JPH037693B2 - - Google Patents

Info

Publication number
JPH037693B2
JPH037693B2 JP56096635A JP9663581A JPH037693B2 JP H037693 B2 JPH037693 B2 JP H037693B2 JP 56096635 A JP56096635 A JP 56096635A JP 9663581 A JP9663581 A JP 9663581A JP H037693 B2 JPH037693 B2 JP H037693B2
Authority
JP
Japan
Prior art keywords
cellulose
acid
fibers
polymerization
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56096635A
Other languages
Japanese (ja)
Other versions
JPS57212231A (en
Inventor
Kimito Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56096635A priority Critical patent/JPS57212231A/en
Publication of JPS57212231A publication Critical patent/JPS57212231A/en
Publication of JPH037693B2 publication Critical patent/JPH037693B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)

Description

【発明の詳細な説明】 本発明は、限定された長さ及び太さを持つた、
短桿状の特殊形状セルロース粉末の製造法に関す
る。 更に詳しくは、最大繊維長250μ、50μ以上の長
さの短桿状粒子を20〜80%含み、その太さが、2
〜20μである様な、流動性に富み、なおかつ賦形
性も兼ね備えた、製剤用特殊形状セルロース粉末
の製造法に関する。 従来よりセルロース粉末は、優れた錠剤の賦形
剤として知られている。しかしながら、一般にセ
ルロース粉末は、粉末の流動性が悪く、製錠時に
トラブルを起すこともしばしばあつた。この為、
流動性を改善しようとする試みも多くなされて来
た例えば特開昭50−19917号公報には、セルロー
ス原料を加水分解した後、繊維を切断する考え方
が記載されている。この場合、主に乾式にて粉砕
処理する事を前提にしており、加水分解は、単に
粉砕の為の一助としているに過ぎない。従つて、
セルロースの加水分解を充分に行なわず、かなり
強い繊維強度を維持したまゝで粉砕を行なつてい
る。また、湿式状態での粉砕の記述は有るものゝ
加水分解は、上記と同様単に粉砕の一助としてい
るに過ぎない。 また特開昭49−88925号公報には、セルロース
を酸加水分解時に化学粉砕するとの記述が有り、
何ら物理的力を加えずとも粉砕される記述が有
る。 さらに、米国特許第2978446号明細書には湿式
にてコロイドミル中で数ミクロン以下の微細粒子
に磨砕する方法に関する記述が有る。 以上の様に、これらの技術では細かくし過ぎた
り、もしくは、セルロース繊維強度を保つたまゝ
無理に物理的切断を行なう為に、非常に動力を必
要とするばかりか、セルロース繊維の切断され方
も、ランダムで、縦方向、横方向の区別なく、て
んでバラバラの方向に切断されたり、ひきちぎら
れたりしていた。その為、得られたセルロース粉
末の形状も不揃いで、粒子の大きさも長短、大小
さまざまの物を含んでいた。従つて、流動性と賦
形性を合わせ持つた粉末の特殊形状の物を得る為
には、篩粉、分級等の操作を加え、必要な形状、
大きさの粒子のみを取り出す必要があり、工程が
複雑になり、不要な部分が同時に大量に生成する
と言う欠点を有している。 本発明者は、この点に観み、研究の結果、セル
ロース繊維の直径が2〜20μであるセルロース原
料を鉱酸にて加水分解して解重合物とした後、60
メツシユの金網を通過する大きさになるまで、液
中にて切断することにより容易に、最大繊維長
250μ、50μ以上の短桿状粒子が20〜80%であつ
て、かつその太さが、2〜20μであるセルロース
粉末が得られる事を見出し、本発明を完成した。 即ち、本発明は、直径が2〜20μであるセルロ
ース原料を、鉱酸にて加水分解して解重合物とし
た後、レイノズル数300以上の乱流領域で撹拌す
ることにより、60メツシユの金網を通過する大き
さになるまで液中にて切断する事を特徴とする特
殊形状セルロース粉末の製造法に関する。 本発明に用いられるセルロース繊維としては、
一般に、天然セルロース繊維であれば何でも良
く、一例を拳げると、綿、コツトンリンター、
麻、ジユート、木材パルプ、リンターパルプ、竹
パルプ、バガスパルプ等がある。このセルロース
繊維の太さは、生成物の形状を規制する重要な因
子となるので、繊維の太さは2〜20μ、好ましく
は、5〜10μの太さが良く、また、セルロース繊
維としては、工業的に見て、品質が安定した木材
パルプを使用するのが良い。 本発明に用いられる鉱酸は、例えば塩酸、硫
酸、リン酸、硝酸等であり、これらのうち硝酸は
浸透力が強く、繊維の太さを減ずる傾向が有るの
で、出来れば、塩酸、硫酸、リン酸の中より選ぶ
のが良い。特に硫酸は、繊維の損傷が少ないの
で、最も適している。なお、これらの酸を適宜混
合して使つてもさしつかえない。 本発明の加水分解は、平均重合度を100〜300に
調整する条件であれば、どんな条件でも良いが、
繊維の損傷が少なく、加水分解時の収率が良いと
いう点から、あえて拳げれば、酸濃度0.01〜1.0
規定の比較的低濃度の酸を使用して行なうのが良
く、温度は95℃以上である。 セルロース繊維を加水分解すると一般にその繊
維強度が低下してくる。そして平均重合度が100
以下になると極端に強度低下が起り、弱い撹拌を
加えても、繊維がバラバラになり、もはや繊維の
太さを保ち得なく、また、平均重合度が300以上
では、織繊強度が極端に強く、これを無理に切断
しようとすれば、従来と同様の強力な粉砕機を必
要とすることになつて好ましくない。従つて、本
発明においては、解重合セルロースの平均重合度
を100〜300に調整する必要がある。 本発明における切断は、解重合物を、液中に分
散し、これを撹拌する事によつて、液体の流動を
起しこの流動により引き起される剪断力を利用し
て切断する事にある。つまり適度に物理的強度を
減じられた解重合物は、流れの中で剪断力を受け
切断される。この際、織繊長の長いセルロース繊
維ほど、液流から大きな力を受ける事になるの
で、長い繊維から優先的に切断され、ほゞ長さが
そろつた粒子となると考えられる。この切断の為
に要する液体の流れは通常の撹拌をする事により
容易に得られる。撹拌の程度は、セルロース繊維
を分散した液体が均質に混合される程度であれば
良いが、これをレイノルズ数で表わすと、300以
上の乱流領域で行なうのが良い。解重合物を分散
させる液体は、水もしくは酸、塩、有機物、等を
適宜溶解した水溶液が好ましいが、例えば有機溶
媒の様な物であつても切断されない事は無い。解
重合物を液中に分散する濃度は、分散液が自由流
動する濃度であれば、いかなる濃度であつても良
いが好ましくは、1〜20重量%の範囲にするのが
良い。これは、1%以下ではセルロース繊維の切
断に使用されるエネルギーよりも、液体の撹拌に
使用されるエネルギーが過大により好ましくな
く、また、20%を越える濃度では、セルロース繊
維の接触する機会が増大し、流体による切断より
むしろ、繊維の接触による磨砕効果の方が優先し
て来てセルロース繊維の損傷が無視出来なくなる
