JPH0366944A - Damping device - Google Patents
Damping deviceInfo
- Publication number
- JPH0366944A JPH0366944A JP19795889A JP19795889A JPH0366944A JP H0366944 A JPH0366944 A JP H0366944A JP 19795889 A JP19795889 A JP 19795889A JP 19795889 A JP19795889 A JP 19795889A JP H0366944 A JPH0366944 A JP H0366944A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- spring
- magnetic fluid
- fluid
- constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013016 damping Methods 0.000 title claims description 17
- 239000011553 magnetic fluid Substances 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims description 16
- 239000006096 absorbing agent Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000006247 magnetic powder Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Vibration Prevention Devices (AREA)
- Fluid-Damping Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は振動台、加振装置、吸振台、および回転機械等
の動的吸振装置に適用される制振装置Iこ関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration damping device I applied to a dynamic vibration absorbing device such as a vibration table, a vibration excitation device, a vibration absorption table, and a rotating machine.
従来制振技術としては、機械的なバネ(または及び減衰
器)で振動体を支持し、この系の固有振動数と外力の振
動数の比を選ぶことにより、振動体の制振または振動の
伝達防止を計る技術が良く知られている。また、外力の
振動数に合致する固有振動数の吸振器を振動体に取付け
て振動エネルギを吸収して制振をする技術(動的吸振器
、ダイナミックダンパ)などが実用されている。Conventional vibration damping technology supports the vibrating body with mechanical springs (or dampers) and selects the ratio of the natural frequency of this system to the frequency of the external force to damp the vibration of the vibrating body or suppress the vibration. Techniques for preventing transmission are well known. In addition, technologies such as dynamic vibration absorbers and dynamic dampers that absorb vibration energy and dampen vibrations by attaching vibration absorbers with a natural frequency that matches the frequency of external force to vibrating bodies are in practical use.
機械から基礎への振動伝達の防止や、機械自体の振動を
吸振する吸振器などの振動系の特性は、質量、バネ定数
、減衰定数などの要素と外力の振動数により決まり、制
振の目的に応じてこれらの要素の値を決定する技術は古
くから実用されている。しかも、これらの要素は振動系
において固定された値しかとり得ないため、特定の外力
の振動数に対してのみ制振が有効であって、外力の振動
数が変化すると制振が不十分になったり、場合によって
は却って振動を増長することもあり得る。The characteristics of vibration systems such as vibration absorbers that prevent the transmission of vibration from the machine to the foundation and absorb the vibrations of the machine itself are determined by elements such as mass, spring constant, damping constant, and the frequency of the external force, and the purpose of vibration suppression is Techniques for determining the values of these elements according to the conditions have been in practice for a long time. Furthermore, since these elements can only take fixed values in the vibration system, vibration damping is effective only for a specific frequency of external force, and vibration damping may become insufficient if the frequency of external force changes. In some cases, the vibration may even increase.
この原因は質量、バネ定数、減衰定数など振動特性を決
める要素が前述のようIζ容易にその値を制御できない
ためである。例えば、機械の台に据え付けられるバネは
そのバネを取り替えることなくスは数を増減することな
く振動系のバネ定数を変更することはできない。The reason for this is that the values of the elements that determine the vibration characteristics, such as mass, spring constant, and damping constant, cannot be easily controlled as described above. For example, it is not possible to change the spring constant of a vibration system without changing the number of springs installed on a machine stand or increasing or decreasing the number of springs.
特に、振動特性を決める最も重要なバネが外部信号で容
易にかつ速やかに変更することができれば、どのような
外力の振動数変化Iζも対応できる優れた制振器が提供
できることは容易に推察される0
本発明の課題は、上記従来の問題点を解消し、バネ定数
を容易にリアルタイムで変更できる制振装置を提供する
ことである。In particular, if the most important spring that determines the vibration characteristics can be easily and quickly changed using an external signal, it is easy to infer that an excellent vibration suppressor that can cope with any frequency change Iζ of external force can be provided. An object of the present invention is to solve the above-mentioned conventional problems and provide a vibration damping device that can easily change the spring constant in real time.
