
US4855777A (en) | Apparatus for detecting the focus adjusted state of an objective lens | |
CN102207694A (en) | Imaging adjustment unit and focusing and leveling control system using the unit | |
JPH04295837A (en) | Active range-finding device provided with remote control function | |
JPH04248509A (en) | Multipoint range finder | |
JPH0377013A (en) | Range-finding device | |
JP2768459B2 (en) | Focus detection device | |
JP3174128B2 (en) | camera | |
US4723142A (en) | Focus detecting device | |
JPS6113566B2 (en) | ||
JPS59121011A (en) | Focusing position detector | |
US5565956A (en) | Focus detecting camera | |
JP3868035B2 (en) | Ranging device | |
JPS63229439A (en) | Automatic focusing device | |
JPH06273664A (en) | Focus detector | |
JPH02264212A (en) | Automatic focus adjusting device | |
JP3393887B2 (en) | Distance measuring device | |
JPS61112112A (en) | Automatic focusing device | |
JPS58174808A (en) | Distance measuring device | |
JPS63235908A (en) | Focus detector | |
JP2019128549A (en) | Focus detector and optical apparatus equipped with focus detector | |
JPS5952207A (en) | Focus detector |