為、好ましくないからである。液体を撹拌する時
間は、使用する撹拌装置、解重合物の重合度、液
中への分散濃度等により適宜調整し、液中のセル
ロース繊維が60メツシユ金網を通過する様になる
まで行なう必要がある。 得られた特殊形状セルロース粉末は、液中より
取り出し、必要ならば洗浄し、更に乾燥する。乾
燥は、いかなる方法であつても良いが、例えば、
噴霧乾燥、フラツシユ乾燥等の乾燥方法を使え
ば、製剤用に用いる時は都合が良い。 本発明の方法によつて得られた特殊形状粉末
は、平均重合度が100〜300に、粒子形状がほゞ均
一に調整されているので、適度の流動性と賦形性
を兼ね備えている。従つて、医薬品、食品、化粧
品等の分野で粉末を成形加工する時に用いられ
る。特に薬の打錠に用いた時、優れた流動性の
為、取扱いが良好でしかも高い成形性を与えるの
で利用価値が高い。 以下、実施例により更に詳細に説明する。 実施例 1 平均重合度720、繊維径約5〜10μのアセテー
ト用木材溶解パルプを0.8規定の硫酸に浸し、105
℃、5時間、加水分解を行ない平均重合度180の
加水分解セルロースを得た。この加水分解セルロ
ースを過し水洗した後、水中に分散して固型分
濃度5%のスラリーとした。このスラリーを直径
30cm、高さ50cmの円筒型タンクに入れ、直径15cm
の6枚羽根タービン翼を使い300rpmの回転数に
て撹拌した。この時のレイノルズ数は5800であつ
た。20分間撹拌して、最大長約200ミクロン、50
ミクロン以上の粒子の割合が52%、繊維径約5〜
10μの分布を持つ特殊形状セルロース粉末を得
た。 実施例 2 セルロース原料として繊維径5〜10μ、平均重
合度680、αセルロース92%のレーヨン用溶解パ
ルプを使用し、0.5規定の硫酸で115℃、2時間加
水分解を行い、平均重合度220の加水分解セルロ
ースを得た。この加水分解セルロースを硫酸を含
んだまゝ実施例1で使用した撹拌装置に入れ、
150rpm、1時間撹拌した。この時のレイノルズ
数は1150、スラリーの固型分は7%であつた。得
られた粉末セルロースは、最大長約250μ、50μ以
上の粒子の割合が38%、繊維の太さが、約5〜
10μであつた。 実施例 3 セルロース繊維の径が3〜10μ、平均重合度
1250のリンターパルプを、0.7規定のリン酸を用
い、温度120℃、時間35分にて加水分解を行い、
平均重合度250の加水分解セルロースを得た。こ
の加水分解セルロースを1規定の水酸化ナトリウ
ムで中和後、実施例1で使用した撹拌機に入れ、
実施例1と全く同一の操作にて撹拌した所、最大
長250μ、50μ以上の粒子の割合が63%、繊維径3
〜10μの分布を持つ、特殊形状粉末セルロースを
得た。 比較例 1 平均重合度720のアセテート用パルプを0.8規定
塩酸で、80℃、20分加水分解して平均重合度350
の解重合セルロースを得た。これを、水洗後5%
固型分濃度のスラリーとし、直径30cm、高さ50cm
の円筒型タンク中に入れ、直径10cm6枚羽根のタ
ービン翼を使い、10rpmの回転数にて1時間撹拌
した。この時のレイノルズ数は86であつた。得ら
れたセルロース粉末は繊維の最大長約800μ、50μ
以上の粒子の割合が85%であつた。 試験例 1 実施例1及び比較例1で得られたセルロース粉
末を菊水製作所製RT−S22−T35型高速直打機
で8mmφ、12Rの杵を用い打錠速度30rpm、成形
圧力200Kgで打錠成形した。錠剤の重量のバラツ
キ、錠剤硬度について評価した。その結果を第1
表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention has a limited length and thickness;
This invention relates to a method for producing cellulose powder having a special shape in the form of short rods. More specifically, the maximum fiber length is 250μ, it contains 20 to 80% short rod-shaped particles with a length of 50μ or more, and the thickness is 250μ.
This invention relates to a method for producing specially shaped cellulose powder for pharmaceutical preparations, which has a particle size of ~20μ, has excellent fluidity, and also has excipient properties. Cellulose powder has traditionally been known as an excellent tablet excipient. However, cellulose powder generally has poor fluidity and often causes trouble during tabletting. For this reason,
Many attempts have been made to improve fluidity. For example, Japanese Patent Application Laid-open No. 19917/1983 describes the idea of hydrolyzing a cellulose raw material and then cutting the fibers. In this case, it is assumed that the pulverization process is mainly carried out in a dry manner, and the hydrolysis merely serves as an aid to the pulverization process. Therefore,
The cellulose is not sufficiently hydrolyzed and the cellulose is crushed while maintaining a fairly strong fiber strength. Furthermore, although there are descriptions of pulverization in a wet state, hydrolysis merely serves as an aid to pulverization, as described above. Furthermore, JP-A-49-88925 describes that cellulose is chemically pulverized during acid hydrolysis.
