JPH037415B2 - - Google Patents

Info

Publication number
JPH037415B2
JPH037415B2 JP57126657A JP12665782A JPH037415B2 JP H037415 B2 JPH037415 B2 JP H037415B2 JP 57126657 A JP57126657 A JP 57126657A JP 12665782 A JP12665782 A JP 12665782A JP H037415 B2 JPH037415 B2 JP H037415B2
Authority
JP
Japan
Prior art keywords
mixer
baffle plates
flow direction
horizontally
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57126657A
Other languages
Japanese (ja)
Other versions
JPS5919524A (en
Inventor
Tsutomu Myatake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57126657A priority Critical patent/JPS5919524A/en
Publication of JPS5919524A publication Critical patent/JPS5919524A/en
Publication of JPH037415B2 publication Critical patent/JPH037415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Description

【発明の詳細な説明】 本発明は機械的可動部分をもたない混合器に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mixer having no mechanically moving parts.

混合器の対象となる化学的単位操作は、混合、
抽出、ガス吸収、乳化、溶解、熱交換、反応、粉
化混合等があり、その応用機器としては、熱交換
装置、重油(船用)ブレンド装置、射出成形装置
のミキシングノズル、有機廃液処理装置、エマル
ジヨン燃料生成装置、PH調整装置、液体混合装
置等がある。
The chemical unit operations covered by mixers are mixing,
There are extraction, gas absorption, emulsification, dissolution, heat exchange, reaction, powdering and mixing, etc., and the applied equipment includes heat exchange equipment, heavy oil (for ships) blending equipment, mixing nozzles for injection molding equipment, organic waste liquid treatment equipment, There are emulsion fuel generation devices, PH adjustment devices, liquid mixing devices, etc.

従来の混合器は、混合器自体に機械的な可動部
分をもつているため、最近、強く要請されている
プロセスの連続化、省力化、省エネルギー、装置
の小型化、メインテナンスフリー等の要件をすべ
て満足させることは、極めて難かしく、他の分野
への応用が阻まれていた。
Conventional mixers have mechanical moving parts within themselves, so they meet all the requirements that have been strongly demanded recently, such as continuous process, labor saving, energy saving, miniaturization of equipment, and maintenance-free. It has been extremely difficult to satisfy this problem, and its application to other fields has been hindered.

本発明は、こうした従来の問題点に対処するた
めになされたもので、機械的可動部分をもたない
効率のよい静止型混合器を提供することにより、
あらゆる分野への応用を可能ならしむるようにし
たもので、その要旨は、流路を形成する筒体内に
2次元的に上下又は左右に向い合せて複数の多孔
板よりなる邪魔板を配設し、該邪魔板はすべて流
れ方向に対して90゜より少い角度θを以て一定ピ
ツチで配設され、かつ上下又は左右に向い合う邪
魔板は流れ方向に一定の位相差を以て配設したこ
とを特徴とするものである。
The present invention has been made to address these conventional problems by providing an efficient static mixer without mechanically moving parts.
It is designed to be applicable to all fields, and its gist is that baffle plates consisting of a plurality of perforated plates are arranged two-dimensionally facing each other vertically or horizontally within a cylinder that forms a flow path. However, all the baffle plates are arranged at a constant pitch at an angle θ less than 90° with respect to the flow direction, and the baffle plates facing vertically or horizontally are arranged with a constant phase difference in the flow direction. This is a characteristic feature.

次に試作実験に供された混合器を図面にもとず
いて説明する。
Next, the mixer used in the prototype experiment will be explained based on the drawings.