本発明による制振装置は、
(1)流体中に微細気泡を分散してなる磁性流体をシリ
ンダ内に封入してなるシリンダ状のバネ要素と一記、・
シミリンダの外周に装着され、流通電流の制御により前
記バネ要素のバネ定数を制御するコイルとを具備してな
ることを粋徴とする0(2)制振バネIζ固定された質
量と、前記バネ要素のバネ定数から固有振動数を演算す
る手段と、被制振体にか\る外力の振動数を計測する手
段と、前記各振動数を比較して固有振動数の変更を指示
する電流の目標値を演算する手段とを具備してなること
を特徴とする。The vibration damping device according to the present invention includes: (1) a cylindrical spring element formed by enclosing a magnetic fluid in which microbubbles are dispersed in a fluid;
0(2) A damping spring Iζ has a fixed mass; means for calculating the natural frequency from the spring constant of the element; means for measuring the frequency of the external force acting on the damped body; It is characterized by comprising means for calculating a target value.
即ち、本発明においては、例えば、微細な気泡を分散し
た擬塑性流体もしくはビンガム流体などの非ニネートン
流体に、磁性体微粉を分散させた液をシリンダ内部に封
入し、このシリンダに外部より強さを可変にできる磁場
を与え、この磁場の強さを選ぶ電流を制御し、ピストン
上に質量を固定して該電流をパラメータとして系の固有
振動を演算し、かつ、外力の振動数を測定し、これらの
振動数の値より適正固有振動数を電流値Iζフ(−ドパ
ツクするようになされている。That is, in the present invention, for example, a liquid in which fine magnetic powder is dispersed in a non-Nineton fluid such as pseudoplastic fluid or Bingham fluid in which fine air bubbles are dispersed is sealed inside a cylinder, and the cylinder is strengthened from the outside. A magnetic field that can be made variable is applied, a current is controlled to select the strength of this magnetic field, a mass is fixed on the piston, the natural vibration of the system is calculated using the current as a parameter, and the frequency of the external force is measured. , the appropriate natural frequency is adjusted to the current value Iζ from the values of these frequencies.
一般に′流体は非圧縮性の性質をもつが、本発明によれ
ば、微細な気泡をシリンダに封入することにより圧縮性
の性質をもつようになり、バネ要素として使用できる。Generally, a fluid has incompressible properties, but according to the present invention, by sealing fine air bubbles into a cylinder, it becomes compressible and can be used as a spring element.
流体をビンガム流体または塑性流体とすることにより気
泡の上昇による液からの分離を防止できる。又微粉磁性
体も封入し、この流体を磁性流体とすることにより、こ
れにかける磁場の強さによりバネ定数を決めることがで
き、かつ磁場の強さによりバネ定数を容易に迅速に変更
できるようになる。磁場の強さはシリンダ外部1ζコイ
ルを設け、これを流れる電流値を制御することにより容
易に変更できる。ピストン上に適当な質量を固定設置す
れば、質量〜ピストンバネ系の固有振動数はその質量と
バネ定数とではソ決まるから、このようなバネ要素によ
り外部電流により極めて容易に固有振動数を制御できる
ことは明白である。従って外力の振動数を振動計と分析
器とで知るととIζより、 IffJ振の9的lど沿っ
た固有振動数が適正な電流値を選定することにより決定
・できる。即ち本発明によりリアルタイムで外力の振動
数に応じた適切な制振系が自動的Iζ実現でき制振装置
の飛躍的な機能向上を計ることができる0
〔実施例〕
第1図は本発明の一実施例を示す図であり、振動体lは
床8とバネ7を介して配置され、床8は更に基礎10と
バネ9を介して配置される振動系をなす。ここで振動体
!上には、シリンダ3とその周辺に巻かれたコイル4、
ピストン2、ピストン2上に連結される質量W6、及び
磁性流体5で構成される動的吸振器を置く。振動センサ
11と振動分析器12により振動体lに作用する外力も
しくは起振力の角速度ωを検出し、演算機13により質
量6のバネ−マス系の固有振動数がωに一致するように
磁性流体5のバネ定数kを与える磁場の強さ即ち電流の
大きさ1.を演算する。これはに=−ω” 、 k=k
(i、)の関係より一意的に選択できる。かくして電
流コントローラI4でi=1゜なる電流をコイル4に流
すことにより質量6とピストン2、磁性流体5は共振す