There is a description that it can be crushed without applying any physical force. Further, US Pat. No. 2,978,446 describes a method of wet grinding in a colloid mill into fine particles of several microns or less. As mentioned above, these techniques not only require a great deal of power to cut the cellulose fibers too finely, or force the physical cutting while maintaining the strength of the cellulose fibers, but also affect the way the cellulose fibers are cut. , they were randomly cut or torn apart in different directions, without distinction between vertical and horizontal directions. As a result, the shape of the obtained cellulose powder was irregular, and the particle sizes were long and short, and included particles of various sizes. Therefore, in order to obtain a powder with a special shape that has both fluidity and shapeability, operations such as sieving and classification are necessary to obtain the desired shape,
It is necessary to take out only particles of the same size, which makes the process complicated, and has the disadvantage that a large amount of unnecessary parts are produced at the same time. In view of this point, the inventor of the present invention, as a result of research, found that after hydrolyzing a cellulose raw material with a cellulose fiber diameter of 2 to 20μ with mineral acid to make a depolymerized product,
Maximum fiber length can be easily achieved by cutting in liquid until the fiber is large enough to pass through the mesh wire mesh.
The present invention was completed based on the discovery that a cellulose powder containing 20 to 80% of short rod-shaped particles with a diameter of 250 μm or 50 μm or more and a thickness of 2 to 20 μm could be obtained. That is, in the present invention, a cellulose raw material having a diameter of 2 to 20 μm is hydrolyzed with mineral acid to form a depolymerized product, and then stirred in a turbulent flow region with a Ray nozzle number of 300 or more to form a 60-mesh wire mesh. This invention relates to a method for producing specially shaped cellulose powder, which is characterized by cutting the cellulose powder in a liquid until it has a size that can pass through a cellulose powder. The cellulose fibers used in the present invention include:
In general, any natural cellulose fiber will work; examples include cotton, cotton linters,
There are hemp, jute, wood pulp, linter pulp, bamboo pulp, bagasse pulp, etc. The thickness of this cellulose fiber is an important factor regulating the shape of the product, so the thickness of the fiber is preferably 2 to 20μ, preferably 5 to 10μ. From an industrial standpoint, it is better to use wood pulp of stable quality. The mineral acids used in the present invention include, for example, hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, etc. Among these, nitric acid has strong penetrating power and tends to reduce the thickness of fibers, so if possible, hydrochloric acid, sulfuric acid, nitric acid, etc. It is better to choose from among phosphoric acids. In particular, sulfuric acid is the most suitable because it causes less damage to the fibers. It should be noted that these acids may be used as a mixture as appropriate. The hydrolysis of the present invention may be carried out under any conditions as long as the average degree of polymerization is adjusted to 100 to 300.
From the viewpoint of less damage to fibers and good yield during hydrolysis, acid concentration of 0.01 to 1.0 is recommended.
It is best to carry out using a specified relatively low concentration of acid and at a temperature of 95°C or higher. When cellulose fibers are hydrolyzed, their fiber strength generally decreases. and the average degree of polymerization is 100