第1図において、1は内部に流体通路を形成し
た角筒で、流体通路には多数の邪魔板2が適当な
角度をもたせて、上下もしくは左右から交互に配
設されており、各邪魔板2は多数の穴3が適宜の
間隔をもたせてあけてある多孔板よりなつてい
る。さらに詳しくいえば、流路を形成する筒体内
に複数の邪魔板2が2次元的に上下又は左右に向
い合せて配設されている。そして邪魔板2…では
すべて流れ方向に対して90゜より少い角度θを以
て一定ピツチで配設され、かつ上下又は左右に向
い合う邪魔板は流れ方向に一定の位相差を以て配
設されている。
In Fig. 1, reference numeral 1 is a rectangular tube with a fluid passage formed inside, and in the fluid passage, a large number of baffle plates 2 are arranged alternately from above and below or from left and right at appropriate angles. 2 is made of a perforated plate in which a large number of holes 3 are formed at appropriate intervals. More specifically, a plurality of baffle plates 2 are disposed two-dimensionally facing each other vertically or horizontally within a cylindrical body forming a flow path. The baffle plates 2... are all arranged at a constant pitch at an angle θ less than 90° with respect to the flow direction, and the baffle plates facing vertically or horizontally are arranged with a constant phase difference in the flow direction. .

そして試作された混合器A(第1図)は、例え
ば次の寸法割合でつくられている。
The prototype mixer A (Fig. 1) is made with the following dimensional ratios, for example.

すなわち角筒1の辺の長さをa、流体通路の長
さをbとすると、流体通路に配設される邪魔板2
は、例えば筒1のフランジ部1′を基準にして流
体通路の上方と下方から角度θ=45゜の角度で、
ピツチaで、又上下は交互にa/2ピツチずらせ
て配設されており、各邪魔板2には多数の穴3が
最適の穴径dをもつて第3図のようなピツチ間隔
であけてある。
That is, if the length of the side of the rectangular tube 1 is a and the length of the fluid passage is b, then the baffle plate 2 disposed in the fluid passage
are, for example, an angle θ=45° from above and below the fluid passage with respect to the flange 1' of the cylinder 1,
Each baffle plate 2 has a large number of holes 3 with an optimum hole diameter d spaced apart from each other by a/2 pitch as shown in Fig. 3. There is.

第4図は前記混合器Aをテストするための実験
装置であつて、図中T1は水タンク、T2は重油タ
ンク、T3は混合液収納タンクである。水タンク
T1と混合液収納タンクT3との管路系にはポンプ
P1とロータRとバルブV1,V2が設けられており、
又重油タンクT2と混合液収納タンクT3との管路
系にはモータMによつて駆動されるギヤポンプ
P2とバルブV3,V4と、オリフイスO及び分岐管
路に設けた差圧計G1とを有し、水系と重油系管
路の合流点には圧力計G2が設けてある。
FIG. 4 shows an experimental apparatus for testing the mixer A, in which T1 is a water tank, T2 is a heavy oil tank, and T3 is a mixed liquid storage tank. water tank
A pump is installed in the pipeline system between T 1 and the mixed liquid storage tank T 3 .
P 1 , rotor R, and valves V 1 and V 2 are provided,
In addition, a gear pump driven by a motor M is installed in the pipeline system between the heavy oil tank T2 and the mixed liquid storage tank T3 .
P 2 , valves V 3 and V 4 , and a differential pressure gauge G 1 provided in the orifice O and the branch pipe, and a pressure gauge G 2 is provided at the confluence of the water system and heavy oil system pipe.