ることになり振動体lの振動が吸振できることになる。By using Bingham fluid or plastic fluid as the fluid, separation from the liquid due to rising of bubbles can be prevented. In addition, by enclosing a fine magnetic powder and making this fluid a magnetic fluid, the spring constant can be determined by the strength of the magnetic field applied to it, and the spring constant can be easily and quickly changed depending on the strength of the magnetic field. become. The strength of the magnetic field can be easily changed by providing a 1ζ coil outside the cylinder and controlling the value of the current flowing through it. If an appropriate mass is fixedly installed on the piston, the natural frequency of the mass-piston spring system is determined by the mass and the spring constant, so the natural frequency can be controlled extremely easily by external current using such a spring element. It is obvious that it can be done. Therefore, when the frequency of the external force is known using a vibration meter and an analyzer, the natural frequency along the nine points of IffJ vibration can be determined by selecting an appropriate current value from Iζ. That is, according to the present invention, an appropriate vibration damping system according to the frequency of external force can be automatically realized in real time, and the function of the vibration damping device can be dramatically improved0. This is a diagram showing one embodiment, in which a vibrating body 1 is arranged via a floor 8 and a spring 7, and the floor 8 is further arranged via a foundation 10 and a spring 9, forming a vibration system. Vibrating body here! Above is the cylinder 3 and the coil 4 wound around it.
A dynamic vibration absorber is placed, consisting of a piston 2, a mass W6 connected to the piston 2, and a magnetic fluid 5. The vibration sensor 11 and the vibration analyzer 12 detect the angular velocity ω of the external force or excitation force acting on the vibrating body l, and the calculator 13 adjusts the magnetic field so that the natural frequency of the spring-mass system of the mass 6 matches ω. The strength of the magnetic field that gives the spring constant k of the fluid 5, that is, the magnitude of the current 1. Calculate. This is =−ω”, k=k
It can be uniquely selected from the relationship (i,). Thus, when the current controller I4 causes a current of i=1° to flow through the coil 4, the mass 6, the piston 2, and the magnetic fluid 5 resonate, and the vibrations of the vibrating body 1 can be absorbed.
第2図は、ピストン2、シリンダ3内部の磁性流体5の
詳細を示す図であり、磁性流体6中には数μ以下の微細
気泡I7が多数分散し、これは流体を高速で攪拌しなが
ら内部に微細なノズルより空気を吹き込むことlこより
得られる。又微細磁性体も流体中に混入する。流体は第
3図の様なずり速度rとせん断力τをもつ特性のビンガ
ム流体または塑性流体(例えば繊細エステルあるいは高
分子物質の融液なと)を使用する。T6−以下の浮力の
微小流体は浮き上ることなく液中に分散する。気泡の混
入割合によりバネ定数をある程度選択できる。即ち気泡
混入率の多い液はど弱い初期バネ定数に、をとる。FIG. 2 is a diagram showing details of the magnetic fluid 5 inside the piston 2 and the cylinder 3. In the magnetic fluid 6, a large number of microbubbles I7 of several micrometers or less are dispersed. It is obtained by blowing air into the interior through a fine nozzle. Furthermore, fine magnetic substances are also mixed into the fluid. The fluid used is a Bingham fluid or a plastic fluid (such as a melt of delicate ester or polymer material) having characteristics such as the shear rate r and shear force τ as shown in FIG. A microfluid with a buoyancy of T6- or less is dispersed in the liquid without floating up. The spring constant can be selected to some extent depending on the proportion of air bubbles mixed in. In other words, a liquid with a high rate of air bubbles has a weak initial spring constant.