If the average degree of polymerization is 300 or more, the strength of the fibers will be extremely low, and even if weak stirring is applied, the fibers will fall apart and the thickness of the fibers will no longer be maintained. If one attempts to forcefully cut this, a powerful crusher similar to the conventional one would be required, which is not preferable. Therefore, in the present invention, it is necessary to adjust the average degree of polymerization of depolymerized cellulose to 100-300. Cutting in the present invention involves dispersing the depolymerized product in a liquid and stirring it to cause a flow of the liquid, and cutting using the shearing force caused by this flow. . In other words, the depolymerized product whose physical strength has been appropriately reduced is subjected to shearing force in the flow and is cut. At this time, since cellulose fibers with a longer woven fiber length receive a greater force from the liquid flow, it is thought that longer fibers are preferentially cut, resulting in particles with approximately uniform length. The flow of liquid required for this cutting is easily obtained by conventional stirring. The degree of stirring may be such that the liquid in which the cellulose fibers are dispersed is mixed homogeneously, but it is preferable to carry out the stirring in a turbulent flow region of 300 or more when expressed in terms of Reynolds number. The liquid in which the depolymerized product is dispersed is preferably water or an aqueous solution containing an acid, a salt, an organic substance, etc., but even if it is an organic solvent, the liquid will not be cleaved. The concentration at which the depolymerized product is dispersed in the liquid may be any concentration as long as the dispersion liquid flows freely, but it is preferably in the range of 1 to 20% by weight. This is undesirable because at concentrations below 1%, the energy used to stir the liquid is too large compared to the energy used to cut the cellulose fibers, and at concentrations above 20%, the chances of cellulose fibers coming into contact increase. However, this is not preferable because the grinding effect due to contact of the fibers takes precedence over cutting by the fluid, and damage to the cellulose fibers cannot be ignored. The time for stirring the liquid should be adjusted as appropriate depending on the stirring device used, the degree of polymerization of the depolymerized product, the concentration of dispersion in the liquid, etc., and stirring should be continued until the cellulose fibers in the liquid pass through a 60-mesh wire mesh. be. The obtained specially shaped cellulose powder is taken out from the liquid, washed if necessary, and further dried. Any method may be used for drying, but for example,
Drying methods such as spray drying and flash drying are convenient for use in pharmaceutical preparations. The specially shaped powder obtained by the method of the present invention has an average degree of polymerization of 100 to 300 and a substantially uniform particle shape, so it has both appropriate flowability and shapeability. Therefore, it is used when molding powder in fields such as pharmaceuticals, foods, and cosmetics. In particular, when used for tabletting medicines, it has excellent fluidity, allows easy handling, and provides high moldability, making it highly valuable. Hereinafter, it will be explained in more detail with reference to Examples. Example 1 Wood dissolving pulp for acetate with an average degree of polymerization of 720 and a fiber diameter of approximately 5 to 10 μm was immersed in 0.8N sulfuric acid, and