以上の構成からなる試験装置により混合器Aを
テストするには、水系と重油系の管路系を流れる
水と重油とを、夫々V1,V2およびV3,V4によつ
てその流量を調節し、夫々ロータメータR、差圧
計G等により流量を測定した後、混合器A直前で
合流させて混合器A内に導入すると、流体は第5
図の動作図に示すように、主流S1と渦S4との間
で、ほぼ規則的に起る巻き込みや、分流S2の繰返
し作用により、混合器A内を流れる流体は、主流
S1と渦S4とによつて剪断力を受けながら混合を進
み、さらに穴から噴出する噴流S3や巻き込み及び
分流時に働く剪断力も加わつて最適な混合作用が
行われ、最終的に取出口から混合液収納タンク
T3に取出される。
In order to test mixer A using the test device configured as described above, the flow rates of water and heavy oil flowing through the water system and heavy oil system pipes are controlled by V 1 , V 2 and V 3 , V 4 respectively. After adjusting the flow rate with rotameter R, differential pressure gauge G, etc., the fluid is merged just before mixer A and introduced into mixer A.
As shown in the operation diagram in the figure, the fluid flowing in the mixer A becomes the main stream due to the entrainment that occurs almost regularly between the main stream S 1 and the vortex S 4 and the repeated action of the branch stream S 2 .
Mixing proceeds while being subjected to shear force by S 1 and vortex S 4 , and the jet stream S 3 ejected from the hole and the shear force acting at the time of entrainment and separation are also added to achieve the optimal mixing action, and finally the outlet Mixed liquid storage tank
Taken out at T 3 .

このようにして得られたエマルジヨンをサンプ
リングして写真撮影し、そのネガを拡大し、分散
粒子径を測定すると共に、混合特性を平均粒子径
及び粒子径分布を用いて評価する実験を行つた。
The emulsion thus obtained was sampled and photographed, the negative was enlarged, the dispersed particle size was measured, and an experiment was conducted to evaluate the mixing characteristics using the average particle size and particle size distribution.

その結果、次のことが判明した。 As a result, the following was found.

(1) 試作混合器を用いて流量8〜12/min(圧
損:0.5〜1.5Kg/cm2、Re数:50〜110)の範囲
で20〜70μmのエマルジヨン平均粒子径が得ら
れた。
(1) Using a prototype mixer, an emulsion average particle size of 20 to 70 μm was obtained at a flow rate of 8 to 12/min (pressure loss: 0.5 to 1.5 Kg/cm 2 , Re number: 50 to 110).

…第6図に含水率と平均粒子径の関係を示
す。
...Figure 6 shows the relationship between water content and average particle size.

(2) ウエーバー数と無次元平均粒子径との関係は
次式で表わされる。
(2) The relationship between the Weber number and the dimensionless average particle diameter is expressed by the following equation.

Da/Db=0.175We-0.75 Da:平均粒子径 Db:公称径 We:ウエーバー数 (3) 混合器に加えられたパワーEと無次元平均粒
子径の関係は次式で表わされる。
Da/Db=0.175We -0.75 Da: Average particle diameter Db: Nominal diameter We: Weber number (3) The relationship between the power E applied to the mixer and the dimensionless average particle diameter is expressed by the following equation.

Da/Db=−3.13 lnE+0.094 (4) 試作混合器により生成されるエマルジヨンは
Rosiin−Rammlarの粒子径分布法則に従い次
式で表される。
Da/Db=-3.13 lnE+0.094 (4) The emulsion produced by the prototype mixer is
It is expressed by the following formula according to the Rosiin-Rammlar particle size distribution law.

R=e×p{−e×p(−5.13n+7.5×10-3
Xn} (5) 市販の静止型混合器の1つであるハニカムミ
キサーと比べると、Re>90 パワーE>30W
で試作混合器の方が平均粒子径が小さい。
R=e×p{-e×p(-5.13n+7.5× 10-3 )
Xn} (5) Compared to a honeycomb mixer, which is one of the commercially available static mixers, Re>90 Power E>30W
The average particle size of the prototype mixer is smaller.

等の好結果が得られた。Good results were obtained.

本発明は以上のような原理と構成からなるもの
であつて、実用化に際しては、構造上におけるパ
ラメータの変化の影響や、重油以外の液体の混合
や、あるいは粉体、気体等の混合特性等、さらに
は応用機器への適用等を勘案し、適宜最適の状態
となるよう、基礎実験を行う必要があることはい
うまでもない。
The present invention is based on the principles and configurations described above, and when put into practical use, it is important to consider the effects of changes in structural parameters, the mixing of liquids other than heavy oil, and the mixing characteristics of powders, gases, etc. Needless to say, it is necessary to conduct basic experiments in order to obtain the optimum condition, taking into consideration the application to applied equipment.