第4図は電流の強さi (あるいは起磁力ni:niミ
ニnミコイルるいは磁場H)とバネ定数との関係を示し
たもので、電流の強さiを大きくすると磁場と磁性体の
磁気効果によりその中に含まれる気泡の動きが制約され
大きなバネ定数が得られる0以上のように本発明は磁場
即ち電流の強さによりシリンダに密封された磁性流体の
バネ定数を自由に選択できる点が特徴であり、これjこ
より、質量〜バネ系の固有振動数をリアルタイムで自動
的に変更できることから、励振側の角速度ωが変化して
も常に効率の良い制振を行なうことができる。Figure 4 shows the relationship between the current strength i (or magnetomotive force ni: ni mini n microcoil or magnetic field H) and the spring constant. The effect restricts the movement of the bubbles contained therein, resulting in a large spring constant.The present invention has the advantage that the spring constant of the magnetic fluid sealed in the cylinder can be freely selected depending on the strength of the magnetic field, that is, the current. Because of this, the natural frequency of the mass-spring system can be automatically changed in real time, so even if the angular velocity ω on the excitation side changes, efficient damping can always be performed.
なお、上記実施例においては、動的吸振器について説明
したが、本発明はこれに限ることなく、例えば、回転機
械と床との間に設置して振動力の伝達の低減や危険回転
の回避などの綾振器や、これとは反対に、物体を加振す
る装置などにも適用できることは言うまでもない。In the above embodiments, a dynamic vibration absorber has been described, but the present invention is not limited to this. For example, the dynamic vibration absorber can be installed between a rotating machine and a floor to reduce the transmission of vibration force and avoid dangerous rotation. Needless to say, the present invention can also be applied to a traversal vibrator such as the above, or, on the contrary, a device that vibrates an object.
従来は、振動系のバネ定数は固定された値しかとり得な
かったが、本発明によれば自動的にリアルタイムで最適
なバネ定数を選択できるため、常に最適な制振系を提供
できる技術的効果がある。Conventionally, the spring constant of a vibration system could only take a fixed value, but according to the present invention, the optimal spring constant can be automatically selected in real time, making it possible to always provide an optimal vibration damping system. effective.
この様な技術的効果1こよる信頼性向上や振動騒音の低
減など安全性の向上などの効果が得られる。As a result of such technical effects 1, effects such as improved safety such as improved reliability and reduced vibration and noise can be obtained.
第1図は、本発明の一実施例に係るシステム構成の概念
図、第2図は第1図における磁性流体の構成を示す図、
第3図は流体のズリ速度tとせん断力1との関係を示す
図、第4図は起磁力n1とバネ定数にとの関係を示す図
である。
!・・・振動体、2・・・ピストン、3・・・シリンダ
、4・・・コイル、5・・・磁性流体、6・・・質量、
11・・・振動センサ、I2・・・振動分析器、I3・
・・演算器、14・・・電流コントローラ。
18・微粉磁性体FIG. 1 is a conceptual diagram of a system configuration according to an embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of the magnetic fluid in FIG. 1.
FIG. 3 is a diagram showing the relationship between fluid shear velocity t and shear force 1, and FIG. 4 is a diagram showing the relationship between magnetomotive force n1 and spring constant. ! ... Vibrating body, 2... Piston, 3... Cylinder, 4... Coil, 5... Magnetic fluid, 6... Mass,
11... Vibration sensor, I2... Vibration analyzer, I3.
...Arithmetic unit, 14...Current controller. 18. Fine powder magnetic material
Claims (2)
ンダ内に封入してなるシリンダ状のバネ要素と、前記シ
リンダの外周に装着され、流通電流の制御により前記バ
ネ要素のバネ定数を制御するコイルとを具備してなるこ
とを特徴とする制振装置。(1) A cylindrical spring element in which a magnetic fluid made by dispersing microbubbles in a fluid is sealed in a cylinder; A vibration damping device characterized by comprising a controlling coil.