Hydrolysis was carried out at °C for 5 hours to obtain hydrolyzed cellulose with an average degree of polymerization of 180. This hydrolyzed cellulose was filtered and washed with water, and then dispersed in water to form a slurry with a solid content concentration of 5%. Diameter of this slurry
Place in a cylindrical tank 30cm long and 50cm high, with a diameter of 15cm.
The mixture was stirred at a rotation speed of 300 rpm using a 6-blade turbine blade. The Reynolds number at this time was 5800. Stir for 20 minutes, maximum length approximately 200 microns, 50
The proportion of particles larger than microns is 52%, and the fiber diameter is approximately 5 ~
A special shaped cellulose powder with a distribution of 10μ was obtained. Example 2 A dissolving pulp for rayon with a fiber diameter of 5 to 10μ, an average degree of polymerization of 680, and 92% α-cellulose was used as a cellulose raw material, and it was hydrolyzed with 0.5N sulfuric acid at 115°C for 2 hours to obtain an average degree of polymerization of 220. Hydrolyzed cellulose was obtained. This hydrolyzed cellulose was placed in the stirring device used in Example 1 while containing sulfuric acid, and
Stirred at 150 rpm for 1 hour. At this time, the Reynolds number was 1150, and the solid content of the slurry was 7%. The obtained powdered cellulose has a maximum length of approximately 250μ, a proportion of particles of 50μ or more at 38%, and a fiber thickness of approximately 5 to 50μ.
It was 10μ. Example 3 Diameter of cellulose fiber is 3 to 10μ, average degree of polymerization
1250 linter pulp was hydrolyzed using 0.7N phosphoric acid at a temperature of 120℃ for 35 minutes.
Hydrolyzed cellulose with an average degree of polymerization of 250 was obtained. After neutralizing this hydrolyzed cellulose with 1N sodium hydroxide, it was placed in the stirrer used in Example 1,
When stirred in exactly the same manner as in Example 1, the maximum length was 250μ, the proportion of particles of 50μ or more was 63%, and the fiber diameter was 3.
Specially shaped powdered cellulose with a distribution of ~10μ was obtained. Comparative Example 1 Acetate pulp with an average degree of polymerization of 720 was hydrolyzed with 0.8N hydrochloric acid at 80℃ for 20 minutes to achieve an average degree of polymerization of 350.
Depolymerized cellulose was obtained. After washing with water, add 5%
Slurry with solid content concentration, diameter 30cm, height 50cm
The mixture was placed in a cylindrical tank and stirred for 1 hour at a rotation speed of 10 rpm using a 6-blade turbine blade with a diameter of 10 cm. The Reynolds number at this time was 86. The obtained cellulose powder has a maximum fiber length of approximately 800μ, 50μ
The proportion of these particles was 85%. Test Example 1 The cellulose powders obtained in Example 1 and Comparative Example 1 were compressed into tablets using a Kikusui Seisakusho RT-S22-T35 high-speed direct compression machine using an 8 mmφ, 12R punch at a tableting speed of 30 rpm and a molding pressure of 200 kg. did. The variation in tablet weight and tablet hardness were evaluated. The result is the first
Shown in the table. 【table】