なお実験例では角筒の混合器を用いた場合につ
いて説明したが、本発明はこれに限定されるもの
ではなく、適用する後段の機器に対応して適宜そ
の形状ならびに寸法割合等を可変ならしむるを可
とする。
In the experimental example, a case was explained in which a rectangular tube mixer was used, but the present invention is not limited to this, and the shape and dimensional ratio of the mixer can be changed as appropriate depending on the equipment in the subsequent stage to which it is applied. Muru is allowed.

又構造上においても邪魔板の枚数、穴数等を適
宜増減してもよい。
Also, in terms of structure, the number of baffle plates, the number of holes, etc. may be increased or decreased as appropriate.

以上詳述したように本発明によれば、器体内に
機械的な可動部分を設けることなく、極めて効率
的な混合を可能ならしむるようにしたため、従来
の問題点をことごとく解消し、発明所期の目的を
確実に達成することができる。
As described in detail above, according to the present invention, extremely efficient mixing is possible without providing any mechanically movable parts within the container. The purpose of the term can be achieved without fail.

特に筒体内に多孔板よりなる邪魔板を流れの方
向に一定の角度θで上下又は左右に2次元的に向
い合せ、しかも流れ方向と一定のピツチで配設し
た上に上下又は左右に向い合つて配設される邪魔
板は一定の位相差を以てずらして配設するので、
流れの方向に蛇行が生じ、これにより主流と渦の
2つの流れが分化して両者の間で規則的に起る巻
き込み作用による剪断力によつて混合作用が進
む。
In particular, baffle plates made of perforated plates are placed two-dimensionally facing each other vertically or horizontally at a constant angle θ in the flow direction in the cylinder, and are arranged at a constant pitch to the flow direction, and then facing vertically or horizontally. Since the baffle plates are arranged with a certain phase difference,
Meandering occurs in the flow direction, which separates the main flow and the vortex into two flows, and the mixing action progresses due to the shear force caused by the entrainment action that occurs regularly between the two.

さらに邪魔板に設けた孔はさらにこの部分を通
るとき剪断力が生じて効率を向上させる。
Furthermore, the holes provided in the baffle plate also generate shear forces when passing through this portion, improving efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の1実施例を示すもので、第1図
は試作混合器の概略側断面図、第2図は正面図、
第3図は邪魔板の穴の配列例を示し、第4図は本
発明による試作混合器を用いた実験装置の流体系
統図、第5図は混合器内の流体動作図、第6図は
混合液の含水率と平均粒子径とのグラフを示す。 図において;1……筒、1′……フランジ部、
2……邪魔板、3……穴、A……混合器、G1
…差圧計、G2……圧力計、M……モータ、P1
…ポンプ、P2……ギヤポンプ、R……ロータメ
ータ、T1……水タンク、T2……重油タンク、T3
……混合液収納タンク、V1〜V4……バルブ、O
……オリフイス。
The drawings show one embodiment of the present invention; FIG. 1 is a schematic side sectional view of a prototype mixer, FIG. 2 is a front view,
Fig. 3 shows an example of the arrangement of holes in the baffle plate, Fig. 4 is a fluid system diagram of an experimental device using a prototype mixer according to the present invention, Fig. 5 is a diagram of fluid operation inside the mixer, and Fig. 6 is A graph of the water content and average particle diameter of the liquid mixture is shown. In the figure; 1... cylinder, 1'... flange part,
2... Baffle plate, 3... Hole, A... Mixer, G 1 ...
…Differential pressure gauge, G 2 …Pressure gauge, M…Motor, P 1
...Pump, P 2 ... Gear pump, R ... Rotameter, T 1 ... Water tank, T 2 ... Heavy oil tank, T 3
...Mixed liquid storage tank, V 1 to V 4 ...Valve, O
...Orifice chair.