ネ定数から固有振動数を演算する手段と、被制振体にか
ゝる外力の振動数を計測する手段と、前記各振動数を比
較して固有振動数の変更を指示する電流の目標値を演算
する手段とを具備してなることを特徴とする前記特許請
求の範囲第1項記載の制振装置。(2) a mass fixed to a vibration damping spring, a means for calculating a natural frequency from a spring constant of the spring element, a means for measuring the frequency of an external force applied to the damped body, and a means for calculating the frequency of each of the vibrations. 2. The vibration damping device according to claim 1, further comprising means for comparing the numbers and calculating a target value of the current for instructing a change in the natural frequency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19795889A JPH0366944A (en) | 1989-08-01 | 1989-08-01 | Damping device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19795889A JPH0366944A (en) | 1989-08-01 | 1989-08-01 | Damping device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0366944A true JPH0366944A (en) | 1991-03-22 |
Family
ID=16383147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19795889A Pending JPH0366944A (en) | 1989-08-01 | 1989-08-01 | Damping device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0366944A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08261279A (en) * | 1995-02-17 | 1996-10-08 | Trw Inc | Limiting device of vibration between relatively movable part |
JP2006183416A (en) * | 2004-12-28 | 2006-07-13 | Bunka Shutter Co Ltd | Door construction method and door structure |
US7490986B2 (en) | 2007-02-15 | 2009-02-17 | Canon Kabushiki Kaisha | Radiation image projection apparatus and radiation image projection method |
CN108445924A (en) * | 2018-04-23 | 2018-08-24 | 夏竟翔 | A kind of active shock absorbing apparatus and active shock-absorbing foot nail |
-
1989
- 1989-08-01 JP JP19795889A patent/JPH0366944A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08261279A (en) * | 1995-02-17 | 1996-10-08 | Trw Inc | Limiting device of vibration between relatively movable part |
JP2006183416A (en) * | 2004-12-28 | 2006-07-13 | Bunka Shutter Co Ltd | Door construction method and door structure |
US7490986B2 (en) | 2007-02-15 | 2009-02-17 | Canon Kabushiki Kaisha | Radiation image projection apparatus and radiation image projection method |
CN108445924A (en) * | 2018-04-23 | 2018-08-24 | 夏竟翔 | A kind of active shock absorbing apparatus and active shock-absorbing foot nail |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2613626C2 (en) | Vibration damper for sensor housing | |
US20060225980A1 (en) | Tunable adjustable multi-element hybrid particle damper | |
EP0631066A1 (en) | Vibration control apparatus | |
JPS63266237A (en) | Damping factor control device for vibration isolator | |
CN106402239A (en) | Self-adaption particle damping vibration absorber and control method thereof | |
CN105926796A (en) | Piezoelectric damping intelligent tuning vibration reduction control device | |
CN113272573A (en) | Self-adaptive tuning vibration absorber | |
JPH03194238A (en) | Vibration controller using magnetic elastic body | |
CN105698779B (en) | A kind of design method of quartz micro mechanical gyroscope twin shaft vibration absorber | |
JPH0366944A (en) | Damping device | |
CN112580227A (en) | Horizontal shock absorber and method for determining medium mass of damping liquid in horizontal shock absorber | |
US3091307A (en) | Impact vibration damper and control means therefor | |
JP4806272B2 (en) | Vibration attenuator | |
KR100952784B1 (en) | Apparatus for Testing Dynamic Vibration Damping Type Active Vibration-Proof Apparatus | |
US5337991A (en) | Low resonant frequency vibration isolation system | |
CN112576676B (en) | Horizontal vibration damper | |
JPH0526287A (en) | Variable damping device using magnetic fluid | |
US3115326A (en) | Mounting system for the isolation of rotational vibrations | |
JPH0821482A (en) | Vibration insulating device | |
EP0075877A2 (en) | Nonlinear vibration absorber | |
KR20090113445A (en) | Apparatus for Testing Dynamic Vibration Damping Type Active Vibration-Proof Apparatus | |
JPS6060344A (en) | Vibration-control device | |
Wang et al. | Active control of rod vibrations using magnetic fluids | |
CN110500375B (en) | TLMD vibration reduction system | |
JP2006349053A (en) | Natural frequency variable type vibration control method and vibration control device |