Claims (1)

【特許請求の範囲】 1 セルロース繊維の直径が2〜20μであるセル
ロース原料を、鉱酸で加水分解して平均重合度が
約100〜300の解重合物とした後、レイノズル数
300以上の乱流領域で撹拌することにより、約60
メツシユの金網を通過する大きさになるまで、液
中にて切断することを特徴とする特殊形状セルロ
ース粉末の製造法。 2 鉱酸が、塩酸、硫酸、リン酸から選ばれた少
なくとも1種からなることを特徴とする特許請求
の範囲第1項記載の製造法。 3 鉱酸が、硫酸であることを特徴とする特許請
求の範囲第2項記載の製造法。 4 セルロース原料が、直径5〜10μのセルロー
ス繊維よりなる木材溶解パルプであることを特徴
とする特許請求の範囲第1項記載の製造法。 5 切断が、解重合物を1〜20重量%含む水もし
くは水溶液中で撹拌により行なわれることを特徴
とする特許請求の範囲第1項記載の製造法。 6 加水分解が、酸濃度0.01〜1規定、温度95℃
以上で行なわれることを特徴とする特許請求の範
囲第1項記載の製造法。
[Claims] 1 A cellulose raw material with a cellulose fiber diameter of 2 to 20μ is hydrolyzed with a mineral acid to obtain a depolymerized product with an average degree of polymerization of about 100 to 300, and then the Raynozzle number is
By stirring in a turbulent region of more than 300, approximately 60
A method for producing specially shaped cellulose powder, which is characterized by cutting it in a liquid until it has a size that can pass through a mesh wire mesh. 2. The production method according to claim 1, wherein the mineral acid consists of at least one selected from hydrochloric acid, sulfuric acid, and phosphoric acid. 3. The manufacturing method according to claim 2, wherein the mineral acid is sulfuric acid. 4. The manufacturing method according to claim 1, wherein the cellulose raw material is wood dissolving pulp made of cellulose fibers with a diameter of 5 to 10 μm. 5. The production method according to claim 1, wherein the cutting is carried out by stirring in water or an aqueous solution containing 1 to 20% by weight of the depolymerized product. 6 Hydrolysis is performed at an acid concentration of 0.01 to 1N and a temperature of 95℃.
The manufacturing method according to claim 1, which is carried out as described above.
JP56096635A 1981-06-24 1981-06-24 Preparation of cellulose powder having particular shape Granted JPS57212231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56096635A JPS57212231A (en) 1981-06-24 1981-06-24 Preparation of cellulose powder having particular shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56096635A JPS57212231A (en) 1981-06-24 1981-06-24 Preparation of cellulose powder having particular shape