Claims (1)

【特許請求の範囲】[Claims] 1 流路を形成する筒体と、該筒体内に2次元的
に上下又は左右に向い合せて配設された複数の多
孔板よりなる邪魔板とからなり、該邪魔板はすべ
て流れ方向に対して90゜より少い角度θを以て一
定ピツチで配設され、かつ上下又は左右に向い合
う邪魔板は流れ方向に一定の位相差を以て配設さ
れていることを特徴とする静止型混合器。
1 Consists of a cylindrical body that forms a flow path and a baffle plate made up of a plurality of perforated plates disposed two-dimensionally facing each other vertically or horizontally within the cylindrical body, and all of the baffle plates are oriented in the flow direction. A static mixer, characterized in that the baffle plates are arranged at a constant pitch with an angle θ smaller than 90°, and the baffle plates facing vertically or horizontally are arranged with a constant phase difference in the flow direction.
JP57126657A 1982-07-22 1982-07-22 Stationary type mixer Granted JPS5919524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126657A JPS5919524A (en) 1982-07-22 1982-07-22 Stationary type mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126657A JPS5919524A (en) 1982-07-22 1982-07-22 Stationary type mixer

Publications (2)

Publication Number Publication Date
JPS5919524A JPS5919524A (en) 1984-02-01
JPH037415B2 true JPH037415B2 (en) 1991-02-01

Family

ID=14940638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126657A Granted JPS5919524A (en) 1982-07-22 1982-07-22 Stationary type mixer

Country Status (1)

Country Link
JP (1) JPS5919524A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2923402B2 (en) * 1992-11-02 1999-07-26 昇 阪野 Static mixer
JP5052412B2 (en) * 2008-05-22 2012-10-17 株式会社 飯田建設 Sterilizer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127258A (en) * 1973-04-10 1974-12-05
JPS5031470A (en) * 1973-07-20 1975-03-27

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105077U (en) * 1974-01-31 1975-08-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127258A (en) * 1973-04-10 1974-12-05
JPS5031470A (en) * 1973-07-20 1975-03-27

Also Published As

Publication number Publication date
JPS5919524A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
US6321998B1 (en) Method of producing dispersions and carrying out of chemical reactions in the disperse phase
EP0983116B1 (en) Method and apparatus for conducting sonochemical reactions and processes using hydrodynamic cavitation
US5205648A (en) Method and device for acting upon fluids by means of a shock wave
US6857774B2 (en) Devices for cavitational mixing and pumping and methods of using same
US4430251A (en) High energy emulsifier
JPH04260431A (en) Improvement of gas-liquid dispersion in pipe
WO1994008707A1 (en) Microbubble generator
CN105944584B (en) A kind of static mixer and its working method for Liquid-liquid mixing emulsification
GB2071525A (en) Method and apparatus for reducing molecular agglomerate sizes in fluids
BRPI0516859B1 (en) multi fluid injection mixer and assembly comprising a multi fluid injection mixer.
Rushton et al. Holdup and flooding in air liquid mixing
CN100434151C (en) Preparation of emulsion for decreasing liquid-drop diameter continuouslly and gradually by porous film
JPH0135688B2 (en)
JPH037415B2 (en)
JPS6148970B2 (en)
JPH1066962A (en) Sewage treating device
JPS602899B2 (en) mixing device
EP1501626B1 (en) Device and method of creating hydrodynamic cavitation in fluids
CN108993187A (en) Pipeline static hybrid element and pipeline static mixer containing the hybrid element
RU2336123C1 (en) Plate multi-channel cavitation reactor
JP2554609B2 (en) Gas dissolved liquid manufacturing equipment
RU2186614C2 (en) Apparatus and method of interaction of phases in gas- to-liquid and liquid-to-liquid systems
RU217762U1 (en) Diaphragm mixer
EP3799954B1 (en) Device, system and method for reducing a surface tension and / or a viscosity of a fluid
US3438612A (en) Pressure differential type mixing device