Publications (2)

Publication Number Publication Date
JPS57212231A JPS57212231A (en) 1982-12-27
JPH037693B2 true JPH037693B2 (en) 1991-02-04

Family

ID=14170286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56096635A Granted JPS57212231A (en) 1981-06-24 1981-06-24 Preparation of cellulose powder having particular shape

Country Status (1)

Country Link
JP (1) JPS57212231A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262828A (en) * 1984-06-08 1985-12-26 Kao Corp Rodlike fine polymer powder and its dispersion in nonaqueous medium
EA025062B1 (en) 2010-12-15 2016-11-30 3М Инновейтив Пропертиз Компани Controlled degradation fibers
JP6104905B2 (en) 2012-05-31 2017-03-29 旭化成株式会社 Cellulose powder
JP6247207B2 (en) 2012-05-31 2017-12-13 旭化成株式会社 Cellulose powder
WO2020202598A1 (en) * 2019-04-02 2020-10-08 旭化成株式会社 Cellulose powder, tablet, and tablet production method

Also Published As

Publication number Publication date
JPS57212231A (en) 1982-12-27

Similar Documents

Publication Publication Date Title
US3539365A (en) Dispersing and stabilizing agent comprising beta-1,4 glucan and cmc and method for its preparation
DE69704360T2 (en) COMPOSITION CONTAINING NANOFIBRILLS OF CELLULOSE AND CARBOXYLATED CELLULOSE WITH A LOW DEGREE OF SUBSTITUTION
KR100488832B1 (en) Process for Preparing Fine-Particle Polysaccharide Derivatives
CN1096280C (en) Excipient having high compactability and process for preparing same
CN104592400B (en) A kind of preparation method of microcrystalline Cellulose
JPH0611793B2 (en) Suspension of micronized cellulosic material and method for producing the same
CN112204079A (en) Powder comprising carboxymethylated cellulose nanofibers
JPH02221112A (en) Production of spherical silica gel
DE2415556C3 (en) Process for the production of high molecular weight substances treated with glyoxal
CN102190736A (en) Low-substituted hydroxypropylcellulose and solid preparation comprising the same
JPH037693B2 (en)
CN111465620A (en) Carboxymethylated cellulose nanofibers
US2331865A (en) Method of preparing cold-watersoluble powdered cellulose ethers
CN113548653B (en) Production process of pharmaceutic adjuvant anhydrous calcium hydrophosphate with direct-pressure function
CN116535544A (en) Hyaluronate capable of being rapidly dispersed and dissolved and preparation method thereof
CN103202817B (en) Preparation method for mannitol grains capable of being directly pressed
JPS5984938A (en) Chitosan suspension and its production
JP2766525B2 (en) Method for producing fibrous basic magnesium sulfate
JP3998477B2 (en) Cellulose composite and production method thereof
US2912431A (en) Preparation of carboxyalkyl cellulose derivatives
JPH0516893B2 (en)
JPH0233721B2 (en) KETSUSHOSERUROOSUNOSEIZOHOHO
US2667482A (en) Production of water-soluble salts of certain cellulose derivatives of improved physical form
JPS6230222B2 (en)
CN113509445A (en) Voriconazole dispersible tablet and preparation method thereof